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Order and Spectrum Preserving Maps on
Positive Operators

Peter Šemrl

Abstract. We describe the general form of surjective maps on the cone of all positive operators
that preserve order and spectrum. _e result is optimal as shown by counterexamples. As an easy
consequence, we characterize surjective order and spectrum preserving maps on the set of all self-
adjoint operators.

1 Introduction and Statement of the Main Results

_e problem of characterizing linear invertibility preserving maps was posed by Ka-
plansky in his in�uential lecture notes [8]. Hewas motivated by the famous Gleason–
Kahane–Żelazko theorem [5, 7]. Over the last few decades a lot of papers have been
devoted to invertibility preserving maps. We refer the reader to [1,2] for more infor-
mation on Kaplansky’s problem. Another well-studied linear preserver problem in
operator theory is the one dealing with positive maps. _e structure of completely
positive linear maps is understood quite well, while it is known that linear maps that
are assumed to bemerely positivemay have quite complicated behaviour even in the
low-dimensional matrix cases; see for example [17, Chapter 8]. In [3] the authorswere
interested in linearmaps that are both positive and preserve invertibility. _ey proved
that suchmaps between C∗-algebras are Jordan homomorphisms if they are assumed
to be surjective, while this may be false otherwise.

Recall that a unital linear map ϕ∶A→ B between two unital Banach algebras pre-
serves invertibility if ϕ(a) is invertible for every invertible a ∈ A. It follows easily that
for every a ∈ A we have σ(ϕ(a)) ⊂ σ(a). Indeed, for a complex number λ such that
λ /∈ σ(a) the element λ − a is invertible, and hence, by unitality and invertibility pre-
serving property, λ − ϕ(a) is invertible, or equivalently, λ /∈ σ(ϕ(a)). A unital linear
map ϕ∶A→ B preserves invertibility in both directions if for every a ∈ A, the element
ϕ(a) is invertible inB if and only if a is invertible. Clearly, ϕ preserves invertibility in
both directions if and only if it preserves spectrum, that is, σ(ϕ(a)) = σ(a) for every
a ∈ A.

_e theory of linear preservers is by now well developed. Problems concerning
general preservers, that is, notnecessarily linearmaps having certain preserving prop-
erties, seem to bemore diõcult. _e study of suchmaps has been initiated because of
applications in mathematical physics; for some recent results, see papers [9, 10, 12, 14]
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or the book [11] and the references therein. In view of these results it seems natural to
ask if the above-mentioned result of Choi,Hadwin,Nordgren,Radjavi, andRosenthal
[3] can be treated in themore general non-linear setting as well.

Let H be a complex Hilbert space. We denote by B(H) and S(H) the algebra
of all bounded linear operators on H and the real linear space of all bounded self-
adjoint linear operators on H, respectively. _e symbol S+(H) stands for the cone of
all positive operators:

S+(H) = {A ∈ S(H) ∶ ⟨Ax , x⟩ ≥ 0 for all x ∈ H}.
Note that B(H) is partially ordered by the relation ≤ deûned by A ≤ B ⇔ B − A ∈
S+(H).

Let V ∈ {B(H), S(H), S+(H)}. Amap ϕ∶V → V preserves order if ϕ(A) ≤ ϕ(B)
for every pair A, B ∈ V satisfying A ≤ B, and it preserves spectrum if σ(ϕ(A)) = σ(A)
for every A ∈ V. Obviously, linear maps on B(H) are positive if and only if they
preserve order. _e same is true for real linear maps on S(H).
Choi,Hadwin,Nordgren,Radjavi, andRosenthal [3] studied linear positive invert-

ibility preserving maps on C∗ algebras. _e study of order and spectrum preserving
mapswithout linearity assumption ismuchmore diõcult, and at present understand-
ing the structure of such maps for general C∗-algebras seems out of reach. Here, we
are interested in the simplest casewhen the underlying C∗-algebra is the full operator
algebra B(H). But even in this simplest case, the behaviour of order and spectrum
preserving maps can be quite wild in the absence of the linearity assumption. To see
this observe that for every A ∈ B(H),we have the unique decomposition A = M+ iN
where M ,N ∈ S(H). Choose any bijective map ξ∶S(H) → S(H) with the property
that for each N ∈ S(H) there exists a unitary operator UN such that ξ(N) = UNNU∗

N
(note that unitary similarity is an equivalence relation and equivalence classes are uni-
tary orbits of self-adjoint operators; a bijectivemap ξ∶S(H)→ S(H)has the requested
property if and only if each unitary orbit is invariant under ξ). For each N ∈ S(H)
there are inûnitelymanyunitaryoperatorsU satisfying ξ(N) = UNU∗, butwe choose
and ûx one and denote it by UN . We deûne ϕ∶B(H)→ B(H) by

ϕ(M + iN) = UN(M + iN)U∗

N .

We ûrst prove that ϕ is a bijectivemap. To prove surjectivity, take any B = M + iN ∈
B(H). _en there is a unique L ∈ S(H) such that ξ(L) = N = ULLU∗

L . Set A =
U∗

LMUL + iL and observe that ϕ(A) = B to complete the veriûcation of surjectivity,
checking that ϕ is injective is trivial aswell. Since for eachA ∈ B(H), ϕ(A) is unitarily
similar to A, the map ϕ preserves spectrum. Finally, to see that it preserves order,
assume that A = M1 + iN1 ≤ M2 + iN2 = B and note that B − A ∈ S+(H) yields that
N1 = N2 = N . It is then clear that ϕ(A) = UNAU∗

N ≤ UNBU∗

N = ϕ(B).
As we have seen, the behaviour of a bijective order and spectrum preserving map

ϕ∶B(H) → B(H) on two diòerent cosets A + S(H) and B + S(H) can be com-
pletely non-related. _e reason is that any two operators that are comparable with
respect to ≤ belong to the same coset. And hence, when studying order and spec-
trum preserving maps in the absence of the linearity assumption we need to consider
such maps on each coset separately. _us, it is natural to study such maps acting on
S(H). But we will do even a little bit better. Namely, each spectrum preserving map
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ϕ∶S(H)→ S(H) maps positive operators to positive operators. We will start by de-
scribing the general form of surjective order and spectrum preserving maps deûned
on the cone of positive operators only. _e structural result for such maps acting on
S(H) will follow easily.

_eorem 1.1 Let H be a Hilbert space and let ϕ∶S+(H) → S+(H) be a surjective
order and spectrumpreservingmap. _en there exists a unitary or anti-unitary operator
U ∶H → H such that ϕ(A) = UAU∗ for every A ∈ S+(H).

_e converse is obviously true. Some further remarks should be added here. _e
ûrst one is that almost all general (non-linear) preserver results,where the conclusion
is similar to the above statement, can be solved by a uniûed approach based on the re-
duction to the problemof characterizing adjacency preservingmaps [13–15]. We tried
very hard to use this idea but eventually gave up and were forced to ûnd a completely
diòerent approach. Recall that two operators are said to be adjacent if one is a rank
one perturbation of the other. It is well known that the spectral analysis of rank one
perturbations is far from being trivial and we believe that this is the reason that the
approach via adjacency preservers is not suitable for our problem treating spectrum
preserving maps.

_e second remark is that if we replace the assumption of preserving order by a
stronger assumption of preserving order in both directions, then under the surjec-
tivity assumption we can remove the spectrum preserving property and still get the
nice description of such maps; see [11,_eorem 2.5.1]. But we need to emphasize that
there is a huge diòerence between preserving order in both directions and preserving
it in one direction only. Even in the simplest case, that is, linear maps on matrices,
it is rather easy to describe the general form of linear maps preserving order in both
directions, while we do not understand the structure of linear maps preserving order
in one direction only.

_e last remark is that the above theorem is optimal. Indeed, we show now with
counterexamples that all of the assumptions are indispensable. _e theorem describes
surjective maps having two preserving properties. It is rather easy to verify that as-
suming just one of them is not enough to get the same conclusion. Recall the well-
known fact that f (t) =

√
t is an operator monotone function on [0,∞) (this fact

is a special case of the celebrated Löwner-Heinz inequality). Hence, A ↦ A
1
2 is a

bijective order preserving map from S+(H) onto itself that is obviously not spec-
trum preserving. Deûne an equivalence relation on S+(H) in the following way:
A ∼ B ⇔ σ(A) = σ(B). Any bijective map from S+(H) onto itself that maps each
of equivalence classes onto itself is spectrum preserving. Of course, such maps can
have quite a wild behaviour that is far from the nice form given in the conclusion of
the above theorem. Finally, we will show that the surjectivity assumption is indis-
pensable. Indeed, let H be inûnite-dimensional. _en H can be identiûed with the
direct orthogonal sum of two copies of H. Hence,maps on S+(H) can be considered
as maps from S+(H) to S+(H ⊕ H). Assume that φ∶S+(H) → S+(H) is any order
preserving map satisfying

σ(φ(A)) ⊂ σ(A)
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for every A ∈ S+(H). _en clearly, the map ϕ(A) = A ⊕ φ(A), A ∈ S+(H), is an
injective spectrum and order preserving map from S+(H) into S+(H ⊕ H). Even
more, it preserves order in both directions; that is,

A ≤ B ⇐⇒ ϕ(A) ≤ ϕ(B)
for every pair A, B ∈ S+(H). Let us give a few examples of a map φ with the re-
quired properties. _e ûrst one is φ(A) = sup{⟨Ax , x⟩ ∶ x ∈ H, ∥x∥ = 1}I. _e next
one is given by φ(A) = 0 if A ∈ S+(H) is of ûnite rank and φ(A) = A otherwise.
And ûnally, let k be a positive integer. _en the map φ∶S+(H) → S+(H) deûned by
φ(A) = 0 if A ∈ S+(H) is of rank at most k, and φ(A) = A otherwise, has the re-
quired properties, too. In the case where H is ûnite-dimensional, dimH = n, we can
identify S+(H) with H+

n , the set of all positive n × n matrices. For A ∈ H+

n we deûne
diag(λ1(A), . . . , λn(A)) to be the diagonal n × n matrix whose diagonal entries are
eigenvalues ofA (counting theirmultiplicities) arranged in decreasing order. _en the
map A↦ diag(λ1(A), . . . , λn(A)) fromH+

n to itself is spectrum and order preserving
[6, Corollary 7.7.4]. But non-surjective spectrum and order preserving maps can have
even “wilder” behaviour in the ûnite-dimensional case. We will illustrate this in the
two-dimensional case. If dimH = 2, then S+(H) can be identiûedwith H+

2 , the space
of all 2 × 2 hermitian positive matrices. We denote by P1 ⊂ H+

2 = S+(H) the set of
all projections of rank one. If P ∈ P1, it is positive, and therefore its (1, 1)-entry and
(2, 2)-entry are both nonnegative. _e trace of projection of rank one is 1. Using the
fact that its determinant is zero, we conclude that

P = [ a
√
a(1 − a)e i t√

a(1 − a)e−i t 1 − a ]

for some a ∈ [0, 1] and some t ∈ R. Deûne amap

P = [ a
√
a(1 − a)e i t√

a(1 − a)e−i t 1 − a ]z→ P̃

from P1 to itself by P̃ = P if a ≤ 1
2 and

P̃ = [ 1 − a
√
a(1 − a)e i t√

a(1 − a)e−i t a
]

otherwise. Hence, the map P ↦ P̃ either maps a projection of rank one to itself,
or it interchanges its diagonal entries. Further, for P ∈ P1 we will denote by P⊥ the
orthogonal rank one projection P⊥ = I − P. Each A ∈ H+

2 with eigenvalues λ1(A) ≥
λ2(A) ≥ 0 can be written as

(1.1) A = λ1(A)P + λ2(A)P⊥

for some P ∈ P1. Clearly, if λ1(A) > λ2(A), then the spectral projection P in the
representation (1.1) is uniquely determined. In the case when λ1(A) = λ2(A) = λ, A
is a scalar operator A = λI, and then A = λQ + λQ⊥ for every Q ∈ P1. We deûne a
map ϕ∶H+

2 → H+

2 by

ϕ(A) = ϕ(λ1(A)P + λ2(A)P⊥) = λ1(A)P̃ + λ2(A)P̃⊥ .
Clearly, ϕ preserves the spectrum. _e following is not entirely obvious.
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Proposition 1.2 _emap ϕ preserves order.

Hence, themap ϕ is an example of a non-surjective spectrum and order preserving
map that is not of the standard form as in our main result.

It is easy to deduce the structural theorem for surjective order and spectrum pre-
serving maps on S(H) from our main result.

Corollary 1.3 Let H be a Hilbert space and let ϕ∶S(H) → S(H) be a surjective
order and spectrumpreservingmap. _en there exists a unitary or anti-unitary operator
U ∶H → H such that ϕ(A) = UAU∗ for every A ∈ S(H).

Let us conclude the introduction by emphasizing another diòerence between the
linear and non-linear settings. When studying unital linear invertibility preserving
maps ϕ∶A → B on C∗-algebras, it is enough to assume that ϕ preserves involution;
that is, ϕ(a∗) = (ϕ(a))∗, a ∈ A, to conclude that ϕ is positive. Indeed, if a unital
linear invertibility preserving map ϕ is ∗-preserving, then it maps self-adjoint ele-
ments of A into self-adjoint elements of B and applying the fact that a self-adjoint
element is positive if and only if its spectrum is contained in [0,∞), we see that ϕ
maps positive elements to positive elements. Moreover, if we restrict to real-linear
maps acting between the real-linear spaces of all self-adjoint elements of C∗-algebras,
then every spectrum preserving map is automatically positive, and hence it preserves
order. Clearly, this is far from being true in the non-linear setting where none of
the two preserving properties (preserving spectrum and preserving order) yields the
other one.

In particular, a direct consequence of Corollary 1.3 is that every real-linear sur-
jective spectrum preserving map ϕ∶S(H) → S(H) is of the form ϕ(A) = UAU∗,
A ∈ S(H), for some unitary or anti-unitary operator U ∶H → H.

2 Preliminary Results

For a positive operator C on H we denote by ImC and KerC the image and the null
space of C, respectively. If C is of ûnite rank, then trC stands for the trace of C. We
start with a well-known and simple lemma that will be used quite o�en throughout
the proof of our main result.

Lemma 2.1 Assume that C ,D ∈ S+(H) satisfy C ≤ D. _en ImC ⊂ ImD.

Proof With respect to the orthogonal direct sum decomposition H = ImD⊕KerD
the operator D has thematrix representation

D = [D1 0
0 0] .

From C ≤ D it follows trivially that

C = [C1 0
0 0]

for some C1, and hence, ImC ⊂ ImD. _us, ImC ⊂ ImD.
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We have included the above lemma and the proof to avoid possible confusion.
Namely, the analogous statement for the images of operators (without taking closures)
does not hold. _ere exist positive operators C and D such that C ≤ D, but ImC ⊂
ImD is not true.

_e next lemma is probably well known, and as it is very easy to prove,wewill just
formulate it without giving the proof.

Lemma 2.2 Let A, B,C ∈ S(H), t ∈ R, and x ∈ H. Assume that A ≤ B ≤ C and
Ax = Cx = tx. _en Bx = tx.

Lemma 2.3 Let P,Q , R ∈ S+(H) be projections of rank one satisfying P ⊥ Q, that is,
PQ = QP = 0 and R ≤ P + Q. _en

α(P, R) = max{t ∈ [0,∞) ∶ tR ≤ Q + 2P} = 2
2 − tr(PR) .

A remark should be added here. If P = R, then obviously the quantity α(P, R) =
2 is independent of the choice of a rank one projection Q that is orthogonal to P.
Otherwise, the rank one projectionQ satisfying both P ⊥ Q and R ≤ P+Q is uniquely
determined.

Proof Let e1 , e2 ∈ H be orthonormal vectors that span the images ofQ and P, respec-
tively. With respect to the orthogonal direct sum decomposition H = span{e1 , e2}⊕
{e1 , e2}⊥ the rank one projections Q and P have the followingmatrix representations:

Q = [[
1 0
0 0 ] 0
0 0] and P = [[

0 0
0 1 ] 0
0 0] .

Since R ≤ Q + P, we have

R = [[
∗ ∗

∗ ∗
] 0

0 0] .

In the rest of the proof we will forget the bordering zeroes; that is, we will identify
operators Q , P, R with their upper-le� 2 × 2 corners. Since R is a projection of rank
one, it is of the form

R = [1 − a ∗
∗ a]

for some a ∈ [0, 1]. For a nonnegative real t, we have tR ≤ Q + 2P; that is,

t [1 − a ∗
∗ a] ≤ [1 0

0 2] ,

if and only if for every invertible 2×2matrix T we have tTRT∗ ≤ T(Q+2P)T∗. With
a choice

T = [1 0
0 1

√

2
] ,

we get that for a nonnegative real t we have tR ≤ Q + 2P if and only if

[t(1 − a) ∗
∗ t

2 a
] ≤ [1 0

0 1] .
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_e 2× 2 matrix on the le�-hand side is a hermitian rank onematrix and is therefore
unitarily similar to a diagonal matrix. Consequently, the above inequality holds if
and only if the trace of the 2× 2 matrix on the le�-hand side is less than or equal 1, or
equivalently,

t( 1 − a
2
) ≤ 1.

Applying the obvious fact that a = tr(PR), we conclude the proof.

Lemma 2.4 Let P1 ⊂ H+

2 be the set of all projections of rank one. Assume that
R,Q , R1 ,Q1 ∈ P1 satisfy tr(RQ) ≤ tr(R1Q1). Let t, s1 , s2 be nonnegative real numbers
with s1 ≥ s2. Assume further that tR ≤ s1Q + s2Q⊥ . _en tR1 ≤ s1Q1 + s2Q⊥1 .

Proof _e casewhen t = 0 is trivial. So, assume that t > 0. We ûrst consider the case
when s2 = 0. _en clearly, tR ≤ s1Q yields that R = Q and t ≤ s1. From R = Q and
tr(RQ) ≤ tr(R1Q1) we get that tr(R1Q1) = 1, or equivalently, R1 = Q1, which yields
the desired inequality.

Hence, assume from now on that s2 > 0. We will show that the condition

tR ≤ s1Q + s2Q⊥

is equivalent to

tr(RQ)t s1 − s2
s1s2

≥ t − s2
s2

.

Assume for a moment that we have already veriûed this. _en it is obvious that the
conclusion of our lemma holds true.

So, assume that tR ≤ s1Q + s2Q⊥ . A�er replacing the standard basis with an ap-
propriate orthonormal basis of C2, we have

t [a ∗
∗ 1 − a] = tR ≤ [s1 0

0 s2
] ,

which is, by the same argument as used in the previous lemma, equivalent to

t [
a
s1

∗
∗ 1−a

s2
] ≤ [1 0

0 1] .

_is is true if and only if the trace of the rank onematrix on the le�-side is no larger
than one. A straightforward computation shows that this happens if and only if

tr(RQ)t s1 − s2
s1s2

≥ t − s2
s2

.

_e proof is completed.

Lemma 2.5 Let P ↦ P̃ be themap from P1 to itself deûned by

P = [ a
√
a(1 − a)e i t√

a(1 − a)e−i t 1 − a ]z→ P̃,

where P̃ = P if a ≤ 1
2 and

P̃ = [ 1 − a
√
a(1 − a)e i t√

a(1 − a)e−i t a
] ,

https://doi.org/10.4153/CJM-2016-039-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-039-0


Order and Spectrum Preserving Maps on Positive Operators 1429

otherwise.
_en for every pair P,Q ∈ P1, we have

tr(P̃Q̃) ≥ tr(PQ).

Proof Let

P = [a α
α 1 − a] and Q = [b β

β 1 − b]

with ∣α∣2 = a(1 − a) and ∣β∣2 = b(1 − b). Of course, if P = P̃ and Q = Q̃, then

tr(P̃Q̃) = tr(PQ).
If

P̃ = [1 − a α
α a] and Q̃ = [1 − b β

β b
] ,

then again tr(P̃Q̃) = tr(PQ), as can be veriûed by a straightforward computation. It
remains to consider the case when P = P̃ and Q /= Q̃, and the case when P /= P̃ and
Q = Q̃. Because of symmetry, we need to treat just one of the cases, say the ûrst one.
_us, assume that a ≤ 1

2 and b >
1
2 and

P̃ = P and Q̃ = [1 − b β
β b

] .

_en
tr(P̃Q̃) = a(1 − b) + (1 − a)b + αβ + αβ,

while
tr(PQ) = ab + (1 − a)(1 − b) + αβ + αβ.

But then

tr(P̃Q̃) − tr(PQ) = a(1 − b) + (1 − a)b − ab − (1 − a)(1 − b)
= (2a − 1)(1 − 2b) ≥ 0,

as desired.

3 Proofs of Main Results

Proof of_eorem 1.1 _ere is nothing to prove if dimH = 1. So, assume from
now on that dimH ≥ 2. For A ∈ S+(H) and t ∈ [0,∞) we have by the spectral
theorem for self-adjoint operators that σ(A) = {t} if and only if A = tI. Hence,
by the spectrum preserving property we conclude that ϕ(tI) = tI for every non-
negative real number t. We denote by P the set of all non-trivial projections on
H, P = {P ∈ S+(H) ∶ P2 = P and P /= 0, I}. Clearly, for every A ∈ S+(H) we
have the equivalence: σ(A) = {0, 1} ⇔ A ∈ P. Moreover, ϕ is surjective, and
therefore ϕ(P) = P. As always, rankA stands for the dimension of the image of A,
rankA ∈ N∪{0,∞}. Our ûrst claim is that rank ϕ(A) ≥ rankA for every A ∈ S+(H).
Indeed, it is enough to prove that for every positive integer n and everyA ∈ S+(H), the
inequality rankA ≥ n yields that rank ϕ(A) ≥ n. So, assume that rankA ≥ n. _en,
by the spectral theorem for bounded self-adjoint operators we can ûnd B ∈ S+(H)
such that B ≤ A and the spectrum of B contains n diòerent positive real numbers. It
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follows that ϕ(B) ≤ ϕ(A) and the spectrum of ϕ(B) contains n diòerent positive real
numbers. _us, rank ϕ(B) ≥ n, and by Lemma 2.1, rank ϕ(A) ≥ n.

Our next claim is that if A and B are positive operators both having a ûnite spec-
trum, ImA ∩ ImB = {0}, and A1 and B1 are positive operators such that ϕ(A1) = A
and ϕ(B1) = B, then ImA1∩ImB1 = {0}.Assume on the contrary that ImA1∩ImB1 /=
{0}. Let x ∈ ImA1 ∩ ImB1 be a nonzero vector and R the rank one projection on its
linear span. Since A and B are both with ûnite spectra, the same is true for A1 and B1.
_erefore, we have

A1 =
m

∑
j=1

t jPj and B1 =
n

∑
k=1

skQk

for some positive real numbers t1 , . . . , tm , s1 , . . . , sn , some pairwise orthogonal non-
zero projections P1 , . . . , Pm , and some pairwise orthogonal non-zero projections
Q1 , . . . ,Qn . Set t = min{t1 , . . . , tm , s1 , . . . , sn} and use the fact that tR ≤ A1 , B1
to conclude that ϕ(tR) ≤ A and ϕ(tR) ≤ B. Clearly, ϕ(tR) /= 0. Because A and
B have ûnite spectra, their images are closed, and hence, by Lemma 2.1, we have
Im ϕ(tR) ⊂ ImA∩ ImB, a contradiction.

In the next step we will prove that if Qα , α ∈ J, is a family of projections such that
Σα∈J ImQα = H, and Pα , α ∈ J, are projections such that ϕ(Pα) = Qα , α ∈ J, then

(3.1) Σα∈J Im Pα = H.

Indeed, if (3.1) does not hold, then let R be the projection whose image is Σα∈J Im Pα .
Since R /= 0, I, we have σ(R) = {0, 1}. Moreover, for every α ∈ J, we have Pα ≤ R.
Consequently, Qα ≤ ϕ(R) and because σ(ϕ(R)) = {0, 1}, ϕ(R) is a projection with a
non-trivial null space. But using Lemma 2.1 oncemore, H = Σα∈J ImQα ⊂ Im ϕ(R),
a contradiction. From now on we will use Lemma 2.1 without even mentioning it.

Our next goal is to prove that for every ûnite rank projection Q there exists a pro-
jection P such that ϕ(P) = Q and rankQ = rank P. We only need to consider the case
where rankQ = k /= 0. _en we can write

Q = Q1 + ⋅ ⋅ ⋅ + Qk

where Q1 , . . . ,Qk are pairwise orthogonal rank one projections. Set B = Q1 + 2Q2 +
⋅ ⋅ ⋅ + kQk . By surjectivity, there exists A ∈ S+(H) such that ϕ(A) = B, and by the
spectrum-preserving property and spectral theorem for self-adjoint operators, we
have

A = P1 + 2P2 + ⋅ ⋅ ⋅ + kPk

for some non-zero pairwise orthogonal projections P1 , . . . , Pk . Deûne P = P1+⋅ ⋅ ⋅+Pk
and note that P is a projection satisfying P ≤ A. It follows that ϕ(P) ≤ B. We know
that

k ≤ rank P ≤ rank ϕ(P) ≤ rank B = k,
and therefore, rank P = rank ϕ(P) = k. Hence, both ϕ(P) and Q are rank k projec-
tions whose images are subspaces of the image of B, and since rank B = k, we have
ϕ(P) = Q, as desired.

Nowwewill show that every ûnite rank projection ismapped by ϕ into a projection
of the same rank. So, let P be a ûnite rank projection of rank m, m /= 0. _ere is
nothing to prove if dimH = m, that is, P = I. Hence, we assume that dimH > m.
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We denote ϕ(P) = Q and we already know that Q is a non-trivial projection with
dim ImQ ≥ m. _e surjectivity yields the existence of a non-trivial projection P1
such that ϕ(P1) = I − Q. By what we have already proved, we know that

Im P ∩ Im P1 = {0} and Im P + Im P1 = H.

Since Im P is ûnite-dimensional, the sum of subspaces Im P + Im P1 is closed, and
therefore,

H = Im P ⊕ Im P1 .
In particular, the codimension of Im P1 in H is m.
Assume now that dim ImQ > m (of course, this includes the possibility that Q

is not of a ûnite rank). _en we can ûnd a projection Q1 of rank m + 1 such that
Q1 ≤ Q. By the previous statement, we can ûnd a projection R1 of rank m + 1 such
that ϕ(R1) = Q1. Because ImQ1 ∩ Im(I − Q) = {0}, we have ImR1 ∩ Im P1 = {0},
contradicting the fact that the dimension of ImR1 is m + 1 and the codimension of
Im P1 in H is m.

We denote byPk the set of all projections of rank k, k = 1, 2, . . . _e last two claims
yield that

ϕ(Pk) = Pk , k = 1, 2, . . .
Let t be any positive real number and let P be any ûnite rank projection. We claim

that ϕ(tP) = tQ for some projection Q with rankQ = rank P. To prove this we
consider the map ϕt ∶S+(H) → S+(H) deûned by A ↦ 1

t ϕ(tA), A ∈ S+(H). _is
is obviously a surjective order and spectrum preserving map, and hence, everything
that has been proved so far for themap ϕ holds for ϕt as well. In particular, ϕt(P) is
a projection having the same rank as P. _is is exactly what we wanted to prove.
Actually, more is true. Namely, for any positive real number t and any ûnite rank

projection P, we have ϕ(tP) = tϕ(P). Clearly, this is true when t = 1. We will verify
only the casewhen t > 1, since the casewhen t < 1 goes through in an almost identical
way. We know that ϕ(tP) = tQ for some projection Q with rankQ = rank P =
rank ϕ(P). From P ≤ tP, it follows that ϕ(P) ≤ tQ, and consequently, Im ϕ(P) ⊂
ImQ, which further yields that ϕ(P) = Q, as desired.

We are now ready to verify that rank ϕ(A) = rankA for every ûnite rank operator
A ∈ S+(H). Ithas already beenproved that rank ϕ(A) ≥ rankA. Toprove theopposite
inequality we apply the fact A ≤ ∥A∥P, where P is the projection on the image of A.
_en ϕ(A) ≤ ϕ(∥A∥P), and since rank ϕ(∥A∥P) = rank P = rankA, we are done.

Our next claim is that for every pair P, R ∈ P1, we have

(3.2) tr(ϕ(P)ϕ(R)) ≥ tr(PR).
_ere is nothing to prove if P = R. So assume that P /= R. _en there is a unique rank
two projection S such that P, R ≤ S. Set Q = S−P. _en Q is a projection of rank one
such that P ⊥ Q and R ≤ P + Q.

Set A = ϕ(Q + 2P). _en A is of rank two, and if dimH ≥ 3, we have σ(A) =
σ(Q + 2P) = {0, 1, 2}. If dimH = 2, then σ(A) = σ(Q + 2P) = {1, 2}. In both cases
it follows that A = T1 + 2T2, where T1 and T2 is an orthogonal pair of projections of
rank one. Furthermore, we have

2ϕ(P) = ϕ(2P) ≤ ϕ(Q + 2P) = A = T1 + 2T2 ≤ 2I,
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and using Lemma 2.2 we conclude that T2 = ϕ(P). Hence, A = T1 + 2ϕ(P), where T1
is a rank one projection orthogonal to the rank one projection ϕ(P).
Denote a = tr(PR) ∈ [0, 1] and set b = 2

2−a . By Lemma 2.3 we have bR ≤ Q + 2P,
and therefore, bϕ(R) ≤ T1 + 2ϕ(P). In particular,

Im ϕ(R) = Im bϕ(R) ⊂ Im(T1 + 2ϕ(P)) = Im(T1 + ϕ(P)) ,
or equivalently, ϕ(R) ≤ T1 + ϕ(P). Applying Lemma 2.3 oncemore we conclude that

2
2 − tr(PR) = b ≤ α(ϕ(P), ϕ(R)) = 2

2 − tr(ϕ(P)ϕ(R))
from which we immediately get (3.2).

We will now restrict our attention to the case where dimH ≥ 3 and introduce a
new map φ∶P1 → P1. For each Q ∈ P1 there exists P ∈ P1 such that ϕ(P) = Q.
Choose such a P and deûne φ(Q) = P (note that we already know that such a P
exists, but so far we have not veriûed that it is uniquely determined). We claim that
if Q1 ,Q2 ∈ P1 are orthogonal rank one projections, then φ(Q1) = P1 and φ(Q2) = P2
must be orthogonal, too. Indeed, by (3.2) we have

0 ≤ tr(P1P2) ≤ tr(ϕ(P1)ϕ(P2)) = tr(Q1Q2) = 0,

and therefore tr(P1P2) = 0 which yields that P1 ⊥ P2, as desired.
_e following slight extension of Wigner-Uhlhorn theorem can be found in [16,

Proposition 2.6]. Let ξ∶P1 → P1 be an injectivemap. Assume that for every maximal
orthogonal subset S of P1, the set ξ(S) is amaximal orthogonal set of rank one pro-
jections. _en there exists an either unitary or antiunitary operator U ∶H → H such
that ξ(P) = UPU∗ for every P ∈ P1. Note that the assumption dimH ≥ 3 is essential
for this proposition.

We will now verify that φ satisûes the assumptions of this statement. Clearly, it is
injective, and as it preserves orthogonality, it maps everymaximal orthogonal subset
S of P1 in an orthogonal set of projections of rank one. Using (3.1) we see that φ(S)
is maximal as well.

Hence, we can apply the above statement for themap φ. In particular, we see that
ϕ mapsP1 bijectively onto itself, and a�er composing ϕ with a unitary or anti-unitary
congruence, we can assume with no loss of generality that we have ϕ(P) = P for
every P ∈ P1. In order to complete the proof, we need to show that ϕ(A) = A for
every A ∈ S+(H).

We already know that this is true when A = tP, where t is any nonnegative real
number and P any projection of rank one. Next, let P be a projection of rank one, t any
positive real number, and c any real number c ∈ [0, t]. Wewill show that ϕ(A) = A for
A = tI−cP. Let Q be any rank one projection orthogonal to P. _en tQ ≤ tI−cP ≤ tI,
and consequently, tQ ≤ ϕ(tI − cP) ≤ tI. It follows from Lemma 2.2 that ϕ(tI − cP) =
t(I − P) + dP for some real number d. But

{t, t − c} = σ(tI − cP) = σ(t(I − P) + dP) = {t, d},
and therefore d = t − c, as desired.

Now take an arbitrary nonzero A ∈ S+(H) with a ûnite spectrum. _en A =
∑k

j=1 t jPj for some positive pairwise distinct real numbers t1 , . . . , tk and some non-
zero pairwise orthogonal projections P1 , . . . , Pk . We need to show that for every j ∈
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{1, . . . , k}, and for every nonzero x ∈ Im Pj we have ϕ(A)x = t jx, while for every
x ∈ H that is orthogonal to Im P we have ϕ(A)x = 0. Here, P = P1 + ⋅ ⋅ ⋅ + Pk . To
prove the ûrst part we take the rank one projection Q whose image is spanned by x,
set t = max t j , observe that

t jQ ≤ A ≤ tI − (t − t j)Q ,
and then we get the desired conclusion by using known facts ϕ(t jQ) = t jQ and
ϕ(tI − (t − t j)Q) = tI − (t − t j)Q together with Lemma 2.2. To prove the second as-
sertion we use A ≤ t(I − R) for every rank one projection R that is orthogonal to
P.
For every A ∈ S+(H) and every ε > 0 we can ûnd positive operators A1 ,A2 such

that both A1 and A2 have ûnite spectra, A1 ≤ A ≤ A2, and A2 − A1 ≤ εI. From
A1 = ϕ(A1) ≤ ϕ(A) ≤ ϕ(A2) = A2

and from the fact that εwas an arbitrary positive real number,we ûnally conclude that
ϕ(A) = A for every A ∈ S+(H). _is concludes the proof in the casewhere dimH ≥ 3.

Hence, it remains to consider the two-dimensional case.
_us,we assume that dimH = 2. But then S+(H) can be identiûedwithH+

2 , the set
of all positive 2 × 2 matrices. Hence, ϕ is a surjective order and spectrum preserving
map from H+

2 onto itself. As before, we denote by P1 the set of all 2× 2 projections of
rank one. We know that ϕ(P1) = P1 and that (3.2) holds. We will prove even more,
namely, that for every pair P, R ∈ P1 we have

(3.3) tr(ϕ(P)ϕ(R)) = tr(PR).
Assume on the contrary that tr(ϕ(P)ϕ(R)) > tr(PR) for some P, R ∈ P1. Without
loss of generality wemay, and we will assume that

ϕ(P) = P = [1 0
0 0] .

We have

R = [a ∗
∗ 1 − a]

for some a ∈ [0, 1] and because of tr(ϕ(P)ϕ(R)) > tr(PR),

ϕ(R) = [b ∗
∗ 1 − b]

with b > a. By surjectivity, there exists Q ∈ P1 such that ϕ(Q) = [ 0 0
0 1 ] and since

tr(ϕ(P)ϕ(Q)) = 0, the inequality (3.2) yields that tr(PQ) = 0 which further yields
that Q = [ 0 0

0 1 ] . But then

tr(ϕ(Q)ϕ(R)) = 1 − b < 1 − a = tr(QR),
a contradiction.

Itwould be now possible to deduce from (3.3) that ϕ mapsP1 bijectively onto itself
and thenwe could apply classicalWigner’s theorem. However, a non-bijective version
ofWigner’s theorem is now available (for a very short proof, see [4]), and due to this
theorem, there exists a 2 × 2 unitary matrix U such that either for every P ∈ P1 we
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have ϕ(P) = UPU∗, or for every P ∈ P1 we have ϕ(P) = UP tU∗. Here P t stands for
the transpose of P.

One can now complete the proof as in the case when dimH ≥ 3. In fact, in the
two-dimensional case the rest of the proof is even shorter and simpler.

Remark _e elaborate proof we have presented could be substantially shortened if
we assume that themap ϕ is injective.

Proof of Proposition 1.2 Let A = λ1(A)P + λ2(A)P⊥ and B = λ1(B)Q + λ2(B)Q⊥
be 2× 2 hermitian positivematrices satisfying A ≤ B. _en, by [6, Corollary 7.7.4], we
know that

0 ≤ λ2(A) ≤ λ1(A) ≤ λ1(B) and λ2(A) ≤ λ2(B).
Our assumption that

λ1(A)P + λ2(A)P⊥ ≤ λ1(B)Q + λ2(B)Q⊥

is equivalent to

( λ1(A) − λ2(A))P ≤ ( λ1(B) − λ2(A))Q + ( λ2(B) − λ2(A))Q⊥ .
Indeed, we have obtained the second inequality by subtracting λ2(A)I on both sides
of the ûrst one.

We need to prove that

λ1(A)P̃ + λ2(A)P̃⊥ ≤ λ1(B)Q̃ + λ2(B)Q̃⊥ ,
or equivalently,

( λ1(A) − λ2(A)) P̃ ≤ ( λ1(B) − λ2(A)) Q̃ + ( λ2(B) − λ2(A)) Q̃⊥ .
_e last inequality follows directly from our assumption and Lemmas 2.4 and 2.5.

Proof of Corollary 1.3 Let a be any nonnegative real number. We deûne Sa(H) =
{A ∈ S(H) ∶ A ≥ −aI} = {A ∈ S(H) ∶ σ(A) ⊂ [−a,∞)}. In particular, S0(H) =
S+(H). Because ϕ∶S(H) → S(H) is a surjective spectrum preserving map, it maps
every Sa(H) onto itself. _emap X ↦ X−aI is a bijective order preservingmap from
S+(H) onto Sa(H), whose inverse X ↦ X + aI preserves order as well. Using the
spectral mapping theorem, we see that for every a ≥ 0 themap ϕa ∶S+(H) → S+(H)
deûned by

ϕa(A) = ϕ(A− aI) + aI, A ∈ S+(H),
is a surjective order and spectrum preserving map. Hence, by _eorem 1.1, for each
a ≥ 0 there exists a unitary or anti-unitary operator Ua ∶H → H such that

ϕa(A) = UaAU∗

a

for every A ∈ S+(H). A�er composing ϕ with a unitary or anti-unitary similarity we
can assume that U0 = I, that is, ϕ(A) = A for every A ∈ S+(H).

Let A ∈ S(H) be any operator satisfying A ≥ −aI. _en

Ua(A+ aI)U∗

a = ϕa(A+ aI) = ϕ(A) + aI
yields that ϕ(A) = UaAU∗

a . In particular, B = ϕ(B) = UaBU∗

a for every B ∈ S+(H).
Using standard arguments we conclude that Ua = zI for some complex number z of
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modulus one,which further implies that ϕa is the identity. Hence, ϕ(A) = A for every
A ∈ S(H), as desired.
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