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Abstract

Access control mechanisms are often used with the intent of enforcing confidentiality and

integrity policies, but few rigorous connections have been made between information flow

and runtime access control. The Java virtual machine and the .NET runtime system provide

a dynamic access control mechanism in which permissions are granted to program units

and a runtime mechanism checks permissions of code in the calling chain. We investigate a

design pattern by which this mechanism can be used to achieve confidentiality and integrity

goals: a single interface serves callers of more than one security level and dynamic access

control prevents release of high information to low callers. Programs fitting this pattern

would be rejected by previous flow analyses. We give a static analysis that admits them, using

permission-dependent security types. The analysis is given for a class-based object-oriented

language with features including inheritance, dynamic binding, dynamically allocated mutable

objects, type casts and recursive types. The analysis is shown to ensure a noninterference

property formalizing confidentiality and integrity.

Capsule Review

Tracking information flow is an appealing way to enforce strong security, but practical

application of this approach encounters various difficulties. This article tackles the important

practical problems of dealing with both object-oriented programming and access control. It

defines a security-typed model of the Java programming language, including its access control

mechanism of stack inspection. A security type system is given that controls information flow

in this language, provably enforcing noninterference. While some prior work has explored

type systems for information flow in the presence of objects and access control, this work

is particularly useful because it obtains a noninterference result for a rich programming

language with a realistic access control mechanism. This result requires novel proof techniques

because of the possible presence of inheritance and recursive classes and methods. The

type system that connects access control and information flow permits relatively precise
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characterization of information, which is possible because it allows the information flow

labels of results to depend on permissions held by the program. Notably, this dependency

relates information flow to negative permissions, which is needed for reasoning in the presence

of stack inspection.

1 Introduction

Consider the following program, to be used by clerical staff to prepare a billing

statement for a medical patient. It returns the catenation of the patient’s name and

address, italicizing the string if the patient is HIV positive.

String getPatientAddress(int patientID) { PatientRecord r : = database[patientID];

result : = r.name ++ r.address;

if r.hiv then result.font : = “italic” }

This would violate typical policies about privacy of sensitive medical information

in patient records. Although the value r.hiv is not output directly, it is revealed

to an observer who knows that not all outputs are italicized. The violation in this

particular example is likely to be immediately apparent upon inspection, but that

is only because the example is tiny. This paper is concerned with specification

and formal justification of tools for automated static checking for information flow

policies. The main novelty is rules to account for calls that may return high security

information, but which use access checks to ensure that only low security information

is returned unless the caller has been given access.

Besides being a goal in itself, confidentiality is often an ingredient in more

complicated policies and for the mechanisms that enforce them. A lattice of

confidentiality levels is given – for expository purposes it suffices to consider two

levels with L � H . Input and output channels are labeled with these levels. The

policy so expressed is that information visible on L output channels is not influenced

by information on H input channels (Bell & LaPadula, 1973). This property is a

form of dependency (Abadi et al., 1999) and the absence of dependency of L on H

can also be read as a form of integrity: Licensed data is not influenced by Hacked

data. For simplicity we focus on confidentiality in the exposition but sometimes use

the neutral term flow policy.

In this paper, the input/output channels are procedure arguments/results and

state changes for heap objects. As we consider object-oriented programs in the

sequel, we use the term method for procedure. Here is a labeling of the example.

stringL getPatientAddress(intL patientID)

An attractive way to specify and validate tools for checking that flow policy is

enforced is to use decorated types within the program. A rule can easily be formulated

to preclude, e.g. the command

result : = r.name ++ r.address ++ r.hiv
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if the hiv field is labeled H . The rule requires that the level of an assigned variable

must be at least the level of the expression; and the level of an expression is the

least upper bound of the levels of its constituents (Denning & Denning, 1977).

Labeling variables and imposing such a rule is sometimes called “access control”

in the literature (Rushby, 1992). It is akin to, but more restrictive than, static

visibility controls like private fields, for which the term “access modifier” is used.

We refrain from using this terminology, as it invites confusion with runtime access

control mechanisms.

The flow of information in the first example above is not by a direct assignment,

but the control state can be treated as an implicit variable, the level of which is also

tracked. This makes it feasible to give syntax-directed rules that prevent such flows

as well (Denning & Denning, 1977).

To formalize the policy that no information flows from H to L, Goguen and

Meseguer (1982) proposed a property called noninterference described in terms of

a certain kind of simulation relation. Two program states are “equivalent for L”,

or L-indistinguishable, if they agree for L variables and fields. The noninterference

property is this: for any pair of initial states that are L-indistinguishable, the two

corresponding runs of the program yield final states that are L-indistinguishable.

Volpano et al. (1996; 1997) formalized rules for static analysis of information

flow using the techniques of type theory; their security types formalize the labeling

discussed above. They proved that programs accepted by the typing rules have the

noninterference property.

There has been considerable research exploring these ideas, but they have not

seen much use in practice. There are several difficulties to be overcome for practical

use. This paper makes progress in addressing two of the difficulties: the complexity

of conventional languages and the essential use of runtime access control. A security

typing system is given for an expressive, class-based language including runtime

access control and the system is shown to ensure noninterference.

We proceed to discuss these and other difficulties and to outline our contri-

bution in more detail. Sabelfeld & Myers (2003) give a comprehensive review

of the literature and open challenges; closely related work is also discussed in

section 9.

Excessive restriction. Noninterference, as commonly formulated, is too strong a

property for some situations. For example, the message “password not valid” from

a login program reveals some information about a password, but not much. For

such situations, and for encryption, a quantitative measure seems appropriate. A

potential shortcoming is that an associated static analysis could be hard to explain

to programmers or to implement efficiently. Another practical issue is the need

for selective declassification or downgrading. Work on these difficult problems is

reviewed by Sabelfeld & Myers (2003). We address neither problem, but note that

the strong noninterference property is appropriate for many situations. For example,

encrypting a message reveals some information about the message to observers of

the ciphertext (and it reveals the entire message to possessors of the deciphering

key). It should reveal nothing about the passphrase for the user’s key management
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application, nor should it reveal information about the message through channels

other than the ciphertext output.

Covert channels. While a straightforward data dependency analysis can detect flows

of data from H to L, the noninterference property can be violated by more subtle

flows. The first example above illustrates information propagation by control flow. In

reactive and concurrent programs, intermediate states are visible and synchronization

can be used, deliberately or accidentally, to leak information.

Memory allocation can also be an observable channel of information flow, if

it is possible to detect that memory has been exhausted or to perform arithmetic

operations on addresses. Even more subtly, timing and the consumption of power

can reveal information – but such covert channels are tricky to exploit and in any

event they do not occur at the level of abstraction of source or object code.

Termination is another covert channel, albeit one that can leak only one bit

per program run. Termination-sensitive noninterference requires that, from two L-

indistinguishable initial states, the corresponding runs of the program both terminate

or both diverge. Termination-insensitive noninterference requires only that if both

runs terminate then the resulting states are L-indistinguishable.

The standard rule to preclude leaks via termination requires all loop guards to

be L. We are not aware of any work that deals with static analysis for termination-

sensitive noninterference in the presence of general recursive procedures. One could

approach the problem by determining which guards of conditionals can influence

termination of such a procedure; but for sufficient flexibility in practice it could

be better to augment typing rules with verification conditions for termination. This

merits study in a simple language before it is combined with the features of a full

object-oriented language.

A tool which checks source code with respect to a specified information flow

policy can be useful for debugging and for guarding against deployment of faulty or

malicious code, even if it does not handle all covert channels. We confine attention

to checking termination-insensitive noninterference for source code in a sequential

object-oriented language with unbounded memory, without pointer arithmetic, and

with no restriction on recursion.

Trustworthiness of the checker. Covert channels such as power consumption subvert

the assumptions on which high level abstractions are based. Such assumptions are

also subverted by bugs in the implementation of compilers, runtime support, and

the underlying operating systems and hardware. For a static checking tool used

to enforce a confidentiality policy, trustworthiness depends on soundness of the

rules and correctness of their implementation. Languages in widespread use are

considerably more complicated than the simple ones for which information flow

analysis has been studied – even ordinary type soundness for such languages has

been problematic in practice and in theory.

The first of our contributions is to extend the security typing approach to a

relatively rich class-based, imperative, object-oriented language. We give a self-

contained proof of termination-insensitive noninterference for programs that follow
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our security typing rules. A compositional semantics is used and the main lemma is

proved by induction on program structure.

Real programs use access control. Information flow checking has seen little use in

practice, but various runtime access control mechanisms are widely used. These

include operating system mechanisms at the level of processes, files, and devices,

as well as application-specific mechanisms such as in database systems. Code-based

access control has come into wide use, to cope with late-bound components and

various forms of mobile code such as applets (Gong, 1999; LaMacchia et al., 2003).

Using object-oriented design patterns, these can involve fine-grained interactions,

within a single address space, among programs having differing levels of trust.

Access control mechanisms directly enforce access policies, that is, they control

actions including those which release information, but cannot fully control propaga-

tion of information. Technically, information flow is not a property of computations

but of sets of computations (McLean, 1994; Volpano, 1999). Access mechanisms

enforce safety: properties of computations that are finitely refutable (Erlingsson &

Schneider, 1999). Nonetheless, many uses of access control are intended to enforce

flow policy.

Our second major contribution is to refine the formulation of information flow

policy by making it dependent on access permissions. For example, a method that

prints information about a medical patient can be allowed to return H information

for callers with specified permissions, while returning L information to others.

Permissions may be absent due to misconfiguration, programming error, or because

a single interface is intended to provide useful functionality to callers with differing

access credentials.

We investigate permission-dependent information flow in the setting of the

access control mechanism of Java (Gong, 1999) and the .NET Common Language

Runtime (Gough, 2001), which aims to protect trusted system code, e.g. a browser,

from untrusted mobile code. The principals that are granted permissions in an

access policy are programs rather than, say, processes or users as in operating

system security. The mechanism is sometimes called “stack inspection” in reference

to one implementation. More fundamentally it is stack based in that access decisions

depend on permissions of code in the calling chain. Put differently, the credentials

on which access decisions are based, i.e. the security context, is passed as an

implicit parameter in a method call (but is not updated as an effect of the method

call).

A considerable amount of commercial software is being developed using stack-

based access control, because it is part of the widely-deployed Java and .NET

virtual machines. But it is open to question whether this is the best mechanism

for its purposes; it is not well understood what security properties are achievable

and what are good design patterns for using the mechanism (Wallach et al., 2000;

Fournet & Gordon, 2002; Abadi & Fournet, 2003). Our aim is neither to propose

a new mechanism nor to argue in favor of this one. Rather, we make sense of a

common pattern of usage and demonstrate that it can achieve a strong security goal

under statically checkable conditions.
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We formulate a type-based static analysis using security types that are dependent

on permissions. The analysis tracks permissions and thereby distinguishes certain

information flows that are guarded by permissions. We believe the technique can be

adapted to other access mechanisms that are amenable to static analysis of access

decisions. But this is left to future work.

Security typing does not include level polymorphism, in which the level of results

depends on the level of inputs; this is orthogonal to flows that depend on permission

so for simplicity it is omitted.

The static analysis is defined with respect to given access policy and given flow

policy. The main result of the paper is that safe programs, i.e. those allowed by

our security typing rules, are noninterfering in the sense of the given flow policy.

Limited experience with examples suggests that permission-dependent typing may

be a suitable basis for the design of practical interface specifications and tools.

Outline of the paper. In section 2 we give a streamlined description of the relevant

features of the access control mechanism. We also review the use of labeled

types to specify confidentiality in imperative (Volpano et al., 1996) and object-

oriented (Myers, 1999; Banerjee & Naumann, 2002c) programs.

Section 3 gives an example to illustrate the main idea of the paper: giving several

information-flow types to a method, dependent on the permissions that may be

enabled by callers.

Section 4 formalizes the programming language, giving typing rules and a

compositional semantics which facilitates proof by structural induction on program

syntax. At the cost of notation more complex than the minimum necessary to

illustrate our main idea, we consider a sequential object-oriented language with

pointers and mutable state, public fields, dynamic binding and inheritance, recursive

classes, casts and type tests, and recursive methods. This shows that the ideas on

which we build scale to a realistic language and lays a broader foundation for future

work, e.g. permissions and protection domains as first-class objects as in Java and

C�.

Section 5 formalizes the static analysis using syntax-directed rules which admit

the examples of section 3. Further examples are given in section 6. Section 7 proves

basic results about the analysis, which are used in section 8 to prove the main result:

the static analysis ensures noninterference. Section 9 discusses related and future

work.

2 Background: access control and information flow

Access control by stack inspection. In the access control mechanism of Java (Gong,

1999) and the .NET Common Language Runtime (Gough, 2001), each class C has

a set Auth C of permissions statically associated with it; this comprises a local

access control policy. A typical policy grants few permissions to code from remote

sites and many to code residing on the local disk. The most interesting policies

concern trusted remote sites: Code which has been cryptographically authenticated

as originating at a trusted site may be granted particular permissions.
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As an example of the use of permissions for integrity, a user program might

have the permission p for changing passwords but not the permission w for directly

writing the password file. There is an operation for checking whether a permission

is authorized for the classes of all code with frames (activation records) on the

current call stack. If this fails to be the case, a catchable exception is thrown. This

mechanism has no intrinsic connection with particular data objects or events; it is

up to the programmer to ensure that writes to the password file are guarded by

checks of permission w.

To model the mechanism in a simplified language, we follow previous work

(Fournet & Gordon, 2002) and refrain from modeling exceptions. Instead, we

consider a construct, test p then S1 else S2, which checks for permission p, ex-

ecuting S1 if the check succeeds and S2 if it fails. A simple check can be written

test p then skip else abort. To model the case where an exception is thrown and

caught, the else branch can return some value that indicates to the caller that a

check has failed. An alternative formulation is to treat test as a primitive boolean

function, but our static analysis would still single out conditionals using test for

special treatment.

The description above is over-simplified, in that tests do not simply depend on

static permissions for all code on the stack. In keeping with the principle of least

privilege, permissions must be explicitly enabled. In Java this is provided as an

operation, doPrivileged, which uses a callback object with the effect of lexical

scoping. We model it by a construct, enable p in S .

To describe these constructs more precisely, it is convenient to use the “eager”

formulation (Gong, 1999; Wallach et al., 2000) in which the current security context

is maintained as an implicit parameter, Q, as opposed to lazily constructing the

context from the stack when checks are performed. Like explicit parameters, Q

can be updated in a method body. The effect of the command enable p in S is to

add p to Q only if p is statically authorized for the class in which the command

occurs; otherwise it has no effect. (It might be less misleading to use the term “try-

to-enable” or “assert” but these have shortcomings too.) The test p then S1 else S2

simply branches on whether p ∈ Q. Finally, a method call e.m(. . .) passes to m the

set Q ∩ Auth C where C is the class of the code for m. The method call has no

effect on the caller’s Q. Note that it is not the class, say D, of the target object e

that determines permissions, nor the static type of e, but rather the class C of the

dynamically dispatched code for m. By inheritance, D may be a proper subclass of

C and have different static permissions.

Here are two example classes in our syntax. Assume that the local access policy,

Auth , designates Auth User = {p} and Auth Sys = {p,w}. The objective is to disallow

direct writing of the password file by code in class User. We assume that diskWrite

is a low-level operation protected by some other mechanism, e.g. it is a private

method or privileged operating system call.

class Sys {
unit writepass(String x) {

test w then diskWrite(x, “passfile”) else abort}
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unit passwd(String x) {
test p then enable w in writepass(x) else abort }}

class User {
Sys s . . . /∗ field initialization omitted ∗/

unit use() { enable p in s.passwd(“mypass”) }
unit try() { enable w in s.writepass(“mypass”) }}

In a main program with no permissions enabled, invoking method use gives it

permission set �. Then use enables p and its permission set becomes {p}. This is

implicitly passed to passwd, in which test p succeeds and permission w gets enabled.

That is, the permission set in passwd is changed to {p,w}, and this set is passed to

writepass. It checks w successfully and calls diskWrite.

Invocation of method try results in failure. Consider, for example, the case where

try is invoked from a main program that has successfully enabled {p,w}. Because

only p is statically enabled for class User, the initial permission set for try is {p}. For

the same reason, enable w has no effect in try and so the permission set passsed to

writepass is {p}. Thus the test in writepass fails and the integrity of the password

file is maintained.

The enable construct allows a method to, in effect, temporarily grant a permission

to methods in the call chain to it and thus perform sensitive operations on behalf

of untrusted callers. It cannot, however, grant permissions to code that it invokes.

Trusted code like a browser can invoke untrusted plug-ins without risk of giving

them unintended permissions. In itself, the access mechanism does not prevent harm

from misuse of results from calls to untrusted code, as emphasized by Abadi and

Fournet (2003). In Section 6 we show how information flow analysis can help address

this problem.

Checking information flow using security types. The idea developed by Volpano et al.

(1996), based on earlier work (Denning, 1976; Denning & Denning, 1977; Ørbæk &

Palsberg, 1997), is to label not only inputs and outputs but also variables and

parameters by security types, for example replacing a variable declaration x :T by

x : (T , κ) where κ is the security level. Syntax-directed typing rules specify conditions

that ensure secure flow. Overt flows, like an assignment of an H-variable to an

L-variable, are disallowed by the typing rules for assignment, argument passing, etc.

To preclude covert flow via control flow, commands are given types com κ with

the meaning that all assigned variables have at least level κ. For a conditional,

if e then S1 else S2, with e high, both S1 and S2 are required to have type com H .

In an object-oriented language, covert flow also happens via dynamically dis-

patched method call. Moreover, one must worry about the possibility of observing

differing behavior of the allocator if objects allocated conditionally are accessible.

In the sequel we use command types of the form (com κ1, κ2) where κ1 is a lower

bound on level of assigned variables and κ2 is a lower bound on the heap effect, i.e.

assignments to object fields.

Annotated arrow types can be used for modular checking in the case of procedures

or functions (Volpano & Smith, 1997; Abadi et al., 1999). For example, Banerjee &
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Naumann (2002c) use a notation like (T , κ1)−〈κ2〉→(U, κ3) for a method with one

parameter of type T and result of type U. This annotated type is intended to express

that if the argument is at most κ1 then the heap effect is at least κ2 and result level

at most κ3. A method body is checked with respect to its security type, which is used

as an assumption for checking method calls.

The type of the target object, self, deserves special attention but we defer discussion

until later, as the issue does not obtrude in section 3. In fact, even the heap effect

can be dropped for the example discussed in section 3.

Type annotations are a perspicuous way to specify and reason about policy and

static analysis. They may be useful in practice for specifying public interfaces, but

it is important to keep in mind that policy is decided at deployment sites. An

application programming interface might suggest suitable flow and access policies,

but the policies imposed at deployment sites may differ. For this reason, among

others, the automated inference of security types is useful (see section 9).

An access control mechanism may itself be a channel for covert flows. For the

mechanism in this paper, the set of currently enabled permissions can be seen as

an implicit variable which can be tested. But values of this implicit variable are

manipulated in a very restricted way that reflects only control flow information. Our

noninterference result confirms that straightforward security typing rules suffice to

control the flows introduced by test and enable. What is more interesting is the use

of test to achieve information flow goals.

3 Using access control for confidentiality

Sometimes a permission guards an action that is essential to a program’s purpose

and a failed permission check is seen as a catastrophic error in programming or

security configuration. But many programs are intended to operate in more than

one context. Gong (1999) gives the example of a Java program used both in a

downloaded applet and in a locally installed application; it needs to create an

output stream to store temporary results. To do so it attempts to open a local file,

but if that results in a security exception the program attempts to open a network

connection to its originating site. Because access policy is configured at deployment

sites, the need for graceful error recovery is another reason it can be useful to specify

the behavior of a program both when expected permissions are granted and when

they are not.

For expository purposes we consider a toy system composed of components, some

of which are from sources not fully trusted. Class Kern is a trusted system class and

Comp1 is from a less trusted source. To flesh out the example, one could imagine

that the system is used in a medical clinic. Class Comp1 could provide financial

applications. Another class, say Comp2, could provide support for distributing a

newsletter to patients. Personal financial information may be made available to

Comp1 but not to Comp2; personal medical information should flow to neither of

them. For this scenario, a realistic flow policy would involve at least a four-element

lattice with incomparable levels finance and newsletter in addition to the maximum
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H and minimum L. The code would also be far more complicated. But to sketch

our ideas it suffices to consider L and H and a very simple program structure.

If the confidentiality goal is that information confidential to Kern is not leaked

to Comp1, the security lattice might correspond to code sources and thus be

correlated with permissions. But we do not want to presuppose a connection between

information flow policy and the access control mechanism. Not all information

manipulated by Kern is confidential.

For these examples we consider the set Permissions = {sys, stat, other}. The

intention is that sys guards a method getHinfo of Kern that returns H information,

and stat guards a method getStatus that can be used by trusted callers manipulating

H information and also by untrusted ones manipulating L.

Suppose the access policy, Auth , is the following mapping from classnames to

permission sets:

class permissions

Comp1 other
Comp2 stat, other
Kern stat, sys

Class Kern is as follows, where the intended flow policy is indicated in comments

class Kern extends Object {
String Hinfo; // H

String Linfo; // L

String getHinfo() { // type () → H

test sys then result : = self.Hinfo else abort }
String getStatus() { // type () → ?? (see below for discussion)

test stat

then enable sys in result : = self.getHinfo()

else result : = self.Linfo }
. . . “other methods that manipulate Linfo and Hinfo”}

Class Comp1 has access to an instance of Kern. It has a method status returning

the catenation of application-specific data v with the status from the kernel. This

exemplifies the use of getStatus by untrusted callers.

class Comp1 extends Object {
Kern k; // L

String v; // L

String status() { // type () → L

result : = self.v ++ k.getStatus() }
. . . }

Execution of method status proceeds as follows: To evaluate the catenation, invoke

k.getStatus() which tests stat. The test fails, as stat has not been enabled, so getStatus

returns k.Linfo. This is compatible with the policy that status has L output.

To flesh out the example, the reader is invited to contemplate a method of Kern

for retrieving the record for a particular medical patient. Access control could
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be used to decide whether to include payment information (for a partly trusted

medical application), name and address (for a partly trusted newsletter application),

or nothing at all. The point is that Kern should not have to provide separate,

redundant interfaces for the two components just to fit a type-based specification of

flow policy.

For an information flow analysis to allow Comp1.status, it is necessary to take

into account the test in getStatus and also the access policy for Comp1. Otherwise,

a sound analysis of getStatus would say that it can return H which violates the

flow policy for Comp1.status.

Comp1 could try to gain access to Hinfo as follows:

String status2() { // type () → L

enable stat in result : = self.v ++ k.getStatus() }

But because stat is not authorized for Comp1, the enable has no effect and the policy

is not violated.

Code in classes Comp1 and Comp2 cannot successfully invoke getHinfo directly,

because in Auth neither class is granted permission sys, without which method

getHinfo aborts. An attempted enable sys does not help.

Our example access policy does, however, grant permission stat to Comp2. The

flow policy also indicates a degree of trust in that method statusH is allowed to

return H .

class Comp2 {
Kern k;

String statusH() { // type () → H

enable stat in result : = k.getStatus() }}

Method statusH succeeds in obtaining Hinfo: in k.getStatus(), permission stat is

enabled and is authorized for Kern and for Comp2. This is consistent with the

policy allowing H result from statusH; it would not be consistent with L result.

As indicated by “??” in class Kern, the question is how to type method getStatus

so we can formulate a modular check that admits the valid examples while rejecting

code (or access policy) that violates the information flow policy. In particular, all of

the example code above should be allowed.

Volpano & Smith (1997), among others (Pottier & Simonet, 2003), consider

procedure typings that are polymorphic in levels, to handle cases where level-α

inputs yields level-α outputs. For example, the catenation operator ++ for strings

could have type α × β → α � β. This does not handle our examples, because the

result level for getStatus depends not on the level of inputs but on the enabled

permissions. More to the point: although permissions can be seen as an implicit

parameter, the dependence is not on information level but rather the value of that

implicit parameter.

The justification of the examples hinges on reasoning about the behavior of

the test in getStatus. This behavior depends on what permissions are enabled by

the caller. This leads to our proposal: Methods are given types that depend on

permissions authorized for the caller. More precisely, types designate permissions
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that must not have been enabled by the caller. For the moment we leave aside heap

effects and a level for self. The meaning of a type ()−〈P 〉→κ is as follows: if invoked

by a caller which cannot enable any of the permissions in P , the method returns a

result of at most level κ. We annotate each method with one or more such typing,

and check that the method body respects all of them.

Method getStatus is given types ()−〈�〉→H and ()−〈{stat}〉→L. The call from

Comp1.status can be typechecked with respect to ()−〈{stat}〉→L, because stat is not

in Auth(Comp1). The typechecking rule does not allow the call from Comp2.statusH

to be checked using ()−〈{stat}〉→L, because stat is authorized for Comp2. It can be

checked using ()−〈�〉→H .

Consider this additional method for Comp2:

String statusH2() { result : = k.getStatus() }

It can be given type ()−〈�〉→H just like statusH. Although stat is not enabled by

statusH2, it could be enabled by a caller of statusH2. So it is not sound to check

the body of statusH2 using the type getStatus: ()−〈{stat}〉→L unless we disallow

such callers by typing statusH2 as ()−〈{stat}〉→L. That is, statusH2 does not have

type ()−〈�〉→L.

We have discussed method types of particular interest, but others are also sound.

For example, getStatus satisfies the types ()−〈{stat, sys}〉→L and ()−〈{stat}〉→H

and getHinfo satisfies ()−〈{sys}〉→L. In the sequel we define a suitable notion of

subtyping and show that these examples follow by considerations of subsumption.

In fact security types form a complete lattice; for example, the greatest lower bound

of ()−〈�〉→H and ()−〈{stat}〉→L is ()−〈�〉→L.

Note that the type ()−〈�〉→L is not satisfied by getStatus and thus there is not

a single type that expresses the desired properties of getStatus. The implication is

that the most concise interface specifications are those that specify the security of a

method using a set of types that are minimal with respect to subtyping. But for our

purposes in this paper we can consider an arbitrary collection of types.

To deal with dynamic binding in a modular way, we require that an overriding

declaration must be checked with the same set of typings as the method it

overrides. The permissions involved need not be authorized for the class in which

the declaration occurs. A subclass that overrides a method may have different

permissions than its superclass. This is discussed further in section 5, where the

security typing rules are defined using judgements ∆;P 	 S that characterize the

behavior of S under the assumption that permissions P are not initially enabled.

It is possible, and perhaps more natural at first glance, to formulate a static analysis

using a typing arrow annotated with an upper bound on the caller’s permissions, so

for example getStatus would have a type ()−〈P 〉→L with stat 
∈ P , where the caller’s

permissions must be contained in P . But this is not modular; the caller may well

have permissions, like other, not relevant to the callee.

On the other hand, one can envision a kind of dual to the design pattern we

consider: A method may release H information just if a certain permission is

absent. Our analysis does not handle this pattern and we are unaware of motivating

examples; permission checks usually guard sensitive actions such as the release of
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T ::= bool | unit | C data type, where C ranges over class names

CL ::= class C extends C { T̄ f̄; M̄} class with public fields f̄, public methods M̄

M ::= T m(T̄ x̄) {S} method with result type T , parameters T̄

S ::= x : = e | if e then S else S | S ; S assign to variable; conditional; sequence

| T x : = e in S | x : = e.m(ē) local variable block; method call

| e.f : = e | x : = new C assign to field; construct object

| enable P in S enable permissions

| test P then S else S branch on permissions

e ::= x | null | true | false variable, constant

| e.f | e = e | e is C | (C) e field access; equality test; type test; cast

Fig. 1. Grammar.

H information. A tempting idea is to downgrade or declassify information in the

presence of certain permissions. But declassification violates noninterference and it

is an open problem what is a good information flow property in the presence of

declassification; for a recent attempt see Myers et al. (2004).

4 Language

This section formalizes the sequential class-based language for which our results

are given. We assume given a finite set of Permissions . Finiteness is not essential,

but it saves us from imposing explicit finiteness restrictions at various points in the

syntax and semantics (or explaining why finiteness is not needed). The semantics

is given with respect to a given function Auth :ClassNames → P(Permissions) that

specifies access policy. The aim of this section is to give an operationally transparent

and mathematically convenient model of a conventional language. Information flow

plays no role in the semantic definitions.

4.1 Syntax

The grammar is given by Figure 1. It is based on given sets of class names (with

typical element C), field names (f), method names (m), and variable/parameter

names x (including distinguished names “self” and “result” for the target object

and return value). Identifiers like T̄ with bars on top indicate finite lists, e.g. T̄ f̄

stands for a list f̄ of field names with corresponding types T̄ . We let P range over

sets of permissions, without formalizing syntax for sets. We also assume there is a

class Object with no fields or methods.

We omit loops but include unrestricted recursion. We omit super calls and

constructor methods. It is straightforward to extend our work to super calls and

to constructors that do not make method calls, using the semantics and proof

technique of Banerjee & Naumann (2002a). We have not investigated constructors

in the full generality found in conventional languages; there are difficulties even for

type soundness, due to method invocations that leak partially initialized objects.

A complete program is given as a class table, CT , that associates each declared

class name with its declaration. The typing rules make use of auxiliary notions that
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are defined in terms of CT , so the typing relation 	 depends on CT but this is

elided in the notation. Because typing of each class is done in the context of the full

table, methods can be recursive (mutually) and so can field types.

The subtyping relation � on types is defined as follows. For base types, bool � bool

and unit � unit. For classes C and D, we define C � D iff either C = D or the

class declaration for C is class C extends B {. . .} for some B � D. The typing rules

are syntax-directed: subsumption is built into the rules rather than appearing as a

separate rule.

To define some auxiliary notations, which are implicitly dependent on CT , let

CT (C) = class C extends D {T̄ 1 f̄; M̄}

and let M be in the list M̄ of method declarations, with M = T m(T̄ 2 x̄){S}. We

record the type by defining mtype(m,C) = T̄ 2→T and let pars(m,C) = x̄ record the

parameter names. Let superC = D. For fields, we define fieldsC = f̄ : T̄ 1 ∪ fieldsD

and assume f̄ is disjoint from the names in fieldsD. The built-in class Object has no

methods or fields. If m is inherited in C from B then mtype(m,C) is defined to be

mtype(m,B), so that mtype(m,C) is defined iff m is declared or inherited in C .

A class table is well formed if each of its method declarations is well formed

according to the following rule.

x̄ : T̄ , self :C, result :T 	 S mtype(m, superC) is undefined or equals T̄→T

pars(m, superC) is undefined or equals x̄

C 	 T m(T̄ x̄){S}

Figure 2 gives the other typing rules. A typing environment Γ is a finite function

from variable names to types, written with the usual notation x :T . A judgement

of the form Γ 	 e :T says that e has type T in the context of a method of class

Γ self, with parameters and local variables declared by Γ. A judgement Γ 	 S says

that S is a command in the same context. Note that access policy has no influence

on typing, though of course it does influence semantics.

4.2 Semantics

The state of a method in execution is comprised of a heap h, which is a finite partial

function from locations to object states, and a store η, which assigns locations and

primitive values to local variables and parameters. Every store of interest includes

the distinguished variable self which points to the target object. A command denotes

a function from initial state to either a final state or the error value ⊥. States are

self-contained in the sense that all locations in fields and in variables are in the

domain of the heap.

For locations, we assume that a countable set Loc is given, along with a distin-

guished entity nil not in Loc. We treat object states as mappings from field names

to values. To track the object’s class, we assume given a function loctype : Loc →
ClassNames such that there are infinitely many locations � with loctype � = C , for

each C . We assume that, like nil , the three primitive values it , true, and false are

not in Loc. The semantic definitions and results are given for an arbitrary allocator.
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Γ 	 x : Γx Γ 	 true : bool Γ 	 null :B

Γ 	 e1 :T1 Γ 	 e2 :T2

Γ 	 e1 = e2 : bool

Γ 	 e :C (f :T ) ∈ fieldsC

Γ 	 e.f :T

Γ 	 e :D B � D

Γ 	 (B) e :B

Γ 	 e :D B � D

Γ 	 e is B : bool

Γ 	 e :T T � Γ x x 
= self

Γ 	 x : = e

Γ 	 e1 :C (f :T ) ∈ fieldsC Γ 	 e2 :U U � T

Γ 	 e1.f : = e2

Γ 	 e :D mtype(m,D) = T̄→T T � Γ x Γ 	 ē : Ū Ū � T̄ x 
= self

Γ 	 x : = e.m(ē)

B � Γx x 
= self

Γ 	 x : = new B

Γ 	 e : bool Γ 	 S1 Γ 	 S2

Γ 	 if e then S1 else S2

Γ 	 e :U U � T x 
= self (Γ, x :T ) 	 S

Γ 	 T x : = e in S

Γ 	 S1 Γ 	 S2

Γ 	 S1; S2

P ⊆ Permissions Γ 	 S

Γ 	 enable P in S

P ⊆ Permissions Γ 	 S1 Γ 	 S2

Γ 	 test P then S1 else S2

Fig. 2. Typing rules for expressions and commands.

Definition 1

An allocator is a location-valued function fresh such that loctype(fresh(C, h)) = C

and fresh(C, h) 
∈ domh, for all C, h. �

The semantics is isomorphic to one where addresses are untyped and each object

has an immutable field tagging it with its type. One can take Loc to be the cartesian

product � × Classnames and define, e.g. fresh(C, h) = (i, C) where i is the least

natural not in dom h.

Methods are associated with classes, in a method environment, rather than with

instances. For this reason the semantic domains are relatively simple; there are no

recursive domain equations to be solved. For any data type T , the domain [[T ]] is

the set of values of type T . For any typing environment Γ, [[Γ]] is the set of stores

assigning values of appropriate type to the variables in domΓ. There are several

other domains for which there is no corresponding notation in the syntax; for

uniform notation, Figure 3 defines a collection of categories θ that includes T and

Γ. Figure 4 defines the domain [[θ]] for each category: [[Heap]] is the set of heaps,

[[state C]] is the set of states of objects of class C , [[perms C]] is sets of permissions

authorized for C , [[MEnv ]] is the set of method environments, [[C, x̄, T̄→T ]] is the

set of meanings for methods of class C with result T and parameters x̄ : T̄ . In a

language like Java with garbage collection and without pointer arithmetic, dangling

locations (those not in the domain of the heap) never occur in program states or
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θ ::= T values of type T

| Γ stores (map each variable x ∈ domΓ to value of type Γ x)

| state C object states (map fields to values)

| Heap maps locations to object states with no dangling locations

| Heap ⊗ Γ global states with no dangling locations

| Heap ⊗ T pairs (h, d) where value d is not a dangling location w.r.t. h

| θ⊥ lifting

| perms C permission sets statically authorized for C

| (C, x̄, T̄→T ) method of C with parameters x̄ : T̄ and return type T

| MEnv method environments

Fig. 3. Semantic categories and informal description of their denotation.

[[bool]] = {true, false}
[[unit]] = {it}
[[C]] = {nil} ∪ {� | � ∈ Loc ∧ loctype � � C}
[[Γ]] = {η | domη = domΓ ∧ η self 
= nil ∧ ∀x ∈ domη • η x ∈ [[Γ x]]}
[[state C]] = {s | dom s = dom(fieldsC) ∧ ∀(f :T ) ∈ fieldsC • sf ∈ [[T ]]}
[[Heap]] = {h | dom h ⊆fin Loc ∧ closed h ∧ ∀� ∈ dom h • h� ∈ [[state (loctype �)]]}

where closed h iff rng s ∩ Loc ⊆ domh for all s ∈ rng h

[[Heap ⊗ Γ]] = {(h, η) | h ∈ [[Heap]] ∧ η ∈ [[Γ]] ∧ rng η ∩ Loc ⊆ domh}
[[Heap ⊗ T ]] = {(h, d) | h ∈ [[Heap]] ∧ d ∈ [[T ]] ∧ (d ∈ Loc ⇒ d ∈ domh)}
[[θ⊥]] = [[θ]] ∪ ⊥ (where ⊥ is some fresh value not in [[θ]])

[[perms C]] = {P | P ⊆ Auth C}
[[C, x̄, T̄→T ]] = [[Heap ⊗ (x̄ : T̄ , self :C)]] → P(Permissions) → [[(Heap ⊗ T )⊥]]

[[MEnv ]] = {µ | ∀C,m • µCm is defined iff mtype(m,C) is defined,

and µCm ∈ [[C, pars(m,C),mtype(m,C)]] if µCm defined}

Fig. 4. Semantic domains, for given policy Auth .

as expression values. Capturing this in the semantics is the purpose of the special

cartesian products Heap ⊗ Γ and Heap ⊗ T .

For expressions and commands, the semantics is defined only for derivable typing

judgements. The meaning of an expression Γ 	 e :T is a function [[Heap ⊗ Γ]] →
[[T⊥]] that takes a state (h, η) ∈ [[Heap ⊗ Γ]] and returns either a value d ∈ [[T ]],

such that (h, d) ∈ [[Heap ⊗ T ]], or the improper value ⊥ which represents errors.

The errors are null dereferences and cast failure; the other expression constructs are

strict in ⊥. We have no need to define an explicit semantic category to designate the

domain [[Heap ⊗ Γ]] → [[T⊥]].

The typing rules are syntax-directed, so it is easy to show that a given judgement

has at most one derivation. Thus the semantics of a derivable expression typing

can be defined by recursion on its derivation; see Mitchell (1996, section 4.5), for a

textbook discussion. Figure 5 gives the definition.

The meaning of a command Γ 	 S is a function

[[MEnv ]] → [[Heap ⊗ Γ]] → [[perms(Γ self)]] → [[(Heap ⊗ Γ)⊥]] (1)
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[[Γ 	 x :T ]](h, η) = ηx

[[Γ 	 null :B]](h, η) = nil

[[Γ 	 true : bool]](h, η) = true

[[Γ 	 false : bool]](h, η) = false

[[Γ 	 e1 = e2 : bool]](h, η) = let d1 = [[Γ 	 e1 :T1]](h, η) in

let d2 = [[Γ 	 e2 :T2]](h, η) in if d1 = d2 then true else false

[[Γ 	 e.f :T ]](h, η) = let � = [[Γ 	 e :C]](h, η) in if � = nil then ⊥ else h � f

[[Γ 	 (B) e :B]](h, η) = let � = [[Γ 	 e :D]](h, η) in

if � = nil ∨ loctype � � B then � else ⊥
[[Γ 	 e is B : bool]](h, η) = let � = [[Γ 	 e :D]](h, η) in

if � 
= nil ∧ loctype � � B then true else false

Fig. 5. Semantics of expressions.

[[Γ 	 x : = e]]µ(h, η)Q = let d = [[Γ 	 e :T ]](h, η) in (h, [η | x �→d])

[[Γ 	 e1.f : = e2]]µ(h, η)Q = let � = [[Γ 	 e1 :C]](h, η) in

if � = nil then ⊥ else

let d = [[Γ 	 e2 :U]](h, η) in ([h | � �→ [h � | f �→d]], η)

[[Γ 	 x : = new B]]µ(h, η)Q = let � = fresh(B, h) in

let h1 = [h | � �→ [fieldsB �→ defaults]] in

(h1, [η | x �→�])

[[Γ 	 x : = e.m(ē)]]µ(h, η)Q = let � = [[Γ 	 e :D]](h, η) in

if � = nil then ⊥ else

let x̄ = pars(m,D) in

let d̄ = [[Γ 	 ē : Ū]](h, η) in

let η1 = [x̄ �→ d̄, self �→ �] in

let (h0, d0) = µ(loctype �)m(h, η1)Q in (h0, [η | x �→d0])

[[Γ 	 S1; S2]]µ(h, η)Q = let (h1, η1) = [[Γ 	 S1]]µ(h, η)Q in [[Γ 	 S2]]µ(h1, η1)Q

[[Γ 	 if e then S1 else S2]]µ(h, η)Q

= let b = [[Γ 	 e : bool]](h, η) in

if b then [[Γ 	 S1]]µ(h, η)Q else [[Γ 	 S2]]µ(h, η)Q

[[Γ 	 T x : = e in S]]µ(h, η)Q= let d = [[Γ 	 e :U]](h, η) in

let η1 = [η | x �→d] in

let (h1, η2) = [[(Γ, x :T ) 	 S]]µ(h, η1)Q in (h1, (η2�x))

[[Γ 	 enable P in S]]µ(h, η)Q= [[Γ 	 S ]]µ(h, η)(Q ∪ (P ∩ Auth(Γ self)))

[[Γ 	 test P then S1 else S2]]µ(h, η)Q

= if P ⊆ Q then [[Γ 	 S1]]µ(h, η)Q else [[Γ 	 S2]]µ(h, η)Q

Fig. 6. Semantics of commands, for given policy Auth and allocator fresh .

that takes a method environment µ (see below), a state (h, η), and the enabled

permissions Q ∈ [[perms(Γ self)]]; it returns a state or ⊥ which indicates divergence

or error. The definition, in Figure 6, is again by recursion on the typing derivation.

Note that the semantic domain (1) depends on perms(Γ self). As with expressions,

we refrain from introducing an explicit name for this domain.
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To streamline the treatment of ⊥ in the semantic definitions, we use a metalan-

guage construct, let d = E1 in E2, with the following meaning: If the value of E1 is

⊥ then that is the value of the entire let expression; otherwise, its value is the value

of E2 with d bound to the value of E1.

For functions of various kinds we write dom or rng for the domain or range.

Function update or extension is written, e.g. [η | x �→ d]. In the semantics of local

variables, we write � for domain restriction: if x is in the domain of function η then

η�x is the function like η but without x in its domain.

A method environment µ maps each class name C and method name m (declared

or inherited in C) to a meaning µC m which is an element of

[[Heap ⊗ Γ]] → P(Permissions) → [[(Heap ⊗ T )⊥]]

where T is the return type and Γ = self :C, x̄ : T̄ is the parameter store, where

x̄ = pars(m,C). The result from a method, if not ⊥, is a pair (h, d) with d in [[T ]]

such that, if d is a location then d is in the domain of the result heap h.

A class table denotes a method environment obtained as the least upper bound of

a chain of approximations. For this purpose each semantic domain is given a partial

ordering. The sets [[Heap]], [[bool]], [[C]], [[state C]], [[perms C]], and P(Permissions)

are ordered by equality, as is [[Heap ⊗ Γ]]. The ordering on [[(Heap ⊗ Γ)⊥]] is the

flat order: X � Y iff X = ⊥ ∨ X = Y . Thus elements of [[C, x̄, T̄→T ]] are curried

functions from discrete domains to a flat one (all such functions are continuous). We

order [[C, x̄, T̄→T ]] pointwise, and note that it has a least element (the constantly-⊥
function) and least upper bounds of ascending chains.

To keep the proofs self-contained, we need an elementary characterization of

least upper bounds for method environments. To this end, note first that for

any d1, d2 in [[C, x̄, T̄→T ]] we have the following, writing � for the pointwise

order:

d1 � d2 ⇐⇒ ∀h, η, Q • d1(h, η)Q 
= ⊥ ⇒ d1(h, η)Q = d2(h, η)Q (2)

The reason is that elements of [[C, x̄, T̄→T ]] are functions into flat cpo

[[(Heap ⊗ T )⊥]]. Now consider an ascending chain d : � → [[C, x̄, T̄→T ]]. For

any h, η, Q, there is some j such that (lub d)(h, η)Q = dj(h, η)Q; this follows by

the lub property from (2) with instantiation d1 : = dj and d2 : = (lub d). Moreover,

(lub d)(h, η)Q = dk(h, η)Q for all k � j.

To cope with mutually recursive definitions, the semantics is defined using a chain

of method environments. The preceding ideas extend straightforwardly to yield the

following.

Lemma 4.1 (characterization of least upper bounds for method environments)

Let µ be an ascending chain, µ : � → [[MEnv ]], of method environments for CT .

For any C,m, h, η, Q, there is some j such that, for all k � j,

(lub µ)C m (h, η)Q = µk C m (h, η)Q

https://doi.org/10.1017/S0956796804005453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005453


Access control and secure information flow 149

Proof

Follows from the fact, analogous to (2), that for any µ1, µ2 we have µ1 � µ2 iff

∀C,m, h, η, Q • µ1Cm(h, η)Q 
= ⊥ ⇒ µ1Cm(h, η)Q = µ2Cm(h, η)Q (3)

�

Definition 2 (semantics of complete program)

The semantics of a class table CT is a method environment, written [[CT ]], given

as a least upper bound. Specifically, [[CT ]] = lub µ where the ascending chain

µ ∈ � → [[MEnv ]] is defined as follows, using the semantics [[M]] defined later.1

µ0 C m = λ(h, η) • λQ • ⊥
µj+1 C m = [[M]]µj if m is declared as M in C

µj+1 C m = µj+1 B m if m is inherited from B in C

To be very precise for an inherited method, if mtype(m,C) = T̄→T then µj+1 C m

should apply to stores for x̄ : T̄ , self :C whereas µj+1 B m applies to stores for

x̄ : T̄ , self :B. But the latter contains the former, as C � B implies [[C]] ⊆ [[B]]. This

does not obtrude in the sequel.

The interesting aspect of inheritance is that the permissions Auth B are not

required to have any relation to the permissions Auth C . Recall from section 2 that

access control is defined in terms of the code on the stack, not the classes of objects

for which the code is executing. Leaving aside dynamic binding, the semantics of

method invocation could be defined by intersecting the current permissions with

those authorized for the called method. To interpret dynamic binding, our semantics

branches on the type of the target object, and the method environment provides

a meaning for every method. In the case of an inherited method, the permissions

“authorized for the called method” should be those of its defining class, not the

class into which it is inherited. So we consider that a method meaning is defined for

all permission sets. Intersection with the authorized permissions is done not in the

semantics of method call but in the semantics of method declarations. This is why

[[C, x̄, T̄→T ]] is defined using P(Permissions) rather than [[perms C]].

Definition 3 (semantics of method declaration)

For a declaration M = T m(T̄ x̄){S} in class C , define [[M]] by

[[M]]µ(h, η)Q = let Q1 = Q ∩ Auth C in

let η1 = [η | result �→default] in

let (h0, η0) = [[x̄ : T̄ , self :C, result :T 	 S]]µ(h, η)Q1 in

(h0, η0 result)

On fixpoints. We have chosen to formulate the semantic definition as a least upper

bound, as this facilitates straightforward proofs of the main results. It is in fact a

least fixpoint, of a function that we have not made explicit; it is the function used

in Definition 2 to obtain µj+1 from µj . The interested reader can check that this

1 Warning: Elsewhere in the paper we use, e.g., κ, κ1, κ2 as unrelated identifiers, some of which happen
to be decorated with subscripts.
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function is continuous and thus its least fixpoint is the least upper bound of our

approximation chain.

If the semantics is described as a least fixed point then proofs can use fixpoint

induction. Fixpoint induction requires not only continuity of the relevant function

but also admissibility of the predicate, say P , to be proved: ∀i • P (µi) implies

P (lub µ). In the proofs we prove the implication but use it directly, without need to

mention fixpoints. This presentation has been chosen mainly because the standard

characterizations of admissibility do not happen to apply to our predicates and

there is a simple direct proof of admissibility using Lemma 4.1.

5 Safety

The syntactic property given by static analysis is called safety. The analysis is

specified by a typing system which is convenient for proving our results. For practical

purposes, type inference is needed and concrete syntax is needed to designate policy

separately from the code (see section 9). The short word “safe”, used in preference to

“security-typable”, has a semantic connotation but this is justified by our main

results.

In this section we annotate the syntax of section 4 with security labels. Where

types T occur in declarations of fields and local variables, we use pairs (T , κ) where

κ is a security level, L or H . Such a pair, written τ, is called a security type. The

grammar is revised as follows.

κ ::= L | H
τ ::= (T , κ)

CL ::= class C extends C { τ̄ f̄; M̄}
S ::= . . . | τ x : = e in S | . . .

Note that there is no change for cast and test.

We refrain from giving concrete syntax for the security types of method para-

meters, results, and effects. By analogy with the auxiliary function mtype which

gives the declared type of a method (see section 4.1), we assume that a function

smtypes is given. It may assign multiple security types for a method, each of the

form κ, κ̄−〈P ; κ1〉→κ2. The intended meaning is as follows: if the method is called

with arguments compatible with κ̄, target object compatible with κ, and enabled

permissions disjoint from P , then the heap effect is � κ1 and the result level � κ2.

This is made precise in Definition 10.

There is an ordering on method typings κ, κ̄−〈P ; κ1〉→κ2. It is contravariant on

inputs κ, κ̄ and P and on assignables κ1, covariant on the result value κ2.

Definition 4 (subtyping)
κ, κ̄−〈P ; κ1〉→κ2 � κ′, κ̄′−〈P ′; κ′

1〉→κ′
2 iff κ′ � κ, κ̄′ � κ̄, P ⊆ P ′, κ′

1 � κ1, and

κ2 � κ′
2. �

Note that P is interpreted negatively, so the condition P ⊆ P ′ is effectively

contravariant.

We refrain from defining the induced orderings on (T , κ) and (com κ, κ); it is

simpler to build them into the subsumption rules.

https://doi.org/10.1017/S0956796804005453 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005453


Access control and secure information flow 151

∆ 	 x : ∆ x ∆ 	 null : (D, κ) ∆ 	 true : (bool, κ)

∆ 	 e1 : (T1, κ) ∆ 	 e2 : (T2, κ)

∆ 	 e1 = e2 : (bool, κ)

∆ 	 e : (D, κ) B � D

∆ 	 (B) e : (B, κ)

∆ 	 e : (C, κ1) f : (T , κ) ∈ sfieldsC

∆ 	 e.f : (T , κ � κ1)

∆ 	 e : (D, κ) B � D

∆ 	 e is B : (bool, κ)

∆ 	 e : (T , κ) κ � κ′

∆ 	 e : (T , κ′)

Fig. 7. Security typing rules for expressions.

Definition 5 (annotated class table)

An annotated class table is a class table with annotations according to the grammar

above, together with a partial function smtypes satisfying the following conditions.

First, smtypes(m,C) is defined iff mtype(m,C) is defined. Second, if smtypes(m,C) is

defined then it is a non-empty set of annotations of the form κ, κ̄−〈P ; κ1〉→κ2. Third,

if C � D and mtype(m,D) is defined then smtypes(m,C) = smtypes(m,D). �

Note that we do not require P ⊆ Auth C . A method may be declared in one

class and inherited or overridden in a subclass with different permissions. The third

condition allows us to reason about method calls in terms of the static type of

a called method, because any implementation that can be invoked by dynamic

dispatch is checked with respect to the same security types.

We use the symbol † to erase annotations: (T , κ)† = T , and this extends to erasure

for typing environments, commands, and method declarations in an obvious way.

A method can have more than one type so for flexibility in checking method de-

clarations the rule must allow local variable declarations to be annotated differently

for different types. The rule in the sequel uses the following notion: S ′ is a local

variant of S iff S† is syntactically identical to (S ′)†. Note that S and S ′ have the

same semantics.

Definition 6 (safe class table and method declaration)

An annotated class table CT is safe provided that each class satisfies the rule

C extends D 	 M for each M ∈ M̄

	 class C extends D { τ̄ f̄; M̄}

The hypothesis of this rule requires each method declaration to be checked with

respect to its security types according to the following rule:

mtype(m,C) = T̄→T pars(m,C) = x̄

For each (κ0, κ̄−〈P ; κ3〉→κ4) in smtypes(m,C) there is a local variant S ′ of S

such that self : (C, κ0), x̄ : (T̄ , κ̄), result : (T , κ4); (P ∩ Auth C) 	 S ′ : (com L, κ3)

C extends D 	 T m(T̄ x̄){S}

This rule depends on rules for expressions and commands, which are given in

Figures 7 and 8. �
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x 
= self ∆, x : (T , κ) 	 e : (U, κ) U � T

∆, x : (T , κ);P 	 x : = e : (com κ,H)

∆ 	 e1 : (C, κ1) f : (T , κ) ∈ sfieldsC ∆ 	 e2 : (U, κ) U � T κ1 � κ

∆;P 	 e1.f : = e2 : (com H, κ)

x 
= self B � D

∆, x : (D, κ);P 	 x : = new B : (com κ,H)

∆, x : (T , κ) 	 e : (D, κ0) mtype(m,D) = T̄ → T ′ ∆, x : (T , κ) 	 ē : (Ū, κ̄)

Ū � T̄ x 
= self T ′ � T κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′ ∈ smtypes(m,D)

κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′ � κ0, κ̄−〈P ′; κ1〉→κ P ′ ∩ Auth(∆†self) ⊆ P κ0 � κ � κ1

∆, x : (T , κ);P 	 x : = e.m(ē) : (com κ, κ1)

∆;P 	 S1 : (com κ1, κ2) ∆;P 	 S2 : (com κ1, κ2)

∆;P 	 S1; S2 : (com κ1, κ2)

∆ 	 e : (bool, κ) ∆;P 	 S1 : (com κ1, κ2) ∆;P 	 S2 : (com κ1, κ2) κ � κ1 � κ2

∆;P 	 if e then S1 else S2 : (com κ1, κ2)

∆ 	 e : (U, κ) U � T ∆, x : (T , κ);P 	 S : (com κ1, κ2)

∆;P 	 (T , κ) x : = e in S : (com κ1, κ2)

∆; (P − (P ′ ∩ Auth(∆†self))) 	 S : (com κ1, κ2)

∆;P 	 enable P ′ in S : (com κ1, κ2)

P ′ ∩ P = � ∧ P ′ ⊆ Auth(∆†self) ∆;P 	 S1 : (com κ1, κ2) ∆;P 	 S2 : (com κ1, κ2)

∆;P 	 test P ′ then S1 else S2 : (com κ1, κ2)

P ′ ∩ P 
= � ∨ P ′ 
⊆ Auth(∆†self) ∆;P 	 S2 : (com κ1, κ2)

∆;P 	 test P ′ then S1 else S2 : (com κ1, κ2)

∆;P 	 S : (com κ1, κ2) κ3 � κ1 κ4 � κ2

∆;P 	 S : (com κ3, κ4)

Fig. 8. Security typing rules for commands, for given Auth .

In the rules for expressions and commands, we write ∆ for typing environments

that assign security types. The rules use a version of the fields auxiliary function

that takes security levels into account. Let CT (C) = class C extends D { τ̄1 f̄; M̄},
to define sfieldsC = f̄ : τ̄1 ∪ sfieldsD.

A judgement ∆;P 	 S : (com κ1, κ2) says that S is safe and assigns only to

variables (locals and parameters) of level � κ1 and to object fields of level � κ2

(see Lemma 7.2) provided that no permissions in set P are enabled initially. For

commands, we allow only judgements where P ⊆ Auth(∆†self); only such P is

relevant to the behavior of a command declared in class ∆†self. This is reflected in

the rule for method declaration in Definition 6.

Assignments to variables within a method have no effect on the caller’s state;

this is why it is useful to have two separate levels in command types. The rule for
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method declaration does not restrict assignments to local variables, i.e. it allows

effect L in the hypothesis.

The last rule in both Figures 7 and 8 is a subsumption rule. These rules help

simplify the syntax-directed rules, e.g. the rule for assignment requires the level of

the target variable x to be the same as the assigned expression e.

A form of subsumption is built in to the rule for method call, which requires

there to be some declared type for the method that matches its invocation. Note

constraints in the rule prevent use of a type κ0, κ̄−〈P ; κ1〉→κ unless κ0 � κ1. So a

type not satisfying this condition is useless, but we have refrained from cluttering

definitions by imposing this condition on smtypes.

Subsumptions could be used to simplify the conditional rule, but at the cost of

imprecision in the case that the guard condition is L but the commands are H .

The rule for enable accurately tracks the effect on permissions. In it we write

“−” for set subtraction. The second rule for test is the one that removes from

consideration a branch that, in the given context, cannot be taken: The test of P ′

fails if P ′ contains permissions assumed to be excluded or permissions that are not

authorized for the class in which this command occurs. The first rule for test handles

the case where it cannot be statically determined, from the information tracked in

the judgements, whether the test of P ′ succeeds.

On first reading it is advisable to skip to section 6 which shows the rules in action.

We conclude the present section with minor technicalities.

Properties of security typing. For any judgement ∆;P 	 S : (com κ1, κ2) derivable

using the rules in Figures 7 and 8, the erased judgement ∆† 	 S† is derivable using

the rules of Figure 2. Conversely, any program typable using the rules of Figure 2

can be annotated everywhere by L and typed by the rules in Figures 7 and 8, taking

smtypes(m,C) = {L, L̄−〈�;L〉→L} for all m,C .

For brevity we write Q # P for Q ∩ P = �.

For reasoning about method calls we repeatedly use the following.

Lemma 5.1

Suppose ∆, x : (T , κ);P 	 x : = e.m(ē) : (com κ, κ1) is derived using the method call

rule instantiated with κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′ ∈ smtypes(m,D), and (κ′

0, κ̄
′−〈P ′; κ′

1〉→κ′) �
(κ0, κ̄−〈P ′; κ1〉→κ). If Q # P and Q ⊆ Auth(∆† self) then Q # P ′.

Proof

By the typing rule we have P ′ ∩ Auth(∆† self) ⊆ P hence, from Q # P , we have

P ′ ∩ Auth(∆† self) ∩ Q = �. Then Q ⊆ Auth(∆† self) implies Q ∩ P ′ = �. �

6 Examples

In this section, we first show how the rules work with the examples in section 3, and

extend the examples to consider subclassing and inheritance. Next, we show several

examples of leaks that may occur in object-oriented programs due to control flow

and aliasing. The security type system in Figure 8 can be deployed to reject such

programs. Finally, we show an example concerning integrity.
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Examples from section 3. For the information flow policy, the fields of class Kern

are annotated as

(string,H) Hinfo; (string,L) Linfo;

and fields of class Comp1 are annotated as

(Kern,L) k; (string,L) v;

The most interesting method typings are given as

smtypes(getHinfo, Kern) = {H, ()−〈�;H〉→H}
smtypes(getStatus, Kern) = {H, ()−〈{stat};H〉→L, H, ()−〈�;H〉→H}
smtypes(status,Comp1) = {H, ()−〈�;H〉→L}

For example, the intended meaning of type H, ()−〈{stat};H〉→L is that if method

getStatus is called with self of level � H , empty argument list, and enabled

permissions disjoint from stat, then the heap effect is � H and the result level is

� L.

The body of Comp1.status is checked in the context of result : (string, L) and

excluded permission set � ∩ Auth(Comp1), i.e. �. The call to getStatus can be

checked using the type H, ()−〈{stat};H〉→L, because {stat}∩ Auth(Comp1) = {stat}∩
{other} ⊆ �.

Method Comp1.status2 can also be checked using the same types, as the rule

for enable takes into account that the attempt to enable stat fails because stat 
∈
Auth(Comp1).

Consider the policy smtypes(statusH, Comp2) = {H, ()−〈�;H〉→H}. This requires

checking the body of Comp2.statusH in the context of result : (string, H) and �. To

check the command

enable stat in result : = k.getStatus()

we check result : = k.getStatus() in the context of �, which is �−{stat}. This check

succeeds, using the type H, ()−〈�;H〉→H for getStatus.

Finally, consider checking getStatus. To check it with respect to H, ()−〈�;H〉→H

requires checking both branches of

test stat then enable sys in result : = getHinfo() else . . .

in the context with result : (string, H). This succeeds. To check with respect to

H, ()−〈{stat};H〉→L, note that the assignment to result in the then branch of the

test is not compatible with the context result : (string, L). But, on the assumption

that the caller has excluded {stat}, the second of the rules for test is applicable and

the then branch is not checked.

Leaks via the access mechanism. The security context is in effect an implicit mutable

variable, so there is a potential for the access mechanism to be used for information

flow. For example, suppose permission p is statically authorized for some class and

consider the following fragment assuming that eH is a high expression.

if eH then (enable p in S1) else S2
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If p is not enabled initially then the security state for S1 and S2 differs in a way that

depends on eH. One could try to exploit this in an assignment to a low variable vL:

test p then vL : = 0 else vL : = 1

But note that this assignment is not allowed in the branches of the conditional

guarded by eH, as it assigns a low variable. That is, the standard rule for conditionals

handles in particular flows via security context. Moreover, because enable is a

construct, with an effect limited to a lexically scoped constituent command, p is no

longer enabled after the branches join (as highlighted by parentheses above). This

is why sound static analysis rules for test and enable are straightforward.

Consider this alternative: a primitive command “enable’ p” that enables p and

leaves it enabled until, say, the current method body terminates. This could be used

to leak information because its effect would be retained following the join of the

branches:

(if eH then enable’ p; S1 else S2); test p then vL : = 0 else vL : = 1

To handle enable’, a static analysis could track the security level of the security

context in the manner of a typestate. This is much like the formulation where

the “program counter” security level is tracked, which is convenient for handling

exceptional control flows. But we pursue the idea no further.

Subclassing. Here is an untrusted subclass, KernSub of Kern that overrides method

Kern.getStatus and inherits Kern.getHinfo. Suppose Auth(KernSub) = {other}.

class KernSub extends Kern {
string getStatus() {

/∗ smtypes(getStatus,KernSub) = {H, ()−〈�;H〉→H, H, ()−〈{stat};H〉→L} ∗/

enable sys in result := self.getHinfo() } . . . }

For simplicity, in section 5 we let smtypes(getHinfo,Kern) = {H, ()−〈�;H〉→H}.
However, to take into account callers who do not have permission sys, we have,

more precisely, smtypes(getHinfo,Kern) = {H, ()−〈�;H〉→H, H, ()−〈{sys};H〉→L}.
The definition of smtypes (Definition 5) requires smtypes(getStatus, KernSub) =

smtypes(getStatus, Kern), and thus two checks of the method body. The interesting

case is for H, ()−〈{stat};H〉→L. Here the body of getStatus is checked in the context

{stat} ∩ Auth(KernSub), (not in context {stat} ∩ Auth(Kern)) i.e., {stat} ∩ {other},
which is �. The permission sys is not enabled as it is not in Auth(KernSub). Now

type checking of getHinfo occurs using type H, ()−〈{sys};H〉→L and this succeeds.

Level of self. In the examples so far, method types have the form H, κ1−〈P ; κ〉→κ2.

The H in the method type is the type of self. We could have as well typed self

as L, because by contravariance in subtyping, H, κ1−〈P ; κ〉→κ2 � L, κ1−〈P ; κ〉→κ2.

But what if a method is non-anonymous (Vitek & Bokowski, 2001), i.e. the method

returns self as result or passes self as argument? For example, suppose method

leakSelf was added to class Kern, defined as follows:

Kern leakSelf() { result := self}
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If k is L then the invocation k.leakSelf() returns L but if k is H then it returns H .

This poses a difficulty in Banerjee & Naumann (2002c) and Strecker (2003) because

methods are checked with respect to a level for self given by the level of the class

and a method can be inherited into another class. In the present paper, classes have

no level and we simply need

smtypes(leakSelf,Kern) = {L, ()−〈�;H〉→L, H, ()−〈�;H〉→H}

In other words, self is treated like any other parameter.

This example also illustrates the benefit of level polymorphism.

Leaks. We consider a class Doctor with a field pat that is a reference to a patient

record and a field hivRef that is a reference to an HIVSpecialist. We consider the

scenario where a doctor refers a patient to a specialist. The class HIVSpecialist has

a field hivPat that is used as an H alias to field pat whose level is L.

Class PatientRecord, below, has fields that are references to public and confidential

information about a patient. For example, field name of a patient has level L,

whereas field hiv contains confidential information about a patient’s hiv status and

field drug contains confidential information about medications taken by the patient.

Hence both of these fields have level H .

class Doctor extends Object {
pat: (PatientRecord, L);

hivRef: (HIVSpecialist, L);

. . . }

class HIVSpecialist extends Doctor {
hivPat: (PatientRecord, H); // will be used as high alias to field pat

. . . }

class PatientRecord extends Object {
name: (string, L); hiv : (bool, H); drug: (string, H);

. . . }

The above classes may be used as follows.

class Main extends Object {
(PatientRecord, L) r := new PatientRecord;

(Doctor, L) dr := new Doctor;

(HIVSpecialist, L) hivSp := new HIVSpecialist;

dr.pat := r;

dr.hivRef := hivSp;

dr.hivRef.hivPat := dr.pat; //referral set up

(PatientRecord, H) hpatient := dr.pat;

(PatientRecord, L) lpatient := dr.pat;

. . . }

The code in Main sets up a referral where dr refers a patient to hivSp. The

field accesses dr.pat, dr.hivRef and dr.hivRef.hivPat then have the following types:
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dr.pat: (PatientRecord, L), dr.hivRef: (HIVSpecialist, L), and dr.hivRef.hivPat:

(PatientRecord, H). Note that hpatient and lpatient are aliases, although their

types vary.

Leaks via control flow: conditionals. We first consider the example of a conditional

with a high guard.

if lpatient.hiv then lpatient.drug := “azt” else lpatient.drug := “generic”;

Note that lpatient.hiv : (bool, H), hence the guard of the conditional has level H .

Were the type of field drug L, the hiv status could be revealed, as lpatient.drug

would have level L. The rule for conditionals with high guard requires that both

branches have (com H,H), as is true here with drug typed H (in this case there are

no assignments to variables).

Leaks via control flow: Dynamic dispatch. Next we consider leaks via dynamic

dispatch in method calls. To the class PatientRecord, we add the methods setDrug

and set. We also add a method leak that branches on self.hiv and returns an object

of class YES or NO.

class PatientRecord extends Object {
name: (string, L); hiv: (bool, H); drug: (string, H);

(unit, L) setDrug((string, L) d) {
/∗ smtypes(setDrug,PatientRecord) = {H,L−〈�;H〉→L} ∗/

self.drug := d}
(unit, L) set() {

/∗ smtypes(set,PatientRecord) = {H, ()−〈�;H〉→L} ∗/

self.setDrug(“azt”); }
(PatientRecord, H) leak() {

/∗ smtypes(leak,PatientRecord) = {H, ()−〈�;H〉→H} ∗/

if self.hiv then result:= new YES else result:= new NO } }

Classes YES and NO are subclasses of PatientRecord where the set method is

overridden as depicted below:

class YES extends PatientRecord {
(unit, L) set() {

self.setDrug(“azt”); } }
class NO extends PatientRecord {

(unit, L) set() { self.setDrug(“generic”); } }

Note that method PatientRecord.leak returns a result of type (PatientRecord, H).

This makes sense because the body of the method is a conditional with a high guard,

self.hiv. Were the type of field drug L, the hiv status could be revealed as follows.

(PatientRecord, H) p := hpatient.leak(); p.set(); . . . p.drug. . .
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The call to hpatient.leak assigns an object of class YES or class NO to p depending

on the patient’s hiv status. This can be checked directly, using a type test p is YES.

But the point of the example is that the subsequent call p.set() is a dynamic dispatch

to the overriding set method in class YES or NO that sets the drug field; if drug

and p had level L then the expression p.drug would violate confidentiality. Hence,

in a method call (e.g. p.set()), if the target object reference (here p) has level H , then

only H fields may be updated during the call. Note that smtypes(set,PatientRecord)

has annotation H on the arrow.

Leaks via aliasing in field update. Leaks can occur due to aliasing of high and low

object references and a subsequent update of a low field of the object. The following

example, due to Sun Qi, shows how. We will add the field bloodGroup of type

(string, L) to PatientRecord.

class PatientRecord extends Object {(string, L) bloodGroup; . . . }
Now we consider a test method in class Main:

(string, L) test((bool, H) g) {
(PatientRecord, L) lp1 := new PatientRecord;

(PatientRecord, L) lp2 := new PatientRecord;

(PatientRecord,H) hp;

(String, L) bg := lp1.bloodGroup; // initial value in lp1’s bloodGroup

if g then hp := lp1 else hp := lp2; // hp aliases lp1 or lp2 depending on g

hp.bloodGroup := “Z”; // update of L field of H object reference

if bg = lp1.bloodGroup then result := “no” else result := “yes”; // g is leaked

}
After the field update hp.bloodGroup := “Z”, either lp1.bloodGroup is “Z” or

lp2.bloodGroup is “Z” depending on which of lp1, lp2 aliases hp. This aliasing, in

turn, depends on the H input g. The conditional, if g then hp := lp1 else hp := lp2,

is legitimate since only the H variable hp is assigned under the H guard. However,

the subsequent field update of bloodGroup allows one to infer the value of g by

checking the value of lp1.bloodGroup: if its value is identical to its initial value,

then g must have been false. Therefore, we disallow updates to L fields of H object

references. The rule for field update in the security type system requires the level of

hp to be at most the level of bloodGroup. As this is not the case, the test method

is rejected by the type system.

Examples like this might lead one to suggest disallowing any aliasing between

L and H variables or fields. But this is hard to enforce while still allowing L-to-

H information flows. A natural design pattern is exemplified by the pair lpatient,

hpatient where lpatient is the L alias, as in one of the examples above. In that context,

a field update lpatient.name := “Sue” would be allowed, but not hpatient.name :=

“Sue”. Note that this means that the object is effectively L from the point of view

of the analysis.

Integrity. As remarked in the introduction, confidentiality can be seen as the absence

of dependency of L on H , and this can also be read as a form of integrity: Licensed
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data is not influenced by Hacked data. The following example, an adaptation of

one from Abadi & Fournet (2003), shows how our type system can be deployed to

check integrity.

Our main example on the use of stack inspection based access control for

confidentiality (section 3) considers untrusted or partially trusted code calling trusted

code (method getStatus). Now we consider the dual scenario of trusted code calling

untrusted code.

class NaiveProgram extends Object {
unit Main() {

(string, H) s := BadPlugIn.TempFile();

enable FileIO in File.Delete(s); } }
Suppose that NaiveProgram is a trusted class with all permissions. Next, we consider

the partially trusted class BadPlugIn whose static permissions do not include FileIO .

class BadPlugIn extends Object {
(string, H) TempFile() { result := “. . . password file . . .”} }

The trusted class File has all permissions and contains the method Delete, where

the file deletion operation is protected by a test of permission FileIO .

class File extends Object {
unit Delete((string, H) s) {

test FileIO then Win32.Delete(s) else abort;} }
As Abadi and Fournet note, stack inspection will not be able to prevent the deletion

of the password file in the call NaiveProgram.Main(). They propose a history-based

access control mechanism for such situations. Our static analysis can be used to

reject the program.

We decorate BadPlugIn.TempFile() with the (integrity) flow policy

smtypes(TempFile,BadPlugIn) = {L, ()−〈�;H〉→H}

The code for File.Delete can be checked against flow policy

smtypes(Delete, File) = {L,H−〈{FileIO};H〉→(), L, L−〈�;H〉→()}

The first flow policy concerns hacked inputs, and is used in a context where FileIO

is absent. For example, BadPlugIn is welcome to call Delete directly and no harm

would occur. The second policy says that callers with permission to delete files

should not pass tainted data to Delete – this of course is the point of the example.

Indeed, for this policy, the type system checks the body of Delete in the permission

context {FileIO} ∩ Auth(File), i.e., the context {FileIO}, and Delete is accepted.

Observe that if we check NaiveProgram.Main for the policy L, ()−〈�;H〉→(), the

call to Delete is rejected by our type system as it violates the flow policy for Delete.

7 Indistinguishability and confinement

In this section we show that if an expression is safe, i.e., accepted by the security

typing rules of section 5, and has level L, then it is read confined : its value does
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not depend on H-fields or H-variables. Moreover, if a command is safe and it has

level com H,H then it is write confined : it does not assign to L-fields or L-variables.

These two properties are the semantic counterparts of the rules “no read up” and

“no write down” that underly information flow control; the terms “simple security”

and “*-property” are also used (Bell & LaPadula, 1973).

The formalization uses the indistinguishability relation ∼ which is also used to

formulate noninterference in section 8. States (h, η) and (h′, η′) may be indistinguish-

able to an L observer while having different allocation of objects visible only to H .

For this reason, indistinguishability is formalized using a bijective correspondence

between those locations in dom h and dom h′ that, informally, are or have been

visible to L.

Definition 7

A typed bijection is a bijective finite partial function, σ, from Loc to Loc, such that

loctype(σ �) = loctype � for all � in domσ. �

In the sequel, σ and its decorated variants range over typed bijections. We treat

partial functions as sets of ordered pairs, so σ′ ⊇ σ expresses that σ′ is an extension

of σ.

Definition 8 (indistinguishable by L)

For any σ, we define relations ∼σ for data values, object states, heaps, and stores.

To be pedantic we could write ∼σ
θ , which would let us precisely specify the typing:

∼σ
θ⊆ [[θ]] × [[θ]]. But in the sequel the category should be clear from context so we

just indicate it informally in the following.

� ∼σ �′ in [[C]] ⇐⇒ σ � = �′ ∨ � = nil = �′

d ∼σ d′ in [[T ]] ⇐⇒ d = d′ for primitive types T

s ∼σ s′ in [[state C]] ⇐⇒ ∀(f : (T , κ)) ∈ sfieldsC • κ = L ⇒ sf ∼σ s′f

η ∼σ η′ in [[∆†]] ⇐⇒ ∀(x : (T , κ)) ∈ ∆ • κ = L ⇒ η x ∼σ η′ x

h ∼σ h′ in [[Heap]] ⇐⇒ domσ ⊆ dom h ∧ rng σ ⊆ dom h′ ∧
∀�, �′ • � ∼σ �′ ⇒ h � ∼σ h′ �′

d ∼σ d′ in [[T⊥]] ⇐⇒ d = ⊥ = d′ ∨ (d 
= ⊥ 
= d′ ∧ d ∼σ d′ in [[T ]])

�

For classes C , the formulation above exploits the convention that equations

involving partial functions are interpreted as false when the function is undefined.

Thus, for � 
= nil , the relation � ∼σ �′ holds only if � is in domσ. The last clause,

for T⊥, is needed to handle errors (null dereferences) in expressions. There is no

need to define ∼σ for command outcomes, (Heap ⊗Γ)⊥, because the noninterference

condition is termination-insensitive.

Note that η ∼σ η′ depends on the levels given by the context ∆, though this is not

explicit in the notation. We have occasion to consider stores for differing contexts,

in which case we take care to mention which context is considered. The relations ∼σ

for object states, and hence for heaps, depend implicitly on class declarations, but a

fixed class table is considered throughout.
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To extend our definitions to a lattice of levels larger than H,L, the main change

would be that a relation ∼γ
σ is needed for each level γ, to express indistinguishability

with respect to that level.

Indistinguishability is not symmetric or reflexive in general. But h ∼ι h where ι is

the identity on dom h. Limited transitivity and symmetry hold.

Lemma 7.1

For any heaps h1, h2, h3, if h1 ∼σ h2 and h2 ∼τ h3 then h1 ∼τ◦σ h3.

For any ∆ and η1, η2, η3 in [[∆†]], if η1 ∼σ η2 and η2 ∼τ η3 then η1 ∼τ◦σ η3.

If domσ = rng σ then all the relations ∼σ are symmetric. �

The proof is straightforward. An important special case is where τ or σ is a partial

identity function. Note that for stores the relations ∼σ , ∼τ, and ∼τ◦σ are all with

respect to the same ∆.

One use of ∼ is to formulate, in Lemma 7.2 below, that if a command is typable

as (com H, κ) it does not assign to L-variables, and if it is typable as (com κ,H) it

does not assign to L-fields of objects. For this purpose we use h ∼ι h0, for initial

h and final h0, where ι is the identity on dom h. This expresses that no L fields are

changed.

Each of our results about the meaning of a class table CT is proved by induction

on the approximation chain by which [[CT ]] is defined. The induction step is treated

as a separate lemma about commands, in which the induction hypothesis is an

assumption about the method environment. That is the purpose of the following.

Definition 9 (write confined method environment)

Method environment µ is write confined, written wconf µ, if the following holds for

all C,m and all κ, κ̄−〈P ;H〉→κ1 in smtypes(m,C). If Q#P and µCm(h, η)Q 
= ⊥ then

h ∼ι h0, where (h0, d) = µCm(h, η)Q and ι is the identity on dom h. �

Lemma 7.2 (write confinement of commands)

Suppose ∆;P 	 S : (com κ1, κ2) and wconf µ. For all η, h, Q such that Q # P , and

Q ⊆ Auth(∆† self), if (h0, η0) = [[∆† 	 S†]]µ(h, η)Q then

κ1 = H ⇒ η ∼ι η0 and κ2 = H ⇒ h ∼ι h0

where ι is the identity on dom h.

Note that no condition is imposed if [[∆† 	 S†]]µ(h, η)Q = ⊥.

Proof

We proceed by induction on a derivation of ∆;P 	 S : (com κ1, κ2) and thus by

cases on the last rule used in the derivation. In every case except the subsumption

rule, the antecedents involve proper constituents S ′ of S so in those cases we say

“induction on S ′”.

Case ∆, x : (T , κ);P 	 x : = e : (com κ,H): Recall the semantic definition

[[∆† 	 x : = e]]µ(h, η)Q = let d = [[∆† 	 e :T ]](h, η) in (h, [η | x �→d])

Thus η0, h0 in the statement of the Lemma have the values η0 = [η | x �→ d] and

h0 = h. For the store, we need to show that κ = H ⇒ η ∼ι η0. This follows using

definition ∼ι for ∆, x : (T ,H). For the heap, we have h ∼ι h0 by reflexivity of ∼ι.
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In subsequent proof cases we let h0, η0 be as in the statement of the Lemma, and

other identifiers be as in the relevant semantic definition and security typing rule,

with only occasional reminders of this convention. This saves ink at the cost of

some page flipping for the reader.

Case ∆;P 	 e1.f : = e2 : (com H, κ): Let � = [[∆† 	 e1 :C]](h, η) and d =

[[∆† 	 e2 :T ]](h, η) as in the semantic definition. Thus h0 = [h | � �→ [h� | f �→d]] and

η0 = η. Field assignment has no effect on the store, so η ∼ι η0 holds by definition

∼ι. For the heap we must show κ = H ⇒ h ∼ι h0. The rule requires f to have level

κ, and if κ is H then h ∼ι h0 holds by definition ∼ι.

Case ∆; x : (D, κ);P 	 x : = new B : (com κ,H): Let � = fresh(B, h), so that η0 = [η |
x �→�] and h0 = [h | � �→ [fieldsB �→ defaults]] by semantics. For the store, if κ = H

then η ∼ι η0 follows by definition of ∼ι. For the heap we have h ∼ι h0 by definition

of ∼ι, as ι is the identity on dom h and thus does not involve �.

Case ∆, x : (T , κ);P 	 x : = e.m(ē) : (com κ, κ1): Let � = [[∆† 	 e :D]](h, η) and d̄ =

[[∆† 	 ē : Ū]](h, η) as in the semantics. As we only need to consider the non-⊥ case,

there is d0 with (h0, d0) = µ(loctype �)m(h, η1)Q, where η1 = [x̄ �→ d̄, self �→ �], and

we have η0 = [η | x �→d0].

For the store, if κ = H then η ∼ι [η | x �→ d0] follows by definition of ∼ι

for ∆, x : (T ,H). For the heap, suppose κ1 = H . Then we must show h ∼ι h0. By

the security typing rule there is some (κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′) ∈ smtypes(m,D), and so

(κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′) ∈ smtypes(m, (loctype �)) by ordinary typing (loctype � � D) and

Definition 5 of annotated class table. Now, by the subtyping condition in the rule we

have (κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′) � (κ0, κ̄−〈P ′; κ1〉→κ) which by definition implies κ1 � κ′

1.

Hence κ′
1 = H . Using hypotheses Q # P and Q ⊆ Auth(∆† self) we can apply

Lemma 5.1 to get Q# P ′. So we can use assumption wconf µ of the present Lemma

to get h ∼ι h0.

Case ∆;P 	 S1; S2 : (com , κ1, κ2): Let (h1, η1) = [[∆† 	 S
†
1 ]]µ(h, η)Q and thus (h0, η0) =

[[∆† 	 S
†
2 ]]µ(h1, η1)Q. For the store, assume κ1 = H . Then by induction on (the

derivation for) S1 we get η ∼ι η1. So by induction on S2, we get η1 ∼ι η0. Now by

Lemma 7.1, we get η ∼ι η0. For the heap, assume κ2 = H . Now h ∼ι h0 follows by

induction on S1 followed by induction on S2 and finally Lemma 7.1.

Case ∆;P 	 if e then S1 else S2 : (com , κ1, κ2): Let b = [[∆† 	 e : bool]](h, η). For the

store, assume κ1 = H . Then if b = true (resp. b = false) the result η ∼ι η0 follows

by induction on the derivation for S1 (resp. S2). Similarly for the heap.

Case ∆;P 	 (T , κ) x : = e in S : (com κ1, κ2): Let d = [[∆† 	 e :T ]](h, η) and thus

(h0, η0) = [[(∆†, x :T ) 	 S†]]µ(h, [η | x �→d])Q. (Note that the rule allows x : (T ,L) but

if S assigns to x then κ1 = L.) For the store, assume κ1 = H . Then by induction on

S we get [η | x �→d] ∼ι η0 with respect to ∆, x : (T , κ), hence η ∼ι (η0�x) with respect

to ∆. For the heap, if κ2 = H then by induction on S we get h ∼ι h0.

Case ∆;P 	 enable P ′ in S : (com κ1, κ2): By hypothesis of the rule we have

∆; (P − Q′) 	 S : (com κ1, κ2)
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where Q′ = P ′ ∩ Auth(∆†self). By semantics, (h0, η0) = [[∆† 	 S]]µ(h, η)(Q ∪ Q′). So,

to use induction on S it suffices to show that (Q∪Q′) # (P −Q′). This follows by set

theory from hypothesis Q # P .

Case ∆;P 	 test P ′ then S1 else S2 : (com κ1, κ2): We argue by cases on whether

P ′ ⊆ Q. If P ′ ⊆ Q then P ′ # P by hypothesis Q # P and P ′ ⊆ Auth(∆†self) by

hypothesis Q ⊆ Auth(∆†self). Thus the first of the rules for test in Figure 8 must

have been used. Since P ′ ⊆ Q, the test condition is true and the semantics is given

by semantics of S1. We have ∆;P 	 S1 : (com κ1, κ2) by hypothesis of the rule, so to

obtain both results η ∼ι η0 and h ∼ι h0 we can use induction on S1.

In the other subcase, P ′ 
⊆ Q, the test condition is false so the semantics is given

by semantics of S2. Both of the rules for test P ′ then S1 else S2 have hypothesis

∆;P 	 S2 : (com κ1, κ2) so we get both η ∼ι η0 and h ∼ι h0 by induction on S2.

Case ∆;P 	 S : (com κ3, κ4) by subsumption rule: Let (h0, η0) = [[∆† 	 S]]µ(h, η)Q.

For the store, suppose κ3 = H . By the rule, κ3 � κ1, so we have κ1 = H . Then

the result η ∼ι η0 follows by induction on the smaller derivation tree for ∆;P 	
S : (com κ1, κ2). For the heap, if κ4 = H then by the typing rule we have κ4 � κ2, so

κ2 = H and the result h ∼ι h0 follows by induction on the derivation of the rule’s

hypothesis ∆;P 	 S : (com κ1, κ2). �

Lemma 7.3 (safe programs are write confined )

If annotated class table CT is safe then wconf [[CT †]] and also wconf µi for each µi
in the approximation chain for semantics of CT (see Definition 2).

Proof

First, we show the following, by induction on i:

wconf µi for all i ∈ � (4)

For the base case, wconf µ0 holds because the antecedent µ0Cm(h, η)Q 
= ⊥ in the

definition of wconf is falsified by µ0. For the induction step, suppose that wconf µi.

To show wconf µi+1, consider any C , m, and κ, κ̄−〈P ;H〉→κ1 in smtypes(m,C). For

any Q, h, η with Q#P , suppose (h0, d) = µi+1Cm(h, η)Q. We must show h ∼ι h0 where

ι is the identity on dom h. The argument is by cases on whether m is inherited in C .

If m is inherited in C from B then, by definition of µ, we have µi+1Cm(h, η)Q =

µi+1Bm(h, η)Q. So we can obtain the result for C directly from the result for B, using

a secondary induction on inheritance chains.

For the case that m has declaration M in C , we have µi+1Cm(h, η)Q =

[[M]]µi(h, η)Q. Suppose mtype(m,C) = T̄→T and pars(m,C) = x̄. By Definition 3 we

have

[[M]]µi(h, η)Q = let Q1 = Q ∩ Auth C in

let η1 = [η | result �→default] in

let (h0, η0) = [[x̄ : T̄ , self :C, result :T 	 S]]µi(h, η)Q1 in

(h0, η0 result)
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By the security typing rule for method declaration with respect to κ, κ̄−〈P ;H〉→κ1,

there is some local variant S ′ of S such that

self : (C, κ), x̄ : (T̄ , κ̄), result : (T , κ1); (P ∩ Auth C) 	 S ′ : (com L,H)

As Q1 ⊆ Auth C , we can apply Lemma 7.2, for µi and S ′, noting that S ′† = S†, to

obtain h ∼ι h0. This concludes the proof of (4).

Finally, we prove that (4) implies wconf (lub µ).2 Suppose µ is an ascending

chain and we have ∀i • wconf µi. To show wconf (lub µ), consider any C , m, and

κ, κ̄−〈P ;H〉→κ1 in smtypes(m,C). Consider any h, η and Q such that Q # P and

(lub µ)Cm(h, η)Q 
= ⊥. Let (h0, d) = (lub µ)Cm(h, η)Q. We must show h ∼ι h0 where ι

is the identity on dom h. By Lemma 4.1 there is j with (lubµ)Cm(h, η)Q = µjCm(h, η)Q

and by hypothesis wconf µj we obtain h ∼ι h0. �

The last result in this section can be seen as a simple form of noninterference. It

says that if an expression can be typed ∆ 	 e : (T ,L) then its meaning is the same in

two L-indistinguishable states.

Lemma 7.4 (safe expressions are read confined )

Suppose ∆ 	 e : (T ,L) and h ∼σ h′ and η ∼σ η′. If d = [[∆† 	 e :T ]](h, η) and d′ =

[[∆† 	 e :T ]](h′, η′) then d ∼σ d′.

Proof

The proof is by induction on a derivation of ∆ 	 e : (T ,L) with cases on the last

rule used.

In this proof and subsequent ones, we extend the convention described earlier in

which we refer to identifiers in the semantic definitions without explicit mention in

the proof. When comparing semantics for a pair of states (h, η) and (h′, η′), we use

corresponding primes on identifiers in the semantic definitions.

Case ∆ 	 x : ∆x: Then [[∆† 	 x :T ]](h, η) = ηx and [[∆† 	 x :T ]](h′, η′) = η′x. We

must show ηx ∼σ η′x. This follows by assumptions η ∼σ η′ and ∆ x = (T ,L).

Case ∆ 	 e1 = e2 : (bool, L): Let d1 = [[∆† 	 e1 :T1]](h, η) and let d2 =

[[∆† 	 e2 :T2]](h, η). We must show (d1 = d2) ∼bool (d′
1 = d′

2), that is, d1 = d2

iff d′
1 = d′

2. By the typing rule, we have ∆ 	 e1 : (T1, L) and ∆ 	 e2 : (T2, L). By

induction on (the derivation of) e1 we obtain d1 ∼σ d′
1 and induction on e2 yields

d2 ∼σ d′
2. The result follows because σ is bijective.

Case ∆ 	 e.f : (T ,L): By the typing rule, κ � κ1 = L, so κ = L = κ1. Hence we

can use induction on e; this yields locations �, �′ where � = [[∆† 	 e :C]](h, η) and

�′ = [[∆† 	 e :C]](h′, η′) and � ∼σ �′. (Or else both are ⊥ or both are nil which leads

to result ⊥, and ⊥ ∼σ ⊥ by definition.) From h ∼σ h′, by definition of ∼σ on heaps

we have h � ∼σ h′ �′. Thus h � f ∼σ h′ �′ f by definition of ∼σ on object states and

we are done.

2 This implication is exactly the admissibility of wconf ; by admissibility, one obtains wconf (lub µ) by
fixpoint induction. We refrain from formulating (lub µ) as a fixpoint.
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Case ∆ 	 (B) e : (B,L): Let � = [[∆† 	 (B) e :B]](h, η) and likewise for �′. By the

typing rule, we have ∆ 	 e : (D,L) where B � D. Hence by induction on e we get

� ∼σ �′, that is, either �′ = σ � or � = nil = �′ or � = ⊥ = �′. The latter two cases

are easy. For proper locations �′ = σ �, we have loctype � = loctype �′ because σ is

a typed bijection; hence loctype � � B iff loctype �′ � B. So by semantics the results

are either ⊥,⊥ or �, �′ and in either case they are related by ∼σ .

Case ∆ 	 e : (T ,L) by the subsumption rule: By the rule, κ � L and hence κ = L.

We can use induction on the smaller derivation tree for ∆ 	 e : (T ,L) to obtain the

result [[∆† 	 e :T ]](h, η) ∼σ [[∆† 	 e :T ]](h′, η′).

Case e is B, null, true, false : these are straightforward. �

8 Safety implies noninterference

This section proves the main result: if a class table is accepted by the security typing

rules then the method environment that it denotes satisfies noninterference. That is,

if it is safe with respect to a given flow policy then its semantics for the given access

policy does satisfy the flow policy.

8.1 Satisfaction and noninterference

Noninterference for a class table is defined in terms of noninterference of method

meanings with respect to their security types.

Definition 10 (satisfaction)

Suppose d ∈ [[C, x̄, T̄→T ]] and the length of κ̄ is the same as x̄. Then d satisfies

a typing κ0, κ̄−〈P ; κ1〉→κ2 iff for all σ, h, h′, η, η′, Q, if h ∼σ h′, η ∼σ η′, Q # P ,

(h0, d0) = d(h, η)Q, and (h′
0, d

′
0) = d(h′, η′)Q, then there is τ ⊇ σ such that h0 ∼τ h′

0

and (κ2 = L ⇒ d0 ∼τ d
′
0). �

Note that η ∼σ η′ is used here with respect to Γ defined as Γ = [self : (C, κ0), x̄ :

(T̄ , κ̄)]. The significance of this point is illuminated in the proof of Proposition 8.1

below.

Definition 11 (noninterfering method environment)

A method environment is noninterfering, written nonint µ, iff for all C , m, the

meaning µCm satisfies every κ0, κ̄−〈P ; κ1〉→κ2 in smtypes(m,C). �

Our main result is that the method environment denoted by a secure class table

is noninterfering. The proof uses lemmas which express noninterference for the

expression and command constructs, respectively. First, we explore properties of

security subtyping, which in passing justifies the use of a set of types for methods.

Proposition 8.1 (satisfaction is monotonic)

Suppose that κ0, κ̄−〈P ; κ1〉→κ2 � κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′

2. If d in [[C, x̄, T̄→T ]] satisfies

κ0, κ̄−〈P ; κ1〉→κ2 then it also satisfies κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′

2.
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Proof

Suppose d is in [[C, x̄, T̄→T ]]. To show that d satisfies κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′

2, suppose

that h ∼σ h′, η ∼σ η′, and Q#P ′. Suppose (h0, d0) = d(h, η)Q and (h′
0, d

′
0) = d(h′, η′)Q.

Note that here η ∼σ η′ is with respect to ∆′ = [self : (C, κ′
0), x̄ : (T̄ , κ̄′)].

From κ0, κ̄−〈P ; κ1〉→κ2 � κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′

2 we have κ′
0 � κ0 and κ̄′ � κ̄. Thus

by definition of ∼ we get η ∼σ η′ with respect to ∆ = [self : (C, κ0), x̄ : (T̄ , κ̄)]. By

P ⊆ P ′ we have Q # P . Now we can use that d satisfies κ0, κ̄−〈P ; κ1〉→κ2 to obtain

τ ⊇ σ such that h0 ∼τ h
′
0 and κ2 = L ⇒ d0 ∼τ d

′
0. It remains to show that κ′

2 = L

implies d0 ∼τ d
′
0; this follows using κ2 � κ′

2. �

Because there are finitely many security levels and permissions, the ordered set of

method typings is finite. In fact it is a lattice, because permission sets and security

levels form lattices. We can express the greatest lower bound of κ0, κ̄−〈P ; κ1〉→κ2

and κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′

2 pointwise, using � on levels in contravariant positions:

(κ0 � κ′
0), (κ̄ � κ̄′)−〈(P ∩ P ′); (κ1 � κ′

1)〉→(κ2 � κ′
2)

As remarked in section 3, satisfaction does not distribute over �.

Example 1

The denotation of method getStatus satisfies both H, ()−〈{stat};H〉→L and

H, ()−〈�;H〉→H . But (H, ()−〈{stat};H〉→L)� (H, ()−〈�;H〉→H) = H, ()−〈�;H〉→L,

and getStatus does not satisfy H, ()−〈�;H〉→L.

The proof of the main theorem goes by proving safety of the approximation chain.

The final step, to safety of [[CT ]], we give as a separate result.

Lemma 8.2 (noninterference is admissible)

Suppose µ ∈ � → [[MEnv ]] is an ascending chain and nonint µi for all i. Then

nonint (lub µ).

Proof

To show nonint (lubµ), consider any C , m, and κ, κ̄−〈P ; κ1〉→κ2 in smtypes(m,C). We

must show that (lub µ)Cm satisfies κ, κ̄−〈P ; κ1〉→κ2.

Consider any σ, h, h′, η, η′, Q such that h ∼σ h′, η ∼σ η′, and Q # P . Suppose

(h0, η0) = (lub µ)Cm(h, η)Q and (h′
0, η

′
0) = (lub µ)Cm(h′, η′)Q. By Lemma 4.1 there are

j, j ′ such that (h0, η0) = µkCm(h, η)Q for all k � j and (h′
0, η

′
0) = µk′Cm(h′, η′)Q for all

k′ � j ′. Choosing i to be the maximum of j and j ′ yields (h0, η0) = µiCm(h, η)Q and

(h′
0, η

′
0) = µiCm(h′, η′)Q. Then to conclude the argument for satisfaction by (lub µ) it

suffices to use satisfaction by µi. �

8.2 Main result

Lemma 8.3 (safe commands are noninterfering)

Suppose ∆;P 	 S : (com κ1, κ2), wconf µ, and nonint µ. Suppose also Q # P ,

Q ⊆ Auth(∆† self), η ∼σ η′, h ∼σ h′, (h0, η0) = [[∆† 	 S†]]µ(h, η)Q and (h′
0, η

′
0) =

[[∆† 	 S†]]µ(h′, η′)Q. Then there is τ ⊇ σ such that η0 ∼τ η
′
0 and h0 ∼τ h

′
0.
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Proof

We proceed by induction on a derivation of ∆;P 	 S : (com κ1, κ2) with cases on

the last rule used in the derivation. In each case we define τ and show η0 ∼τ η′
0

and h0 ∼τ h
′
0. Only new and method calls allocate new objects; in all other cases for

primitive commands, namely, assignment and field update, we take τ = σ.

Recall the convention described earlier: we refer to identifiers in the semantic

definitions and security typing rules.

Case ∆, x : (T , κ);P 	 x : = e : (com κ,H): Recall the semantic definition

[[∆† 	 x : = e]]µ(h, η)Q = let d = [[∆† 	 e :T ]](h, η) in (h, [η | x �→d])

Thus η0, h0 in the statement of the Lemma have the values η0 = [η | x �→ d] and

h0 = h. We must show [η | x �→d] ∼σ [η′ | x �→d′]. By hypothesis, η ∼σ η′, so it only

remains to show that κ = L implies d ∼σ d′. This follows from Lemma 7.4 on e. As

assignment has no effect on the heap, we have h0 ∼σ h′
0 by assumption h ∼σ h′.

Case ∆;P 	 e1.f : = e2 : (com H, κ): Let � = [[∆† 	 e1 :C]](h, η) and let d =

[[∆† 	 e2 :T ]](h, η) as in the semantic definition. Recall that we are proving

termination-insensitive nonintereference and thus considering non-⊥ outcomes, so

� 
= nil and d 
= ⊥. Thus h0 = [h | � �→ [h� | f �→ d]] and η0 = η. Field assignment

has no effect on the store, so η0 ∼σ η′
0 holds by assumption. We show h0 ∼σ h′

0 by

cases on κ. If κ = H , then by Lemma 7.2 and wconf µ we have h ∼ι h0 and h′ ∼ι′ h
′
0

where ι (resp. ι′) is the identity on dom h (resp. dom h′). But by hypothesis, h ∼σ h′.

Hence by Lemma 7.1, we get h0 ∼σ h′
0.

For the case κ = L, note that the heap is only modified at �, �′. Unfolding the

definition of h0 ∼σ h′
0, we must show

� ∼σ �′′ ⇒ h0 � ∼σ h′
0 �

′′ for all �′′ (5)

and, symmetrically, �′′ ∼σ �′ ⇒ h0 �
′′ ∼σ h′

0 �
′ for all �′′. The rule requires κ1 � κ,

so κ1 = L and by Lemma 7.4 for e1 we have � ∼σ �′. Because σ is bijective on

locations, � ∼σ �′′ implies �′′ = �′ so this is the only instance of (5) to consider. The

rule requires the level of e2 to be κ, i.e., L; so by Lemma 7.4 for e2 we have d ∼σ d′

and hence h0 � ∼σ h′
0 �

′.3

Case ∆, x : (D, κ);P 	 x : = new B : (com κ,H): Let � = fresh(B, h) so that η0 = [η |
x �→�] and h0 = [h | � �→ [fieldsB �→ defaults]] by semantics. Note that h0 ∼σ h′

0 by

freshness of �, �′ and the requirement (in the definition of h ∼σ h′) that the domain

(resp. range) of σ is contained in dom h (resp. dom h′).

In the case κ = H we can take τ = σ as we have η0 ∼τ η′
0 from η ∼σ η′ and

x : (D,H).

For the case κ = L we define τ = σ∪{(�, �′)} which yields η0 ∼τ η
′
0 because � ∼τ �

′.

Moreover, h0 ∼τ h
′
0 as the default values (nil , false) are related to themselves. Note

3 The penultimate example in section 6 depicts how leaks via aliasing in field update can occur thus
showing necessity of the condition κ1 � κ. The example leads to a situation where � ∼σ �′′ for �′′ 
= �′,
where � is the value of hp, but �′′ is the value of its low alias, lp1 or lp2.
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that τ is a bijection between subsets of dom h0 and dom h′
0 by freshness, and it

respects types because loctype � = B = loctype �′.

Case ∆, x : (T , κ);P 	 x : = e.m(ē) : (com κ, κ1): Let � = [[∆† 	 e :D]](h, η) and d̄ =

[[∆† 	 ē : Ū]](h, η) as in the semantics. As we only need to consider the non-⊥ case,

there is d0 with (h0, d0) = µ(loctype �)m(h, η1)Q, where η1 = [x̄ �→ d̄, self �→ �], and

we have η0 = [η | x �→d0].

We go by cases on the level, κ0, of e. If κ0 = H then it is possible that ¬(� ∼σ �′)

and thus the two calls can have different behavior. By the security typing rule

there is some (κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′) ∈ smtypes(m,D) and hence (κ′

0, κ̄
′−〈P ′; κ′

1〉→κ′) ∈
smtypes(m, (loctype �)) by ordinary typing (loctype � � D) and Definition 5 of

annotated class table. Now, by the subtyping condition in the rule we have

(κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′) � (κ0, κ̄−〈P ′; κ1〉→κ)

which by definition implies κ1 � κ′
1. By the typing rule we have, κ0 � κ � κ1. Thus

κ = κ1 = κ′
1 = H . Using hypotheses Q # P and Q ⊆ Auth(∆† self) we can apply

Lemma 5.1 to get Q # P ′. So we can use assumption wconf µ of the present lemma

to get h ∼ι h0 (resp. h′ ∼ι′ h
′
0) where ι is the identity on dom h (resp. ι′ is the identity

on dom h′). Hence using h ∼σ h′ and Lemma 7.1 we can define τ = σ and obtain

h0 ∼τ h
′
0. And, note that η0 ∼σ η′

0 follows from assumption η ∼σ η′ because the level

of x is H .

It remains to consider the case κ0 = L. In this case, we have � ∼σ �′ by

Lemma 7.4 applied to e. Because Q # P , and Q ⊆ Auth(∆† self) we have Q # P ′

by Lemma 5.1. We claim that η1 ∼σ η′
1. Then we can use assumption nonint µ

of the present lemma. This means, by Definition 11, that µ(loctype �)m satisfies

(κ′
0, κ̄

′−〈P ′; κ′
1〉→κ′) ∈ smtypes(m, (loctype �)). Now we can apply the definition of

satisfaction (Definition 10) to conclude that there exists τ ⊇ σ with κ′ = L ⇒ d0 ∼τ

d′
0, whence η0 ∼τ η′

0 and h0 ∼τ h′
0. It remains to prove the claim. We give the

argument for the case that x̄ is a single identifier, as the generalization is obvious

but awkward to put into words. As � ∼σ �′, it suffices to deal with d̄, d̄′. Assume

κ̄ = L to show d̄ ∼σ d̄′. Then d̄ ∼σ d̄′ follows by Lemma 7.4 on ē.

Case ∆;P 	 S1; S2 : (com κ1, κ2): Let (h1, η1) = [[∆† 	 S
†
1 ]]µ(h, η)Q and thus (h0, η0) =

[[∆† 	 S
†
2 ]]µ(h1, η1)Q. By induction on S1 we get h1 ∼τ1

h′
1 and η1 ∼τ1

η′
1 for some

τ1 ⊇ σ. Now by induction on S2 we get h0 ∼τ h′
0 and η0 ∼τ η′

0 for some τ ⊇ τ1.

Hence the result holds for τ ⊇ σ.

Case ∆;P 	 if e then S1 else S2 : (com κ1, κ2): Let b = [[∆† 	 e : bool]](h, η). We

proceed by cases on level κ of the guard e. Suppose κ = L. Then by Lemma 7.4 for

e, we have b ∼bool b
′, i.e. b = b′. If b = true, the result follows by induction on S1

and if b = false, the result follows by induction on S2.

Consider the other case, κ = H . By the typing rule, κ � κ1�κ2, hence κ1 = H = κ2.

By Lemma 7.2 we have η ∼ι η0, η
′ ∼ι′ η

′
0, h ∼ι h0 and h′ ∼ι′ h

′
0, where ι (resp. ι′) is

the identity on dom h (resp. dom h′). Using assumptions η ∼σ η′ and h ∼σ h′ we can

choose τ = σ and get η0 ∼τ η
′
0 and h0 ∼τ h

′
0 using Lemma 7.1.
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Case ∆;P 	 (T , κ) x : = e in S : (com κ1, κ2): Let d = [[∆† 	 e :T ]](h, η) and thus

(h0, η0) = [[(∆†, x :T ) 	 S†]]µ(h, [η | x �→d])Q. First, we have [η | x �→ d] ∼σ [η′ | x �→
d′], because if κ = L then by Lemma 7.4 on e, d ∼σ d′. So we can use induction on

S to get η0 ∼τ η
′
0 and h0 ∼τ h

′
0, for some τ ⊇ σ. Hence (η0�x) ∼τ (η′

0�x).

Case ∆;P 	 enable P ′ in S : (com κ1, κ2): By hypothesis of the rule we have

∆; (P − Q′) 	 S : (com κ1, κ2)

where Q′ = P ′ ∩ Auth(∆†self). By semantics, (h0, η0) = [[∆† 	 S]]µ(h, η)(Q ∪ Q′). So,

to use induction on S it suffices to show that (Q∪Q′) # (P −Q′). This follows by set

theory from hypothesis Q # P .

Case ∆;P 	 test P ′ then S1 else S2 : (com κ1, κ2): We argue by cases on whether

P ′ ⊆ Q. If P ′ ⊆ Q then P ′ # P by hypothesis Q # P and P ′ ⊆ Auth(∆†self) by

hypothesis Q ⊆ Auth(∆†self). Thus the first of the rules in Figure 8 must have been

used for test P ′ then S1 else S2. Since P ′ ⊆ Q, the test condition is true and the

semantics is given by semantics of S1. We have ∆;P 	 S1 : (com κ1, κ2) by hypothesis

of the rule, so we can use induction on S1 to obtain η0 ∼τ η
′
0 and h0 ∼τ h

′
0 for some

τ ⊇ σ.

In the other subcase, P ′ 
⊆ Q, the test condition is false so the semantics is given

by semantics of S2. Both of the rules for test P ′ then S1 else S2 have hypothesis

∆;P 	 S2 : (com κ1, κ2) so we can use induction on S2 to get η′ ∼τ η
′
0 and h′ ∼τ h

′
0

for some τ ⊇ σ.

Case ∆;P 	 S : (com κ3, κ4) by the subsumption rule. Here the result follows directly

by induction on the smaller derivation tree for ∆;P 	 S : (com κ1, κ2), as the

induction hypothesis does not involve the command levels. �

Theorem 8.4 (safety implies noninterference)

If annotated class table CT is safe then its meaning [[CT †]] is noninterfering.

Proof

Because [[CT †]] is defined as the least upper bound of an approximation chain µ,

we first show nonint µi for all i, by induction on i. Then nonint [[CT †]] follows by

Lemma 8.2.

We have nonint µ0 because µ0Cm(h, η)Q is ⊥.

Suppose nonint µi, to show nonint µi+1. We must show, for each C,m and each

κ0, κ̄−〈P ; κ3〉→κ4 ∈ smtypes(m,C), that µi+1Cm satisfies κ0, κ̄−〈P ; κ3〉→κ4. There are

two cases, depending on whether m is declared or inherited.

Suppose m has declaration

M = T m(T̄ x̄){S}

in C . Let ∆ = x̄ : (T̄ , κ̄), self : (C, κ0), result : (T , κ4) and let S ′ be a local variant

of S satisfying the conditions of the method declaration rule with respect to

κ0, κ̄−〈P ; κ3〉→κ4. (S ′ exists because CT is safe.) By Lemma 7.3 we have wconf µi.

Suppose that h ∼σ h′, η ∼σ η′, Q # P and µi+1Cm(h, η)Q 
= ⊥ 
= µi+1Cm(h′, η′)Q.

Let Q1 = Q ∩ Auth C and (h0, η0) = [[(x̄ : T̄ , self :C, result :T ) 	 S†]]µi(h, η)Q1. Now

Q1 # P , so by Lemma 8.3, noting that S† = S ′†, there is τ ⊇ σ with h0 ∼τ h
′
0 and
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η0 ∼τ η
′
0. It remains to show that if the result level κ4 for m is L we have d ∼τ d

′,

where d (respectively d′) is η0 result (resp. η′
0 result). This follows from η0 ∼τ η′

0

by definition of ∼ and ∆ result = (T , κ4) = (T ,L). This concludes the proof of

satisfaction by µi+1Cm for m declared in C .

Suppose m is inherited in C from superclass B. Towards proving that µj+1Cm

satisfies κ0, κ̄−〈P ; κ3〉→κ4, let

∆C = x̄ : (T̄ , κ̄), self : (C, κ0) and ∆B = x̄ : (T̄ , κ̄), self : (B, κ0).

Suppose also that h ∼σ h′ and η ∼σ η′. Note that the ∼σ relation for ∆B is equivalent

to ∼σ for ∆C . Suppose Q#P . Then, because smtypesC = smtypesB (by Definition 5

annotated class table), satisfaction by µj+1Cm follows from the same for µj+1Bm.

Note that the last step goes through because satisfaction (Definition 11) quantifies

over all Q disjoint from P , without regard to the permissions of C and B.

Note also that we are using a secondary induction on inheritance chains, so we

may use satisfaction by µj+1Bm to prove it for µj+1Cm. �

9 Discussion

We have given a static analysis for secure information flow that accounts for correct

use of runtime access control to ensure that confidential information is returned

only if the caller has been given access. This improves on previous information

flow analyses where a system call is given a fixed security level (in some cases

polymorphic) and only static access control is considered. Our analysis is justified

by a noninterference result. This is given for a language significantly more complex

than previous object-oriented languages for which information flow has been

proved.

Integration with access control shows that even strong noninterference conditions

which disallow declassification may be useful and admit practical static checking,

once access control is taken into account. We only take a step in this direction,

demonstrating the idea in the context of a non-trivial language but using a language-

centric access control mechanism devised primarily for protecting trusted programs

from untrusted mobile code. The key idea is to make flow policy dependent on access

permissions; we expect that our treatment can be extended easily to other permission-

based access mechanisms. Like Pottier & Conchon (2000) and unlike Heintze

et al. (1998), we refrain from conflating access permissions with confidentiality

levels.

Our analysis is modular in the sense that, for a given type, a method declaration

is checked using only security types of methods that it calls and fields it accesses. As

a type depends on a set of permissions, it is possible to specify a number of types

for a method that is exponential in the number of existing permissions, if there are

enough security levels. In a naive implementation of the rule, a method declaration

is checked once for each type. We conjecture that in practical applications the

specification for given method will use only a few types (fewer if level polymorphism

is used). Moreover, if the types are minimal, as suggested in section 3, then for a

method call at most one type will be applicable, so checking of a method body
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remains linear in the size of the code. The rule for checking a method declaration

requires finding levels to annotate local variables. This can be done by an intra-

procedural inference algorithm such as that used in Jif (Myers, 1999) which is fast in

practice.

For practical deployment of programs using stack inspection for access control,

interface specifications need to express expected or recommended policies. Our

method typings suggest a way to do so, not just for access but for information

flow. If an information flow policy is specified for public and protected fields and

methods, a checker based on our analysis could be used by developers to find

bugs and trojan horses. Vendor-supplied defaults for access policy could help ensure

that deployments are consistent with what is checked by developers. But many

engineering challenges remain. Techniques for certifying compilation could be used

for checks of untrusted code at the deployment site (Necula, 1997; Morrisett et al.,

1999). This is a subject of current research (Barthe et al., 2004).

9.1 Related work

Our previous work. This work grew out of a study of data abstraction. We found

that a straightforward compositional semantics is adequate for a sequential Java-

like language, even with recursive types and dynamically bound method calls (which

are typically viewed as being akin to higher order procedures). The language-

oriented formulation of noninterference using simulations is related to relational

parametricity, as is more explicit in Heintze & Riecke (1998), Abadi et al. (1999)

and Sabelfeld & Sands (2001). Due to pointer aliasing, conventional object-oriented

languages are not relationally parametric per se. But suitable confinement of

pointers suffices to yield a strong representation-independence result for user-defined

abstractions (Banerjee & Naumann, 2002a; Banerjee & Naumann, 2002b). The term

“confinement” originated in the literature on operating system security, but its

use is natural in object-oriented programming where pointer confinement has been

proposed for encapsulation at the level of modules, classes, or instances (Hogg, 1991;

Clarke et al., 2001; Leino & Nelson, 2002; Boyland et al., 2001; Vitek & Bokowski,

2001).

In earlier stages of the information flow work (Banerjee & Naumann (2002c;

2003)), we imposed a strong pointer-confinement condition called L-confinement:

each object is labeled with a level, given by its class, and fields/variables of level

L never point to H objects. To achieve this strong invariant, it is assumed that

the allocator is parametric in the sense that H allocations do not influence the

behavior of L allocations. The L-confinement discipline is not motivated by practical

examples, and restrictions are needed on inheritance between classes at different

levels to prevent leaks of self. In the present paper we use the standard technique of

maintaining a bijection on locations, here just those locations visible to L, thereby

proving noninterference without requiring the labeling of classes or parametricity of

the allocator.

The conference papers (Banerjee & Naumann (2002c; 2003)) use purely syntax-

directed rules, close to a checking algorithm. Here we simplify the rules for program
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constructs (and the proofs) by using a separate subsumption rule. We also study the

structure of security types for methods and clarify that the most succinct method

specifications are those giving a set of minimal types.

Information flow. Beyond the early work mentioned in section 1, several research-

ers have given similar analyses for possibilistic and probabilistic noninterference

for multi-threaded programs (Smith & Volpano, 1998; Volpano & Smith, 1999;

Sabelfeld & Sands, 2000; Smith, 2001). Mantel and Sabelfeld (Mantel & Sabelfeld,

2001) study connections between program-centric formulations and the formulation

of noninterference in terms of abstract event systems (Goguen & Meseguer, 1982).

Barthe and Serpette prove noninterference for a purely functional instance-based

object calculus (Barthe & Serpette, 1999). For sequential programs, Abadi et al.

(Abadi et al., 1999), Sabelfeld & Sands (Sabelfeld & Sands, 2001) and Heintze &

Riecke (Heintze & Riecke, 1998) consider higher order procedures. They also

make explicit the connections between the relational formulation of noninterference

and other dependency analyses such as slicing and binding time analysis (Abadi

et al., 1999; Barthe & Serpette, 1999), building noninterference properties into the

semantics in the manner of Reynolds’ relationally parametric models (Reynolds,

1984). However, it is difficult to extend such models in a tractable way to encompass

language features such as recursive types and shared mutable objects which are

extensively used in languages such as Java (Arnold & Gosling, 1998). What makes

it possible for us to give straightforward proofs of strong results is that we can

use a simple, operationally transparent denotational semantics, because Java-like

languages are first-order in the sense that method dictionaries are not first-class

values.

Myers (Myers, 1999) gave a security typing system for a fragment of Java

even richer than ours, but left open the problem of justifying the rules with a

noninterference result. This is hardly surprising, as the rules are quite complicated.

Some of the complications are inherent in the complexity of the language; others are

introduced with the aim of accomodating dynamic access control and sophisticated

security policies including declassification (Ferrari et al., 1997; Myers & Liskov,

1998; Myers, 1999). One strength of this project is that experience is being gained

in ongoing development of the Jif prototype.4

Another substantial prototype for information flow has recently appeared. Flow-

Caml5 is based on the work of (Pottier & Conchon, 2000; Pottier & Simonet, 2003).

The language is a substantial fragment of Objective Caml, though omitting object-

oriented features. This is perhaps the most advanced work on inference for flow

types and level polymorphism and it is supported by noninterference results. They

have an attractive approach to proving noninterference by translation to ordinary

unannotated types and by then appealing to a type soundness theorem.

Strecker (2003) recently gave a machine-checked proof of noninterference for a

language similar to that of Banerjee & Naumann (2002c), using similar rules as well.

4 On the web at http://www.cs.cornell.edu/jif/.
5 On the web at http://cristal.inria.fr/~simonet/soft/flowcaml/.
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Like the latter, it uses equality for low-indistinguishability, assumes parametricity of

the allocator, and imposes a form of L-confinement.

Sabelfeld & Myers (2003) give a comprehensive review of the literature on

information flow.

Access control. Previous research on static analysis of information flow in programs

has connections with data access. But the connections are made using constraints

that allow entirely static checking of access and the access mechanisms considered

are akin to ordinary scoping mechanisms like private fields and opaque types. Similar

connections have been made in more abstract models (Rushby, 1992; Hennessy &

Riely, 2002). We are not aware of previous work connecting runtime access control

with noninterference.

Stoughton (1981) compares access control and information flow in a simple

imperative language with semaphores. No formal results are proven, nor is there

a static analysis for information flow. Rushby (1992) proves (and mechanically

checks) results on noninterference for an access control mechanism that amounts

to assigning levels to variables. The SLam calculus is a framework where access

control and information flow coexist, but the noninterference result is restricted to

information flow (Heintze & Riecke, 1998). Access control in SLam consists of labels

which are checked for compatibility by typing rules; there is no runtime significance.

Similar remarks apply to Pottier and Conchon’s work (Pottier & Conchon, 2000)

and that of Hennessy & Riely (2002). The Jif system includes dynamic labels and

other features that can encode some form of runtime access control but an analysis

of what is achieved has not appeared.

Concerning the “stack inspection” mechanism, Skalka et al. (2000; 2001) give

a static analysis for access checks that never fail, which could serve as basis for

program optimizations. Such optimizations are thoroughly studied by Fournet &

Gordon (2002), who also explore an access-based security property. Wallach et al.

(2000) use a logic of authentication to account for access policies achieved by the

mechanism. Abadi & Fournet (2003) criticize the lack of clear security goals achieved

by the mechanism and point out that it only protects from untrusted code in the

current calling chain, whereas common object-oriented design patterns involve calls

from trusted to untrusted code. They propose a history-based mechanism but do

not give formal results or a connection with information flow.

9.2 Future work

Naumann (2004) has encoded the language and semantics herein by a deep

embedding in the PVS theorem prover (Owre et al., 1992), with the omission of

access control which is being added in ongoing work. The static analysis has been

defined and the proof of noninterference machine checked. This development closely

follows that in the present paper, but allowing an arbitrary lattice of security levels.

Conventional languages like Java have quite a few features beyond the language

treated here. To extend our language to the remaining features of JavaCard (Chen,

2000), the semantics can be extended using standard techniques. To treat expressions
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with side effects, both the environment and the heap would be threaded through the

semantics of expressions. We have avoided this in the current paper because it is

unilluminating. Exceptional control flow would add further semantic complications

of a similar kind. Static fields and static methods should also be straightforward.

Constructors, in full generality, pose a challenge even for ordinary type soundness

because partially initialized objects can be leaked. The other missing features have to

do with scope and visibility: protected fields, private and protected classes, interfaces,

and packages.

Features of Java beyond those of JavaCard pose a bigger challenge: threads, class

loading, reflection, and serialization. Specifying noninterference for such constructs

would probably go hand-in-hand with specification of pointer confinement and

data abstraction properties. This raises a question. Program constructs such as local

variables, private fields, opaque types, as well as disciplines for alias control, are

intended to provide information hiding. Yet work on information flow has used

typing systems that are orthogonal to these constructs. In early versions of this

paper we used private fields but public fields can as well be treated by the same flow

typing rules. For practical use of flow checking, it could be helpful to exploit existing

features. How can this be done? Ideally, it should be based on the established

theories of parametricity.

An important implementation question is which security annotations can be left

implicit, to be inferred by a type reconstruction algorithm. In this paper we have

not addressed type reconstruction, but we expect that techniques from Pottier et

al. can be adapted (Pottier & Conchon, 2000; Pottier & Simonet, 2002). For the

language of Banerjee & Naumann (2002c) without access control, our student Sun

Qi has developed and implemented an inference algorithm and work is currently

underway to incorporate level polymorphism, access control, and modular inference

for libraries (Sun et al., 2004).
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