
Introduction 
 Over the past decade, deconvolution of 3D light optical 
microscopy data has advanced from an obscure technique 
employed by only a few dedicated souls to a routine method that 
is now available with all modern microscope systems. Dramatic 
increases in computer power, algorithm sophistication, and 
software ease of use have brought the power of deconvolution 
to the general microscope user, and processing large 3D 
datasets is no longer a rate-limiting step in the imaging process.
 Deconvolution is a computational technique that is applied 
to digital imagery to compensate for the optical limitations of 
the imaging instrument by reducing out-of-focus blurring or 
haze [1]. The increased contrast and resolution of the restored 
data improves not only the visual quality but also the ability 
to quantify both object dimensions and image intensity. 
Deconvolution algorithms have been particularly effective 
in processing 3D fluorescence microscopy data from the 
following modalities: widefield epi-fluorescence, transmitted 
light brightfield, spinning disk confocal, 
laser scanning confocal, and multi-photon 
fluorescence [2, 3, 4, 5].
	 Diffraction in a standard epi-
fluorescence microscope limits the smallest 
lateral resolvable feature to about half the 
emission wavelength with high numerical-
aperture (NA) objective lenses, and the 
axial resolution is about 3 times worse. The 
aberrations inherent in the microscope are 
modeled by the characteristic point-spread-
function (PSF), which describes how every 
point of light emitted by the specimen 
is observed by the user or camera. The 
PSF can be easily observed by imaging 
sub-resolution fluorescence microspheres 
and focusing through the sample to observe 
the characteristic hourglass shape [4]. 
	 Mathematically, the image observed 
at the CCD camera can be modeled 
as a convolution between the true 3D 
light distribution of the specimen and 
the spatially invariant 3D PSF of the 
instrument, which is contaminated with 
Poisson-distributed noise due to photon 
counting. The ability to restore an accurate 
representation of the true specimen is 
limited by the accuracy of the PSF model 
and the amount of noise contamination. 
The process to improve the quality of the 
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observed imagery is termed deblurring or deconvolution, 
depending on the type of algorithm. 

Collecting the dataset
 In order to deconvolve 3D microscope data there are 
hardware, software, and dataset requirements. Considering 
epi-fluorescence imaging, a modern research-grade light optical 
microscope with computer-controlled Z-focusing mechanism 
and a digital CCD camera are essential for most applications. 
The algorithms require a 3D dataset with evenly spaced optical 
slices that can be as fine as 250 nm apart, so the Z-focusing 
mechanism must have high accuracy and repeatability (hand 
focusing is not suitable). The CCD camera should be optimized 
for low-light imaging, with low readout and background noise, 
and may be cooled to achieve this. 
 Correct data sampling is essential for proper deconvolution, 
and each objective lens has an optimal lateral (ΔXY) and axial 
(ΔZ) spacing that is determined by the Nyquist sampling rate: 
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Figure 1: Maximum intensity projections from original 3D spirogyra specimen (collected with 0.75 NA air 
objective lens, 1 µm Z slices), and following different post-processing algorithms. XY, XZ and ZY views are shown. 
The axial views have been stretched by a factor of 3 to ensure cubic voxels. The volume dimensions (XYZ)  
are approximately 108 x 88 x 25 µm. (A) Original (maximum intensity = 4095), (B) Nearest neighbors at 95%  
(max = 881), (C) Wiener filter (max = 32803), and (D) ML deconvolution, 10 iterations (max = 65540). Dataset from 
Olympus SIS (Munster, Germany).
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remove the blur and haze from the observed dataset. The most 
well-known deblurring techniques are the nearest	neighbors and 
no-neighbors algorithms, and these were some of the earliest 
methods used due to their low computational and memory 
requirements [4].
 The nearest-neighbors method uses 3 optical slices and 
attempts to remove the blur contribution in the center focal 
plane by subtracting defocused versions of the adjacent slices, 
leaving only the sharp features. This process is repeated through 
the whole 3D stack of slices. The result is a visual improvement, 
but it is non-quantitative because 90-99% of the captured 
photons are removed. The no-neighbors method is similar but 
only considers a single slice at a time and is equivalent to an 
un-sharp masking that is often used in photography. These 
algorithms should only be used for a quick visual inspection of 
the collected data prior to using a deconvolution algorithm.
 Deconvolution Algorithms—Linear Filtering. In contrast 
to deblurring methods, deconvolution algorithms attempt to 
restore the true image intensities from the observed data and 
are either linear or iterative (non-linear) in nature.
 Image formation in a light optical microscope can be 
modeled as a convolution between the true specimen light 
distribution and the PSF. Mathematically, this convolution 
process can be efficiently described as a multiplication between 
the frequency domain representations of the specimen and the 
PSF. In the frequency domain the PSF is described by the 3D 
optical transfer function (OTF) and is usually computed using 
the Fast Fourier Transform (FFT). 
 If the image blur is caused by multiplication with the OTF, 
then it stands that this process could be reversible by dividing 
by the OTF, which is the basis for inverse	filtering. In reality this 
is not possible because the OTF contains zero components, 
and the high frequency image components with very small 
magnitudes are easily corrupted by noise contamination. In 
practice the Wiener	 filter is used, which takes into account 
the noise to perform a stable filtering. The Wiener filter uses 

Figure 2: (A) Maximum intensity projection of multi-channel widefield fluorescence dataset, and (B) following iterative ML deconvolution (20 iterations). The objective 
lens was a 1.42 NA oil with 13 Z slices 0.79 µm apart (under-sampled in Z). Specimen: a LLC-PK1 (kidney proximal tubule) cell line from a pig kidney. Staining is with 
mCherry H2B-18 (red channel) and mEGFP Tublin-6 (green channel).The image dimensions (XY) are approximately 92.2 x 69.6 µm. Dataset from Olympus SIS (Munster, 
Germany).

	 	
	 ∆XY =  0.25 ⋅	λ							∆Z = 0.5 ⋅	λ

  NA  (RI – √RI 2 – NA2)
See Table 1 for recommended lateral and axial Nyquist spacings. 
In practice, spacings up to 1.5 times larger can be successfully 
used for deconvolution. 
 When setting up the 3D image acquisition, the exposure 
time should be minimized to reduce photo-damage and 
bleaching, while maintaining sufficient signal levels to 
overcome the inherent noise. Large saturated regions should 
be avoided as they cannot be accurately restored. Consider 
using a modality such as brightfield, phase contrast, or DIC to 
initially find and focus on the region of interest prior to using 
fluorescence to minimize the amount light exposure.
 Ideally the optical slices should extend above and below 
the specimen until the defocused features are blurred to a 
uniform haze. If this is excessive, consider a Z region that is up 
to twice the apparent specimen thickness (for example, for a 
10-µm thick specimen, take additional slices 3-5 µm above and 
below). 
 The microscope control and acquisition software should 
record all the appropriate information about the optical 
setup and pixel/slice spacing with the image meta-data. 
This is essential for proper post processing, whether doing 
deconvolution, image analysis, or visualization. This 
information should also be recorded in the lab notebook for 
verification purposes or if the meta-data is lost when converting 
file formats. 

The Algorithms
 There are a variety of deblurring and deconvolution 
algorithms available that may be either integrated into the 
image acquisition software, be a commercial standalone 
package, or even be free open-source alternatives. 
	 Deblurring Algoritms. In the context of this article, 
deblurring algorithms refer to methods that attempt to 
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a full 3D OTF, is executed in a single processing step, and is 
an example of linear filtering. There is no inherent limitation 
on negative pixel values, which prevents accurate intensity 
quantification. Also, the Wiener filter can only restore 
frequency components inside the bandlimit of the OTF [3, 4]. 
 Deconvolution Algorithms—Iterative Restoration. The most 
advanced deconvolution algorithms are iterative, requiring 
multiple cycles to converge towards a desired solution. The 
iterative algorithms impose non-negativity on the solution, can 
suppress noise, and can even recover frequencies beyond the 
bandwidth limit. They come at the cost of increased memory 
requirements and computational processing [3, 4]. 
 Rather than trying to directly reverse the blurring process 
(for example, by Wiener filtering), iterative algorithms make 
an estimate of the object, then create a blurred version using 
the PSF, and finally compare the result with the actual observed 
data. An optimization procedure is then used to produce an 
improved estimate, and the process is iterated until the desired 
solution is converged. The algorithms impose constraints 
such as non-negative pixel intensities, leading to the term 
constrained iterative deconvolution. The algorithm may run 
until a convergence criterion has been reached or simply for a 

user-defined number of iterations. 
The optimal number of iterations 
will balance blur removal with noise 
amplification that often occurs. 
 Typical iterative algorithms  
are based on measures such as  
least squares and maximum 
likelihood (ML). The least-squares 
optimization seeks to minimize the 
square error between the observed 
data and the reblurred estimate  
and assumes Gaussian-distributed 
noise contamination. Maximum 

likelihood is a probabilistic approach that seeks to find the 
statistically most likely solution given the observed data, 
the PSF model, and the noise probability distribution [3, 5]. 
The maximum likelihood solution can be found using the 
expectation-maximization (EM) process, and, in the case of 
Poisson distributed noise, one popular implementation is the 
Richardson-Lucy (RL) iterative algorithm [3]. The RL iterations 
are multiplicative in nature, which inherently imposes a 
non-negativity constraint. 
 Figure 1 shows the maximum-intensity projection of a 3D 
widefield fluorescence image of spirogyra collected with a 0.75 
NA objective lens at 540 nm and 1µm-spaced Z slices (original 
data courtesy of Olympus Soft Imaging Solutions, Münster, 
Germany). The results after processing using nearest neighbors 
deblurring, Wiener filtering, and 10 iterations of ML-based 
deconvolution are also shown. The iterative deconvolution has 
increased the dynamic range by a factor of 16 and minimized 
the residual blur that is still visible with the other algorithms. 
The nearest neighbors used a 95% haze removal factor, leaving 
only 5% of the original photons and reducing the dynamic 
range by a factor of 5. The iterative deconvolution also shows 
improved restoration of the axial features compared to the 
other algorithms. 

Figure 3: Maximum intensity projections of brine shrimp specimen, (A) original widefield fluorescence dataset, and (B) following blind deconvolution (20 iterations). 
Imaging parameters: 40x 0.9 NA Air lens, 535 nm emission, 0.16 µm pixel spacing, 1 µm slices, 16 slices with 1344 x 1024 pixels. Original dataset courtesy of Olympus 
SIS (Center Valley, PA).
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Note: Spacings up to 1.5 times larger can be successfully used with deconvolution.

Table 1: Recommended lateral and axial sample spacing for different objective lenses 
with widefield microscopy (520 nm emission).
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the plane of focus changes with the collar position, requiring 
constant refocusing.

Blind Deconvolution
 One of the more recent algorithm developments in the 
restoration of blurred images is the ability to determine both the 
underlying object and the PSF from the observed image. This 
process is termed blind deconvolution, and although initially 
it may not seem possible, there is a wide body of research 
and practical implementations that support the technique [3, 
4, 5]. The key is that there are additional physical constraints 
that can be imposed on the solution, such as non-negative 
pixel intensities and additional a	 priori knowledge, including 
frequency band limits on the estimated PSF, which make the 
problem tractable [3].
 The advantage of blind deconvolution is that it reduces 
the need for a highly accurate PSF to be provided to the 
deconvolution algorithm. In regular non-blind deconvolution 
the PSF is fixed, and the algorithm attempts to fit the solution 
to the model, even if the PSF isn’t accurate, which can lead 
to restoration artifacts. With blind deconvolution, both the 
image and PSF estimates are adapted during each iteration 
to find the best fit to the observed data. This adaptability 
can reduce potential artifacts and also makes deconvolution 
easier for microscope users because they don’t have to be 
concerned with collecting exact PSFs as part of their imaging 
experiment. Most algorithms that employ blind deconvolution 
use a calculated PSF as the starting point for the PSF. Blind 
deconvolution requires about twice the computational time to 
estimate both the image and PSF, but it should not be relied 
upon to compensate for poor imaging setup or excessive optical 
aberrations. Figure 3 shows blind deconvolution of a widefield 
fluorescence dataset (brine shrimp) for 20 iterations. The Z 
dimension is under-sampled, so a finer spacing would likely 
improve the result further.

Other Microscope Modalities
 Deconvolution processing is most often associated with 
wide-field epi-fluorescence microscopy, but the algorithms can 
be successfully applied to other optical microscope modalities, 
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 Figure 2 illustrates the ML iterative deconvolution of a 
multi-channel cellular dataset with a high NA objective lens 
(1.42 NA oil) and wide-field fluorescence. The original dataset 
resolves no clear structures; however, after 20 iterations of 
deconvolution, the cellular components are well-defined. 
The result would likely be further improved with finer Z 
sampling, as 0.79 µm is under-sampling for the objective lens 
used. Despite this, the algorithm is still able to extract useful 
information.

PSF Estimation
 The quality of the restoration is directly based on the 
accuracy of the PSF model applied, and estimating an 
accurate PSF can be difficult. Three typical methods are 
theoretical calculation using microscope parameters, empirical 
measurement using sub-resolution beads, and blind or adaptive 
deconvolution that estimates the PSF directly from the observed 
data. Each approach has different effects on restoration 
accuracy, imaging protocol, user effort, and computational 
requirements [3, 4].
 Historically, imaging sub-resolution fluorescent 
microspheres (100-200 nm diameter) was the most often used 
approach. This involves preparing a separate slide of beads with 
the same embedding medium as the specimen and capturing a 
thru-focus 3D dataset of an isolated bead to approximate the 
optical PSF for each emission wavelength. 
 Even without collecting PSFs for deconvolution, observing 
a bead slide is very useful for assessing the alignment and 
optimal operation of the microscope. When focusing up and 
down through the beads, the defocused regions should look 
equivalent both above and below the in-focus plane. If rings 
are observed on one side and blobs on the other, then spherical 
aberration is likely a problem, which should be minimized 
by matching the specimen embedding and objective lens 
immersion medium refractive indexes and by using the proper 
coverslip thickness (measured using a micrometer) [4]. An 
objective lens correction collar is designed to correct spherical 
aberration, though optimizing the setting can be tricky as 

Figure 4:	Maximum intensity projections of brine shrimp specimen, (A) original spinning disk confocal (Olympus DSU) dataset, and (B) following blind deconvolution (20 
iterations). Same imaging parameters and specimen as Figure 3. Original dataset courtesy of Olympus SIS (Center Valley, PA).
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providing suitable PSF information is provided. Even laser 
scanning confocal and multi-photon modalities can benefit 
from deconvolution processing by reducing the inherent 
axial smearing and suppressing the noise contamination from 
low photon counts. With confocal microscopy, the imaging 
efficiency can be improved by opening the pinhole to collect 
more light, increasing the signal level at the cost of some 
increased blur, but then relying on the deconvolution to correct 
for this in post-processing [6].
 Transmitted light brightfield datasets can be processed, 
providing that the image formation can be modeled by the 
specimen absorbing light and not contrast resulting from phase 
interference [3]. Spinning-disk confocal-based systems can 
also benefit from deconvolution, particularly when using blind 
deconvolution, because the haze is not as severe as wide-field, 
but the detection efficiency is higher than with laser-scanning 
confocal. Figure 4 shows an example of a spinning disk dataset 
that is processed using blind deconvolution, which was 
necessary because the model for the spinning disk PSF was not 
known. The result shows excellent contrast of features and cells.
 Employing deconvolution algorithms will not enable 
a wide-field microscope to have the depth penetration of 
a confocal system or enable a confocal to achieve the high 
overall detection efficiency that is possible with widefield. 
Deconvolution will not make poorly acquired data good but, 
rather, make good data better. In fact, deconvolved data will 
often show many imaging problems that were previously 
obscured by the out-of-focus blur. 

Analyzing the Results
 When analyzing the deconvolution results, the original 
and processed datasets should be compared by observing 
individual optical slices as well as maximum intensity and 
other projections. Features that now appear clearly in the 
deconvolved data should also being present in the original 
imagery but may have been obscured by out-of-focus blur and 
noise. Be cautious of fine texture that may just be the result of 
amplified noise. The software should display the optical slice 
intensities scaled relative to the brightest features in the whole 
3D volume. Although it may appear that the resulting data is 
“dimmer” than the original imagery, this is simply because the 
deconvolution has dramatically increased the dynamic range 
of the dataset, which must now be scaled down to fit the 8-bit 
range of the display monitor. 
 Residual out-of-focus haze may be an indication of either 
spherical aberration that hasn’t been accounted for or the use 
of a PSF that does not accurately match the blur in the original 
dataset. Other imaging artifacts such as flicker between slices 
may also be more apparent and should be compensated for 
prior to deconvolution. Boundary or edge artifacts can be 
expected if parts of the specimen extend beyond the field of view. 
 Once the data has been accurately restored, closely spaced 
features should be more easily resolvable, object borders should 
be more defined, the apparent brightness of the specimen 
should increase, background noise should be suppressed, and 
total image intensity should be preserved. Deconvolved datasets 
should result in better 3D visualization and easier segmentation 

in subsequent image analysis by clearly revealing the objects of 
interest. 

Summary
 Deconvolution algorithms can now be routinely applied 
to 3D optical microscope imagery collected from a variety of 
modalities. It is important to understand the issues involved in 
properly setting up the instrument for acquisition, minimizing 
aberrations, and correct image sampling. This is essential for 
all microscope imaging, not just deconvolution; however, 
deconvolution will reveal the full imaging capabilities of the 
instrument and extract more information about the specimen. 
For more in-depth reading see the references [1] – [6]. 
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