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Some generalisations and extensions of a
remarkable geometry puzzle

QUANG HUNG TRAN

1.  Introduction
There is a very interesting mathematical puzzle involving the

geometrical configuration in the book Mathematical Curiosities [1, 2] by
Alfred Posamentier and Ingmar Lehmann. It is shown in Figure 1.
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FIGURE 1: A geometric puzzle by Alfred Posamentier and Ingmar Lehmann

Theorem 1 (A geometric puzzle by Alfred Posamentier and Ingmar
Lehmann): Let  be a fixed diameter of a fixed circle . Point  lies on the
segment ; points  and  lie on the semicircle such that 

AB Ω P
AB Q R

∠APQ = ∠QPR = ∠RPB = 60°.
Then the length of the segment  is a constant when ,  and  change.
(See Figure 1.)

QR P Q R

There are numerous proofs of this nice theorem in [2]. In this paper, we
introduce some generalisations and extensions for the theorem. In Theorem
2, we show that angle  may be replaced by any angle, in Theorem 3 that
the diameter  may be replaced by two diameters, and in Theorem 4 that
these two diameters may be replaced by two chords of equal length.
Theorem 5 extends Theorem 2. The proofs are given in the next section.
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2.  General theorems and proofs
Theorem 2 (A generalisation of Theorem 1 with constant angle): Let  be a
fixed diameter of a fixed circle . Point  lies on the segment ; points
and  lie on the semicircle such that , with  being a
constant acute angle. Then the length of the segment  is a constant when

,  and  change.
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Ω P AB Q

R ∠APQ = ∠RPB = α α
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Lemma 1: Let  be a triangle. Then the external bisector of  and
the perpendicular bisector of  meet on the circumcircle of triangle .
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FIGURE 2: Proof of Lemma 1

Proof of Lemma 1: (See Figure 2). 
Let  be the second intersection of the external bisector of  with

circumcircle of triangle . Since  is the external bisector of ,
 is the midpoint of arc  containing  so , hence

 and therefore  lies on the perpendicular bisector of . In other
words,  also lies on the perpendicular bisector of . So  is the
intersection of the external bisector of  and the perpendicular bisector

. Since two lines intersect at only one point,  is unique. Thus the
intersection of the external bisector of  and the perpendicular bisector
of  is obviously  lying on the circumcircle of .

M ∠BAC
ABC AM ∠BAC

M BC A ∠MBC = ∠MCB
MB = MC M BC

M BC M
∠BAC

BC M
∠BAC

BC M ABC

Continuing with the above Lemma, we introduce a simple proof for
Theorem 2:
Proof of Theorem 2: (See Figure 3.) Let  be the centre of . From the
assumption of the Theorem,  is the external bisector of . Also,

 (because  and  lie on circle ). Therefore  is the intersection
of the external bisector of  and the perpendicular bisector of .

O Ω
PO ∠QPR

OQ = OR Q R Ω O
∠QPR QR
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Using Lemma 1,  lies on circumcircle of triangle . ThusO PQR

∠QOR = ∠QPR = 180° − 2α
which is a constant angle. Since  is a chord of  and  is constant,
the length of the segment  must be invariant. This completes the proof.
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FIGURE 3: Proof of Theorem 2

Theorem 3 (The first further generalisation of Theorem 1): Let  and
be two fixed diameters of a fixed circle . Points  and  lie on the
segment  and , respectively; points  and  lie on the minor arc
such that  and , with  a constant acute
angle. Then the length of the segment  is a constant when the points ,

,  and  change.

AB CD
Ω M N

AB CD Q R AD
MN // AC ∠AMQ = ∠RND = α α

QR M
N Q R

Proof of Theorem 3: (See Figure 4.) Let  be the centre of . Since
, triangle  isosceles at . This means

O Ω
MN // AC OMN O

∠OMN = ∠ONM. (1)
Let  be the point where the line  extended meets . Also from the
assumption, we get

P QM RN

∠PMO = ∠AMQ = ∠DNR = α. (2)
From (1) and (2), we deduce that

∠PMN = ∠PNM. (3)
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From this equality of angle,  is the perpendicular bisector of  and also
the perpendicular bisector of  (because ). Let  meet  at
then  is a fixed diameter of . Since , we deduce that

OP MN
AC MN // AC OP Ω EF

EF Ω MN⊥EF

∠QPE = 90° − ∠PMN = 90° − ∠PNM = ∠RPF. (4)
Using (4) and Theorem 2, we have the length of the segment  is a
constant. This completes the proof.
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FIGURE 4: Proof of Theorem 3

Theorem 4 (The second further generalisation of Theorem 1): Let  be a
fixed chord of a fixed circle . A chord  changes on the major arc
(of ) such that  and the intersection  of  and  lies inside

. Points  and  lie on the minor arc  such that ,
with  being a constant acute angle. Then the length of the segment  is a
constant when the chord  changes.

AB
Ω A′B′ AB

Ω A′B′ = AB P AA′ BB′
Ω Q R AB ∠APQ = ∠BPR = α

α QR
A′B′

Proof of Theorem 4: (See Figure 5.) Let  be the centre of . Since  and
 are equal chords and  lies inside ,  is parallel to . This implies

that  is bisector of  or  is the external bisector of .
Combining with , we deduce that  is the external
bisector of . Also  because  is the centre of . Hence,
using Lemma 1, the four points , ,  and  are concyclic.

O Ω AB
A′B′ P Ω AB′ BA′

PO ∠BPA′ PO ∠APB
∠APQ = ∠BPR = α PO

∠QPR OQ = OR O Ω
Q R O P

Hence  is the external bisector of  and . By Lemma
1, we also get that the four points , ,  and  are concyclic. This means
that .

PO ∠APB OA = OB
A B O P

∠APB = ∠AOB
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From four concyclic points , ,  and  (as above), we haveQ R O P

∠QOR = ∠QPR = ∠APB − ∠APQ − ∠BPR = ∠AOB − 2α (5)
which is a constant angle. This means the length of the segment  is a
constant. This completes proof.
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FIGURE 5: Proof of Theorem 4

Theorem 5 (An extension of Theorem 2): Let  be a diameter of a circle .
Point  lies on the segment ; points  and  lie on the semicircle such
that . Then the Euler lines (see [3]) of triangles

 and  intersect on the circumcircle of triangle .

AB Ω
P AB Q R

∠APQ = ∠RPB < 90°
PAQ PBR PQR

Lemma 2 (Thébault's problem [4]): Let   be the orthic triangle of .
Then the Euler lines of the triangles ,  and  are concurrent
at a point lying on the nine-point circle of triangle .

A′B′C′ ABC
AB′C′ BC′A′ CA′B′

ABC

For proof, see [5]. The concurrency point is known as the centre of the
Jerabek hyperbola X(125), see [3].

https://doi.org/10.1017/mag.2024.6 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.6


GENERALISATIONS OF A REMARKABLE GEOMETRY PUZZLE 41

A B

C

OP

Q

R

X

Ω

FIGURE 6: Proof of Theorem 5

Proof of Theorem 5: (See Figure 6.) Let  be the centre of . Let  be the
intersection of the two lines  and . Since  is the diameter of circle ,

. This implies that  and  are the altitudes of
triangle . Because  is the midpoint of , the circumcircle of triangle

 must be the nine-point circle of triangle . But from the proof of
Theorem 2, the four points , ,  and  are concyclic. This means  is the
second intersection of the circumcircle of triangle  with the line , in
other words,  is the foot of altitude from  to the line . Thus triangle
is the orthic triangle of the triangle . It follows from Lemma 2, that the
Euler lines of triangles  and  meet on the nine-point circle of triangle

 which is also the circumcircle of triangle . This completes our proof.

O Ω C
AQ BR AB Ω

∠AQB = ∠ARB = 90° AR BQ
CAB O AB

OQR CAB
O P Q R P

OQR AB
P C AB PQR

CBA
PQA PRB

CAB PQR
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