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Abstract

Geometric programming is now a well-established branch of optimization
theory which has its origin in the analysis of posynomial programs. Geo-
metric programming transforms a mathematical program with nonlinear
objective function and nonlinear inequality constraints into a dual problem
with nonlinear objective function and linear constraints. Although the dual
problem is potentially simpler to solve, there are certain computational
difficulties to be overcome. The gradient of the dual objective function is not
defined for components whose values are zero. Moreover, certain dual vari-
ables may be constrained to be zero (geometric programming degeneracy).

To resolve these problems, a means to find a solution in the relative
interior of a set of linear equalities and inequalities is developed. It is then
applied to the analysis of dual geometric programs.

1. Introduction

It is common in mathematics to find problems of solving sets of linear equalities
and inequalities. Most first year courses in linear algebra deal with the solution of
linear equations. Orden [6] has dealt with the more general problem of solving
linear equality and inequality systems. When some of the inequalities are also
required to be strict the occurrences are less common but they are nevertheless
important in certain analysis. Geometric programming is one such area.
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2. Geometric programming

Geometric programming originated with the analysis of a class of mathematical
programs called posynomial programs [2]. This class of programs has the form:

min go(t)

subject to gk(t)^l, k = 1,2,...,p.

The decision vector teRm, and each component is positive. The functions gk(t)
have the form

m
c i l l * r > K: — v, i, ...,p.

ielkl J-l

The Ci are positive and the ai} are arbitrary real constants. The index sets [k],
A: = 0,1, ...,/>, form a sequential partition of the integers 1 to n, that is

[0] = {1, ...,/iJ, [1] = {flx + 1, ....wj,.... [p] = {»p + l, •••,«}•

Thus the functions gk(t) have the form of polynomials but with non-integer
powers and positive coefficients; hence the name posynomials. The example given
in Section 4 is a typical posynomial program.

Geometric programming analysis generates a dual program which is potentially
easier to solve. It is perhaps worth mentioning that the name geometric pro-
gramming was chosen because of the importance of arithmetic-geometric inequality
in the derivation of the dual mathematical program. The dual program is

subject to orthogonality conditions

£ a « 8 i = 0, j=\,2,...,m, (1)

a normality condition
28,-1 (2)

ti[OJ

and non-negativity conditions

8 ^ 0 , i = 1,2, ...,n. (3)

The dimensions m, n and constants ct and ai} are defined as before. The variables Afc,
k = 1,2, ...,p, are defined by

Afc= S K k=*l,...,p.

The sets [k], k = 0,\,2,...,p, are defined as before.
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At optimality the primal and dual variables are related by

(Stv(S), ie[0]

JXk, i e [k], Xk > 0,

489

(4)

and the primal and dual objective functions are equal.
It can easily be seen that the dual program has a nonlinear objective function

subject to linear equalities and inequalities. This problem is often easier to solve
than the primal program. Moreover, equations (4) are linear in the variables
log tj, thus providing an easy means of obtaining the primal optimal solution from
the dual optimal solution.

There are certain difficulties in solving the dual programs. The gradient of
logi-(S) (logv(S) is easier to work with than v(S)) has components

Slogv(S)

log-^-l , ie[0],

Should any particular Si = 0, 8 log v(8)/3Si = oo. To apply a gradient method to
the problem we require a feasible S such that 8i>0, i= 1,2, ...,n.

The other major problem is degeneracy. A geometric program is said to be
degenerate when there does not exist a feasible 8 with all components positive.
Duffin, Peterson and Zener analyse degenerate geometric programs in Chapter 6
of [2]. Degenerate programs are equivalent to canonical programs where the terms,
associated with components S4 which cannot be made positive, are deleted.

Both problems can be resolved by the approach presented in the next section.
An example of the method appears in Section 4.

3. Cascading simplex method

Let us consider the problem of finding a point which requires that all inequalities
are satisfied strictly:

Bx< c,

x>0.

(5)
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In order to solve (5) we relax the problem to one which we can handle by the
simplex method:

Ax = d, '

Bx+Ixs = c, (6)

where JCS are slack variables.
In order to obtain a vector where the inequalities are satisfied strictly we will try

to make x and xa positive. We do this by first trying to solve (6) with an objective
function

max <e,(x,xs)>,

where e = ( l , l , . . . , l ) initially.

Phase I

Phase I is exactly the same as the standard simplex method [3]. We first try to
obtain a feasible point for (6). Since (6) is a relaxed version of (5), if we should find
that (6) is inconsistent it would imply that (5) is too. Hence suppose that (6) is
consistent then at the end of phase I we will have a point which satisfies (6).

Phase II

Phase II is based on the observation that if one judiciously selects basic feasible
points, a simple average will lie in the relative interior of the region (provided the
region has a relative interior). In general we are looking for a point which is
interior relative to only certain inequalities. We of course only need one basic
feasible point to hold strictly with respect to a given inequality for the average to
hold strictly. With this in mind we are ready to start phase II.

The objective function is designed to make those components positive that we
wish to be positive. As soon as we find one basic feasible point for which a desired
component is positive we set the associated component of the e vector to zero as
one point is all we need. The steps are as follows.

Step 1. If <e, (JC, xg)> > 0, go to step 2. Otherwise, go to step 3.

Step 2. Add (x, JCS) to the set of feasible points which we shall average later.
For each component of (x, xs) which is positive set the corresponding component
of e to zero. Return to the tableau generated from phase I (this is to minimize the
number of pivots on the matrix to obtain any basic feasible point). If e is a vector
of zeros go to step 5. Otherwise, go to step 3.
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Step 3. Do a simplex pivot. If optimal (in the linear programming sense) and
<e, (x, x8)> = 0, stop. An interior point cannot be obtained and for each component
of e which is one the associated component of (x, x8) cannot be made positive. If
the solution of (6) is unbounded (in the linear programming sense) go to step 4.
Otherwise go to step 1.

Step 4. In the case of the linear programming problem being unbounded, the
column to be pivoted on was found to have non-positive elements. Thus the
associated variable can take any positive value and still maintain feasibility. Let
us assume the variable is Xj and that we fix its value at 1. To do this we delete the
;th column from the simplex tableau and subtract this column from the basic
feasible solution. Continue on with this adjusted tableau. Go to step 1.

4. Example

As an example we obtain a point with all components strictly positive for the
dual of a geometric program. The problem is a multiphase chemical equilibrium
developed by Dantzig, De Haven and Sams [1].

Primal formulation

min x~M119 x~-°°133Z ^-.002271 ^-.002485 x-*-W x -4-672 ^-.00814 ^-.008092 ^-.005

V-.00088 Y-.OO0909

subject to

.05418*! + .02186x2 + .09773x3 + .006694x5 x4 < 1

10-6
 Xl +10-5 x2 + lO"6 x3+10-10 x4 +10-8 x5 +10-3 x6

+ 10-3x7 + .109x5x6<l,

.0001611xBx2+10-23x5x2x4+.193 x lO^XjXaX^1

+ 10"4x10+10-*^+ 10-5x2+ 10-6JC3+ 10"10x4+

+ .0001118x9;c1+10-4;t11<l.

This problem can be seen to be highly nonlinear.
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In the dual program, however, all the nonlinearity is in the objective function.

Dual formulation

/1 \*i /.05418iy*
max

09773\*4 /.006694y* /10-V.

~sTJ I T / T7
/IO-VS /io-ioy .oooi6iiy>i«

u /.oooooi93\*ie

I S )
io-10\*«

U3

(7)

subject to

-.00119 81 + 831 = 0,

-.001332 8 ^ 8 2 + 818 + 830 = 0,

- .002271 Sx + 83+87 + S14 + 815 + S16 + S19 + S26 + 827 + S28 = 0,

- .002485 8t + 84 + 88 + 8ao = 0,

-4.67 «! + 8,+ 89+ 813+ 8U-816+ 821 + S25+ 8^,-8^ = 0,

—4.672 8X + 86 + S10 + 813 + 814 + 815 + 816 + S22 + S25 + 8^ + 827 + 828 = 0,

-.00814 81+81 1+82 3 = 0,

-.008092 81 + S12 = 0,

- .005 8 X +8^ = 0,

-.00088 81+S17 = 0,

-.0009098^829+830 = 0, /

where 8 ^ 0 , i= 1,2,...,31.

Applying the cascading simplex method to the dual formulation we initially
obtain the linear program

31

max

subject to equations (7).
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The program is consistent and phase I yields the following x and e vectors,

(1, .000423, .001271, .002485, 4.671, 0, 0, 0, 0, 0, .00814, .008092, 0, 0, 0,

.001, .000888, 0, 0, 0, 0, 0, 0, .005, 0, 0, 0, 0, 0, .000909, .00119)

and

(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,

1, 1, 0, 0).

The new e vector gives rise to an associated linear program to start off the cascade
in phase II. The sequence of x vectors for phase II continues with

(2, .000423, .002542, .00497, 9.342, .000423, 0, 0, 0, 0, .01628, .016184,

0, 0, 0, .002, .00176, 0, 0, 0, 0, 0, 0, .01, 0, 0, 0, 0, 0, .001818, 0.0238)

and e6 is set to zero.
The cascade continues until finally the last component is made positive. The

final x vector is

(20, .008523, .017794, .04473, 84.069, .000423, .001271, .002485, .002542,

.002, .15466, .16184, 4.571, .002, .001271, .017452, .0176, .00423,

.001271, .002485, .002542, .002, .00814, .1, 4.671, .002, .001271, .001,

.000909, .017271, .0238)

and e29 is set to zero. Thus the required feasible point with positive compoents is

(1, .00042615, .0008897, .0022365, 4.20345, .00002115, .00006355,

.00012425, .0001271, .0001, .007733, .008092, .23355, .0001, .00006355,

.0008771, .00088, .00002115, .00006355, .00012425, .0001271, .0001,

.000407, .005, .23355, .0001, .00006355, .00005, .00004545, .00086355,

.00006355).

5. Conclusions

Depending on the matrix (ati) certain 8{ can be constrained to zero by (1), (2)
and (3); or possibly (1), (2) and (3) are inconsistent. In either case we have a
degenerate geometric program. Degenerate programs are most easily dealt with by
eliminating the degeneracy. When (1), (2) and (3) are inconsistent then the dual

https://doi.org/10.1017/S1446181100001814 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100001814


494 T. R. Jefferson and C. H. Scott [8]

problem is totally degenerate which implies by Lemma 1, p. 168 of [2] that the
primal problem has a limit point for which the objective function is zero. Since a
posynomial function is by construction always non-negative we can therefore try
to minimize some other aspect of the problem or add another constraint to the
problem. In other words, we should reformulate the problem. Inconsistency of (1),
(2) and (3) can be found by phase I of the cascading simplex method.

The other possibility is that some variables 8t are restricted to be equal to zero
by (OJ (2) and (3). By applying the cascading simplex method we wish to find a
point for which x>0 (8 being associated with x). The cascading simplex method
will find an interior point if the program is canonical (8 > 0). If the problem is
degenerate then the cascading simplex method will find which components of 8
are zero. The point found will be an interior point to the reduced form of the dual
problem as defined in [2].

To apply gradient or second-order methods to solve the problem we require an
interior point since the gradient can be infinite at the boundary. The cascading
simplex method finds such a point when checking for degeneracy.

The cascading simplex algorithm has been implemented as part of a geometric
programming algorithm [4, 5].
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