ON EXPONENTIAL DICHOTOMY IN BANACH SPACES

In this paper we study the exponential dichotomy property for linear systems, the evolution of which can be described by a semigroup of class C_0 on a Banach space. We define the class of (p, q) dichotomic semigroups and establish the connections between the dichotomy concepts and admissibility property of the pair (L^p, L^q) for linear control systems. The obtained results are generalizations of well-known results of W.A. Coppel, J.L. Massera and J.J. Schäffer, K.J. Palmer.

1. Introduction

In Perron's classical paper on stability $([\delta])$ a central concern is the relationship, for linear differential equations, between the condition that the nonhomogeneous equation has some bounded solution for every bounded "second member", on the one hand, and a certain form of conditional stability of the solutions of the homogeneous equation on the other. This idea was later extensively developed among others by Massera and Schäffer in [4] and Coppel in [2].

The extension of the bounded input, bounded output criteria of Perron for the case of linear control systems has been studied by several authors [4], [5], [6], [8]. The relationship between the conditional input-output stability and the exponential dichotomy for the case of a finitedimensional linear control system is considered by Palmer in [7].

The aim of this paper is to study the exponential dichotomy property

Received 10 November 1980.

for linear systems, the evolution of which can be described by a semigroup of class C_0 on a Banach space. Using a fundamental inequality established in [4] we define the concept of (p, q) dichotomic semigroup and give a sufficient condition for exponential dichotomy of a large class of such semigroups. We also give a proof for the equivalence between the exponential dichotomy of a C_0 semigroup T(t) and (L^p, L^q) admissibility property for the case of a linear control system

$$x(t, x_0, u) = T(t)x_0 + \int_0^t T(t-s)Bu(s)ds$$

The case $T(t) = \exp(At)$, where A is a bounded linear operator on a finite dimensional space has been considered by Palmer in [7].

2. Definitions and terminology

Let T(t) be a C_0 semigroup on a separable Banach space X. Consider the control process described by the following integral model,

$$(T, B, U_p)x(t, x_0, u) = T(t)x_0 + \int_0^t T(t-s)Bu(s)ds$$
,

under the following standard assumptions: $x(t, \cdot, \cdot)$ belongs to X; $u \in U_p = L^p(R_+, U)$ where $R_+ = [0, \infty)$ and U is also a Banach space; $B \in L(U, X)$ (the space of bounded linear operators from U to X); finally $x_0 \in X$.

Here u_p is the Banach space of all U-valued, strongly measurable functions u defined almost everywhere on R_1 such that

$$\|u\|_{p} = \left(\int_{0}^{\infty} \|u(s)\|^{p} ds\right)^{1/p} < \infty , \text{ if } p < \infty ,$$

and

294

$$\|u\|_{\infty} = \operatorname{ess sup} \|u(s)\| < \infty$$
, if $p = \infty$.
 $s \ge 0$

We also denote

$$X_{p} = L^{p}(R_{+}, X) \text{ and } p' = \begin{cases} \infty & , \text{ if } p = 1 , \\ 1 & , \text{ if } p = , \\ p/(p-1) , \text{ if } 1$$

Let X_1, X_2 be two closed complemented subspaces of X such that

$$X = X_1 \oplus X_2$$

If we denote by P_1 a projection along X_2 (that is, Ker $P_1 = X_2$) then $P_1 \in L(X, X_1)$, $P_1^2 = P_1$ and $P_2 = I - P_1$ is a projection along X_1 with analogous properties.

We shall denote
$$T_1(t) = T(t)P_1$$
 and $T_2(t) = T(t)P_2$.

DEFINITION 2.1. The subspace X₁ induces

(i) an exponential dichotomy for the semigroup T(t) if there exist constants N > 0, $\nu > 0$ such that

$$\|T_1(t)x\| \leq Ne^{-\nu t} \|P_1x\|$$

and

$$||T_2(t)x|| \geq Ne^{\forall t} ||P_2x||$$

for all $t \ge 0$ and $x \in X$;

(ii) a (p, q) dichotomy (where $1 \le p, q \le \infty$) for the semigroup T(t) if there exists N > 0 such that

$$\|T_{1}(\cdot)x\|_{L^{q}[t+\delta,\infty)} + \|T_{2}(\cdot)x\|_{L^{q}[0,t]} \leq N\delta^{(1/p)-2}\|T(\cdot)x\|_{L^{1}[t,t+\delta]}$$

for all $t \in 0$, $\delta > 0$ and $x \in X_{k}$, $k = 1, 2$.

REMARK 2.1. If X_1 induces an exponential dichotomy for T(t) then

and hence $X_1 = \{x \in X : \lim_{t \to \infty} T(t)x = 0\}$.

REMARK 2.2. If X_1 induces an exponential dichotomy for T(t) then

$$X_{1} = \{x \in X : T(\bullet)x \in X_{q}\}$$

where $1 \leq q \leq \infty$.

DEFINITION 2.2. The C_0 semigroup T(t) is said to be exponentially dichotomic $((p, q) \ dichotomic)$ if there exists a closed complemented subspace X_1 which induces an exponential dichotomy $((p, q) \ dichotomy)$ for T(t).

DEFINITION 2.3. Let $1 \le p, q \le \infty$. The pair $\binom{u_p, X_q}{p}$ is admissible for $(T, B, \frac{u_p}{p})$ if for every $u \in \frac{u_p}{p}$ there exists $x_u \in X$ such that $x(\cdot, x_u, u) \in X_q$.

Now let us note four assumptions which will be used at various times. ASSUMPTION 1. We say that the semigroup T(t) satisfies Assumption 1 if for every $q \ge 1$ the set

$$X_{1} = \{x \in X : T(\cdot)x \in X_{q}\}$$

is a closed complemented subspace.

ASSUMPTION 2. The semigroup T(t) satisfies Assumption 2 if for every $t_0 \ge 0$ there exist $t_1 \ge t_0$ and $m_1 > 0$ such that

$$||T_2(t_1)x_0|| \ge m ||P_2x_0||$$
,

for all $x_0 \in X$.

ASSUMPTION 3. The system (T, B, U_p) satisfies Assumption 3 if the range of B is of second category in X.

ASSUMPTION 4. The semigroup T(t) satisfies Assumption 4 if

 $T_1(t) \neq 0$ for every $t \ge 0$ and any $x \in X_1$, $x \neq 0$.

3. Preliminary results

We state the following

LEMMA 3.1. If T(t) is a C_0 semigroup then there exist M > 1,

.296

(i)
$$||T(t)|| \leq Me^{\omega t}$$
 for all $t \geq 0$;

(ii)
$$||T(t)x|| \le Me^{i\omega\delta} ||T(s)x||$$
 for all $\delta > 0$ and
 $0 \le s \le t \le s+\delta$;

(iii)
$$\delta \|T(t)x\| \leq Me^{\omega\delta} \cdot \int_{t-\delta}^{t} \|T(s)x\| ds$$
 for any $\delta > 0$ and $t \geq \delta$;

(iv)
$$\int_{t}^{t+\delta} \|T(s)x\| ds < Me^{\omega\delta} \cdot \|T(t)x\| \text{ for all } t \ge 0 \text{ and } \delta > 0.$$

Proof. It is well known (see [1], pp. 165-166) that if

$$\omega \geq \overline{\lim_{t \to \infty} \frac{\ln \|T(t)\|}{t}} = \inf_{t \geq 0} \frac{\ln \|T(t)\|}{t} = \omega_0 < \infty$$

then there exists $M \ge 1$ such that (i) holds.

The inequalities (ii)-(iv) follow immediately from (i) and the semigroup property.

LEMMA 3.2. Suppose that Assumption 1 holds and let X_2 be a complementary subspace of X_1 . If (U_p, X_q) is admissible for (T, B, U_p) then there exists N > 0 such that for every $u \in U_p$ there is an unique $x_2(u) \in X_2$ with the properties:

(i) $x(\cdot, x_2(u), u) \in X_q$, and (ii) $||x(\cdot, x_2(u), u)||_q \ge N||u||_p$.

Proof. Let $u \in U_p$. Then by admissibility of (U_p, X_q) for (T, B, U_p) there exists $x_0 \in X$ such that

$$x(\cdot, x_0, u) \in X_q$$
.

If we denote by $x_k = P_k x_0$ (k = 1, 2) then from the definition of X_1 we have that $x(\cdot, x_1, 0) \in X_q$ and hence

$$x(\cdot, x_2, u) = x(\cdot, x_0, u) - x(\cdot, x_1, 0) \in X_q$$
.

It follows that for every $u \in U_p$ there is $x_2(u) = P_2 x_0$, X_2 with the property (i).

If we suppose that there exist $x'_2, x''_2 \in X_2$ such that $x(\cdot, x'_2, u) \in X_q$ and $x(\cdot, x''_2, u) \in X_q$ then $x(\cdot, u) = x(u - u) + x(u - u) + x(u - u)$

$$x(\cdot, x_2 - x_2'', u) = x(\cdot, x_2' - x_2'', 0) = T(\cdot)(x_2' - x_2'') \in X_q$$

and hence

$$x_2' - x_2'' \in X_1 \cap X_2 = \{0\}$$

which shows that $x_2' = x_2''$.

Let $\Lambda : U_p \to X_q$ be the operator defined by $\Lambda u = x(\cdot, x_2(u), u)$.

It is easy to see that Λ is linear (from uniqueness of $x_2(u)$). Property (*ii*) is equivalent with the statement that Λ is a bounded operator. From the closed graph theorem it is sufficient to prove that Λ is closed.

Let $u_n \neq u$ in u_p and $\Lambda u_n \neq x$ in X_q . Let $\begin{pmatrix} u_n \\ k \end{pmatrix}$ be a subsequence of $\begin{pmatrix} u_n \end{pmatrix}$ such that $u_n \neq u$ almost everywhere.

Because we may suppose that $x(\cdot)$ is continuously, we have that

$$\lim_{k \to \infty} x_2(u_{n_k}) = \lim_{k \to \infty} (\Lambda u_{n_k})(0) = x(0) \in X_2$$

and hence

$$\begin{aligned} x(t) &= \lim_{k \to \infty} \left[T(t) x_2(u_{n_k}) + \int_0^t T(t-s) B u_{n_k}(s) ds \right] \\ &= T(t) x(0) + \int_0^t T(t-s) B u(s) ds = x(t, x(0), u) . \end{aligned}$$

From $x(\cdot) \in X_q$, we have that $x(0) = x_2(u)$ and hence

298

$$x(t) = x(t, x_0(u), u) = (\Lambda u)(t)$$
 for all $t \ge 0$.

LEMMA 3.3. If T(t) is (p, q) dichotomic with $(p, q) \neq (1, \infty)$ then there exists a function $n: R_+ \rightarrow R_+$ with $\lim_{t\to\infty} n(t) = 0$ and such that for all $\delta_0 > 0$ and $\delta > \delta_0$ we have

$$(i) \int_{t}^{t+\delta} \|T_{1}(s)x\| ds \leq n(\delta_{0}) \cdot \int_{t_{0}}^{t_{0}+\delta} \|T_{1}(s)x\| ds , \text{ for all}$$

$$t_{0} \geq 0, \quad t \geq t_{0}+\delta_{0} \quad \text{and all} \quad x \in X; \quad \text{and}$$

$$(ii) \int_{t_{0}}^{t_{0}+\delta} \|T_{2}(s)x\| ds \leq n(\delta_{0}) \cdot \int_{t}^{t+\delta} \|T_{2}(s)x\| ds \quad \text{for all}$$

$$t_{0} \geq 0, \quad t \geq t_{0}+2\delta_{0} \quad \text{and} \quad x \in X.$$

Proof. Let $\delta > \delta_0 > 0$ and let n be a positive integer such that $n\delta_0 \le \delta < (n+1)\delta_0$.

If we denote by $\delta_1 = \delta/n$ then from $t > t_0 + \delta_0$ and $s = t_0 + k \delta_1$, k = 0, 1, ..., n-1, by (p, q) dichotomy of T(t) and Hölder's inequality we have

$$\int_{s+t-t_{0}}^{s+t-t_{0}+\delta_{1}} \|T_{1}(\tau)x\| d\tau \leq \delta_{1}^{1/q'} \cdot \left(\int_{s+\delta_{0}}^{\infty} \|T_{1}(\tau)x\|^{q} d\tau \right)^{1/q}$$
$$\leq (2\delta_{0})^{1/q} \cdot \int_{s}^{s+\delta_{0}} \|T_{1}(\tau)x\| d\tau < \eta(\delta_{0}) \cdot \int_{s}^{s+\delta_{1}} \|T_{1}(\tau)x\| d\tau$$

where

$$n(\delta_0) = N(2\delta_0)^{1/q'} \delta_0^{(1/p)-2}$$

Taking $s = t_0 + k\delta_1$, k = 0, 1, 2, ..., n-1 and adding we obtain

$$\int_{t}^{t+\delta} \|T_{1}(\tau)x\| d\tau = \int_{t}^{t+n\delta_{1}} \|T_{1}(\tau)x\| d\tau \le n(\delta_{0}) \cdot \int_{t_{0}}^{t_{0}} \|T_{1}(\tau)x\| d\tau$$

and hence (i) is proved.

Let $t \ge t_0 + 2\delta_0$ and $s = t_0 + k\delta_1$ with k = 0, 1, ..., n-1. Then as before we have

$$\int_{s}^{s+\delta_{1}} \|T_{2}(\tau)x\| d\tau \leq \delta_{1}^{1/q'} \cdot \left(\int_{s}^{s+\delta_{1}} \|T_{2}(\tau)x\|^{q} d\tau \right)^{1/q}$$

$$\leq 1^{1/q'} \cdot \left(\int_{0}^{s+t-t_{0}} \|T_{2}(\tau)x\|^{q} d\tau \right)^{1/q} \leq n(\delta_{0}) \cdot \int_{s+t-t_{0}}^{s+t-t_{0}+\delta_{0}} \|T_{2}(\tau)x\| d\tau$$

$$\leq n(\delta_{0}) \cdot \int_{s+t-t_{0}}^{s+t-t_{0}+\delta_{1}} \|T_{2}(\tau)x\| d\tau$$

and adding, we obtain the inequality (ii).

LEMMA 3.4 ([4]). Let $f: R_+ \neq R_+$ be a function with the property that there is $\delta > 0$ such that $f(t+\delta) \ge 2f(t)$ for every t > 0 and $2f(t) \ge f(t_0)$ for all $t_0 \ge 0$ and $t \in [t_0, t_0+\delta]$. Then there exists v > 0 such that

$$4f(t) \ge e^{v(t-t_0)} f(t_0) \quad \text{for all} \quad t \ge t_0 \ge 0 .$$

The proof is immediate. Indeed, if $v = (\ln 2)/\delta$ and n is the positive integer with

$$n\delta \leq t - t_0 < (n+1)\delta$$

then

$$4f(t) \ge 2f(t_0+n\delta) \ge 2^{n+1}f(t_0) = e^{\nu(n+1)\delta}f(t_0) \ge e^{\nu(t-t_0)}f(t_0)$$
.

LEMMA 3.5. If T(t) is (p, q) dichotomic with $(p, q) \neq (1, \infty)$ then there exists $\nu > 0$ such that for every $\delta > 0$ there is N > 0 with

(i)
$$\int_{t}^{t+\delta} ||T_{1}(s)x|| ds \leq Ne^{-\nu(t-t_{0})} ||T_{1}(t_{0})x|| , and$$

(ii)
$$\int_{t_{0}}^{t_{0}+\delta} ||T_{2}(s)x|| ds \leq Ne^{-\nu(t-t_{0})} ||T_{2}(t_{0})x|| for all \ t \geq t_{0} \geq 0$$

300

and $x \in X$.

Proof. Let $\delta > 0$, $x \in X$ and let δ_0 be sufficiently large such that

$$\eta(\delta_0) < \frac{1}{2}$$
.

Let n be a positive integer such that $\eta \delta > 4\delta_0$ and let us consider the function $f: R_+ \to R_+$ defined by

$$f(t) = \left(\int_{t}^{t+n\delta} \|T_1(s)x\| ds \right)^{-1} .$$

By Lemma 3.3 we obtain

$$\int_{t_0+\delta_0}^{t_0+\delta_0+n\delta} \|T_1(s)x\| ds \le \eta(\delta_0) \int_{t_0}^{t_0+n\delta} \|T_1(s)x\| ds \le \frac{1}{2} \int_{t_0}^{t_0+n\delta} \|T_1(s)x\| ds$$

and hence

$$f(t_0 + \delta_0) \ge 2f(t_0)$$
.

If
$$t \in |t_0, t_0 + \delta_0|$$
 then

$$\int_{t}^{t+n\delta} ||T_{1}(s)x|| ds \leq \int_{t_{0}}^{t_{0}+\delta_{0}} ||T_{1}(s)x|| ds + \int_{t_{0}+\delta_{0}}^{t_{0}+\delta_{0}+n\delta} ||T_{1}(s)x|| ds$$
$$\leq 2 \int_{t_{0}}^{t_{0}+n\delta} ||T_{1}(s)x|| ds ,$$

which implies that

$$2f(t) \ge f(t_0)$$
 for every $t \in [t_0, t_0 + \delta_0]$.

From Lemma 3.4 we obtain that there exists $\nu > 0$ such that

$$4f(t) \ge f(t_0)e^{v(t-t_0)} \quad \text{for all} \quad t \ge t_0 \ge 0 .$$

By the preceding inequality and Lemma 3.1 we conclude that

$$\int_{t}^{t+\delta} \|T_{1}(s)x\| ds = \frac{1}{f(t)} \le 4e^{-\nu(t-t_{0})} \cdot \int_{t_{0}}^{t_{0}+n\delta} \|T_{1}(s)x\| ds$$
$$\le 4Mn\delta e^{n\omega\delta} \cdot e^{-\nu(t-t_{0})} \|T_{1}(t_{0})x\|$$

for all $t \ge t_0 \ge 0$. The inequality is proved.

From (ii) let g be the function defined by

$$g(t) = \int_t^{t+n\delta} ||T_2(s)x|| ds .$$

Then from inequality (ii) of Lemma 3.3 we obtain

$$g(t_0+2\delta_0) = \int_{t_0+2\delta_0}^{t_0+2\delta_0+n\delta} ||T_2(s)x|| ds \ge 2 \int_{t_0}^{t_0+n\delta} ||T_2(s)x|| ds = 2g(t_0)$$

and for $t \in [t_0, t_0 + 2\delta_0]$ we have

302

$$g(t_0) = \int_{t_0}^{t_0+n\delta} \|T_2(s)x\| ds \leq \int_{t_0}^{t_0+2\delta_0} \|T_2(s)x\| ds + \int_{t}^{t+n\delta} \|T_2(s)x\| ds$$
$$\leq \frac{1}{2} \int_{t_0+2\delta_0}^{t_0+4\delta_0} \|T_2(s)x\| ds + g(t) \leq 2g(t)$$

We may now apply Lemma 3.4 to g and on account of Lemma 3.1 it follows that

$$\int_{t_0}^{t_0+\delta} \|T_2(s)x\| ds \le g(t_0) \le 4e^{-\nu(t-t_0)}g(t)$$
$$\le 4Me^{n\omega\delta}e^{-\nu(t-t_0)} \cdot \|T_2(t)x\| = Ne^{-\nu(t-t_0)} \|T_2(t)x\|$$

for all $t \ge t_0 \ge 0$.

4. The main results

The purpose of this section is to establish the connections between the dichotomy concepts and admissibility. **THEOREM 4.1.** Suppose that Assumption 2 holds. If the subspace X_1 indices a (p, q) dichotomy with $(p, q) \neq (1, \infty)$ then X_1 also induces an exponential dichotomy for the semigroup T(t).

Proof. Let $x \in X$ and $\delta > 0$.

Firstly, we suppose that

$$T_1(t)x \neq 0$$
 for all $t \geq 0$.

From Lemmas 3.1 and 3.5 we find that

$$\|T_1(t)x\| \leq Me^{\omega\delta} \cdot \int_{t-\delta}^t \|T_1(s)x\| ds \leq MNe^{\omega\delta} e^{-\nu t} \|P_1x\| \text{ for all } t > \delta.$$

Let

$$N_{1} = \max\left\{MNe^{\omega\delta}, \sup_{t \in [0,\delta]} e^{\nu t} \|T(t)\|\right\}.$$

Then

$$\|T_{1}(t)x\| \leq N_{1}e^{-\Im t}\|P_{1}x\| \text{ for all } t \geq 0.$$

If there exists $t_{0} > 0$ such that $T_{1}(t_{0})x = 0$ then
 $T_{1}(t)x = 0$ for all $t \geq t_{0}$

and hence the preceding inequality holds.

Therefore, there exist N_1 , $\nu > 0$ such that

$$||T_{1}(t)x|| \leq N_{1}e^{-vt}||P_{1}x||$$

for all $t \ge 0$ and $x \in X$.

Similarly, if $T_2(t) \neq 0$ for every $t \ge 0$ then using Assumption 2 and Lemmas 3.1 and 3.5 one obtains that there exist $\delta, m > 0$ such that

$$m\|P_2 x\| \leq \|T_2(\delta)x\| \leq \frac{Me^{\omega\delta}}{\delta} \cdot \int_0^\delta \|T_2(s)x\| ds \leq \frac{MNe^{\omega\delta}}{\delta} \cdot e^{-\nu t} \cdot \|T_2(t)x\|$$

for all $t \geq 0$.

This yields

$$||T_{\mathcal{P}}(t)x|| \geq N_{\mathcal{P}}e^{\forall t}||P_{\mathcal{P}}x|| \text{ for all } t \geq 0$$

where

$$N_2 = \frac{m\delta}{MN} e^{-\omega\delta}$$
.

If there is $t_0 > 0$ with $T_2(t_0)x_0 = 0$ then $T_2(t)x = 0$ for all $t \ge t_0$ and from Assumption 2 it follows that $P_2x = 0$. This shows that the inequality

$$||T_2(t)x|| \ge N_2 e^{vt} ||P_2x||$$

holds for all $t \ge 0$ and $x \in X$.

THEOREM 4.2. Assume that Assumptions 1, 3 and 4 hold. Then if the pair (U_p, X_q) is admissible for (T, B, U_p) then the semigroup T(t) is (p, q) dichotomic.

Proof. According to the more refined version of the open-mapping theorem ([3]) it follows that if $\{T, B, U_p\}$ satisfies Assumption 3 then there exist an operator $B^+: X \neq U$ and b > 0 such that

$$BB^+ = x$$
 and $||B^+x|| \le b||x||$ for every $x \in X$.

Let t > 0, $\delta > 0$ and $x \in X$, $x \neq 0$. Let $u_t(\cdot)$ be the input function defined by

$$u_{t}(s) = \begin{cases} \frac{B^{+}t(s)x}{\|T(s)x\|}, & \text{if } s \in [t, t+\delta], \\\\ 0, & \text{, if } s \notin [t, t+\delta], \end{cases}$$

and let $x_t^0 = -f(t)P_2 x$ where $f(t) = \int_t^{t+\delta} \frac{ds}{\|T(s)x\|}$ and P_2 is the projection along $X_1 = \{x \in X : T(\cdot)x_1 \in X_q\}$.

The function $u_t \in U_p$, $||u_t||_p \le b\delta^{1/p}$ and

304

$$x\left(s, x_t^0, u_t\right) = \begin{cases} f(t)T(s)P_1x & \text{, if } s > t + \delta \\ \\ -f(t)T(s)P_2x & \text{, if } s \leq t \end{cases},$$

where $P_1 = I - P_2$.

Hence $x\left(\cdot, x_t^0, u_t\right) \in X_q$ and by Lemma 3.2 we have that there is N > 0 such that

$$\left\|x\left(\cdot, x_t^0, u_t\right)\right\|_q \le N \cdot \|u_t\| < N \cdot b \cdot \delta^{1/p}$$

This shows that

$$f(t) \|T_{2}(\cdot)x\| + f(t) \|T_{1}(\cdot)x\| \leq Nb\delta^{1/p}$$

By Schwartz's inequality we have

$$\delta^2 = f(t) \cdot \int_t^{t+\delta} \|T(s)x\| ds ,$$

which implies that

$$\|T_{1}(\cdot)x\|_{L^{q}[t+\delta,\infty)} + \|T_{2}(\cdot)x\|_{L^{q}[0,t]} \leq Nb\delta^{(1/p)-2} \cdot \int_{t}^{t+\delta} \|T(s)x\|ds .$$

The theorem is proved.

COROLLARY 4.3. Assume that Assumptions 1-4 hold. Then if the pair (U_p, X_q) with $(p, q) \neq (1, \infty)$ is admissible for (T, B, U_p) then the semigroup T(t) is exponentially dichotomic.

References

 [1] A.V. Balakrishnan, Applied functional analysis (Applications of Mathematics, 3. Springer-Verlag, New York, Heidelberg, Berlin, 1976).

- [2] W.A. Coppel, Dichotomies in stability theory (Lecture Notes in Mathematics, 629. Springer-Verlag, Berlin, Heidelberg, New York, 1978).
- [3] Einar Hille, Ralph S. Phillips, Functional analysis and semi-groups, revised edition (American Mathematical Society Colloquium Publications, 31. American Mathematical Society, Providence, Rhode Island, 1957).
- [4] José Luis Massera, Juan Jorge Schäffer, Linear differential equations and function spaces (Pure and Applied Mathematics, 21. Academic Press, New York and London, 1966).
- [5] M. Megan, "On exponential stability of linear control systems in Hilbert spaces", An. Univ. Timigoaro Ser. Sti. Mat. 14 (1976), 125-130.
- [6] Mihail Megan, "On the input-output stability of linear controllable systems", Canad. Math. Bull. 21 (1978), 187-195.
- [7] K.J. Palmer, "Two linear systems criteria for exponential dichotomy", Ann. Mat. Pura Appl. (to appear).
- [8] Oskar Perron, "Die Stabilitätsfrage bei Differentialgleichungen", Math. Z. 32 (1930), 703-728.
- [9] L.M. Silverman and B.D.O. Anderson, "Controllability, observability and stability of linear systems", SIAM J. Control Optim. 6 (1968), 121-130.

Department of Mathematics, University of Timişoara, 1900 - Timişoara, RS Romania.