A NOTE ON SURFACE FILM DRIVEN CONVECTION
by BRIAN STRAUGHAN

(Received 7 November, 1989)

1. Introduction. In [6] McTaggart presented a nonlinear energy stability analysis of
the problem of convection in the presence of a surface film overlying a non-shallow layer
of fluid heated from below. In her work the film is regarded as a two-dimensional
continuum and surface tension is then introduced naturally as a combination of a surface
density and the derivative of a surface free energy. In fact, the model originated with
work of Landau and Lifschitz [4] on the effect of adsorbed films on the motion of a liquid.
The precise model she uses was developed from a continuum thermodynamic viewpoint
by Lindsay and Straughan [5§].

While McTaggart’s [6] analysis is very useful and shows quantitatively how the effects
of surface viscosity, surface thermal conductivity and surface tension play an important
role on the onset of convection, she leaves open a fundamental problem. Her analysis
encounters a cubic surface term which she formally includes in the Euler-Lagrange
equations: however, to make progress she is forced to set the coefficient of this term equal
to zero. It is the purpose of this note to rectify this situation and show how McTaggart’s
[6] results represent rigorous nonlinear stability bounds in the theory of film driven
convection. We point out Joseph [3] also found difficulty in bounding a surface term when
he applied energy theory to convection driven by interfacial tension between two fluid
layers: the present analysis leads one to wonder whether thin film theory will overcome
his difficulty too.

2. Nonlinear energy stability. For a fluid in the infinite region z € (0,d), with
prescribed temperature T, = T(0) and T, = T(d), z = d being the film and gravity being in
the negative z-direction, McTaggart [6] studies the stability of the stationary (conduction)
solution

v=0, Tr=1,-pz,

where 8 = (T, — T,;)/d (>0) and the (hydrostatic) pressure j is quadratic in z. She denotes
a perturbation to (v, T,p) by (u, 8, p) and then non-dimensionalises the perturbation
equations. For disturbances periodic in (x, y) the energy functional she employs is

E(#) =3(lIull* + Pr ||6]|%) + 3Si(llul)? + Pr || 6]13) (1)

where || . || and || . ||, denote the L? norms in Q and T, respectively, Q being the period
cell of the disturbance in the non-dimensionalised layer z € (0, 1) and I" being that part of
the boundary of Q which intersects z = 1. The non-dimensional parameters Pr and §, are
the Prandtl number Pr = v/k and a non-dimensional density ratio, S, = y/pd, where v, p
are, respectively, surface and bulk fluid density.

She shows that the energy (1) satisfies the equation

£€= —D(u) - D(B) + 2R(9W> —g(l —A4)[9;aua] _A3[9;ae:t¥]

dt (2)

- A,[(di)z] —Ayld aﬂdaﬁ] - A5[62u§’;]
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where D(.) denotes the Dirichlet integral on Q, e.g.
D(6)=IV6|P*,

(.) and [.] denote integration over Q and T, respectively, a,B denote surface
coordinates x, y, d,g = %(ua.,ﬁ +ug.,), and R, B, A, — A5 are non-dimensional parameters
defined as follows:

gapfd* spd?

R2=—7 B=_, A1=V2/,ud7 A2=V6/.ud7
Kv PVK

A3=—q0/dk, A4=nga//cuﬁ, A5=sd/ka,

where g, o, k, v, 5, are gravity, thermal expansion coefficient, bulk thermal diffusivity,
bulk kinematic viscosity and surface tension. The terms R? and B are the Rayleigh and
Marangoni numbers, and A;, A, are surface/bulk viscosity ratios. A; represents the
surface/bulk thermal conductivity effect, and c, is the specific heat at constant volume of
the bulk fluid.

McTaggart’s [6] analysis essentially disregards the cubic surface term in (2), i.e.

As[6°u?). However, since As=sd/pvk, we should: not do this as it clearly implies
vamshmg surface tension or very thin. layer theory Hence, we re-develop her theory
leaving in the nonlinear term. Define

D =D(u) + D(0) + A3[0..0..] + A[(d1)*] + Aj[d *Pd,], (3)
1=2(8w) —N(1—A)[0.,u"], 4)
N= _As[ezu?a]’ (5)

where N = B/R? The only difference with (3)—(5) and the analysis in [6] is that we have
left & defined separately instead of including it in the production term [.
Using (3)-(5) in (2) it is now easy to derive

dE D
e = _
i = R Re— R+, (©)

where
RE'=max (I/9),
E4

# being the space of admissible solutions. To handle the nonlinear term we use the
Cauchy-Schwarz inequality to write:

N = A |16 1441,

To proceed from this we need to assume the average of 8 over I is zero, i.e.
f 0dA =0,
r

and then by use of inequality (9) we observe that

'/VéASC ”9”5 [6;0,0;0,]1/2 ”dﬁ”s,
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where a value for the constant ¢ is given in (9). Using the definitions of E(¢) and &, see
(1), (3), we may then write
< cA2'"?
Hence, putting (7) into (6) we find
dE RE - R
“s-a( )— E”Z}.
dr { Rg “
From this inequality it is now a standard process, using Poincaré’s inequality for the bulk
terms and Wirtinger’s inequality for the surface terms in 9, to show that provided
Rg—-R
(A) R<R; and (B) E0) <ﬁ— , (8)

15AE

E?9 = ¢, E"9. %)

then E — 0 at least exponentially as — o and so there is global stability.

The eigenvalue problem for Ry is precisely the one studied by McTaggart [6] and so
her results do yield rigorous nonlinear stability bounds provided the initial value of the
energy is not too large, as determined by (8) (B).

3. Derivation of a surface inequality. Suppose 6(x,y) is periodic in (x,y), of
x-period k and of y-period I Define I" to be the rectangle (£, +k) X (J,9 +1), £,y
fixed. We now show that provided [ 8dA =0,

o Ak+1D)
0“dAé[1+ 4 ]Joszfe. o dA.
) IR P R ®

The proof employs Joseph’s method [2], p. 249. Since 8 has x-period k, y-period /,
we write

2[ 06,16 (E, ) dE + %2, 0) = P = -2 [ 6(8,)0:(, 1) dE+ 673, ),

and

y Y+
2 [ 00c, M8y, ) dn + 8, 9) = 5, ) = =2 0, )y, m) -+ 6%, 9).
7 y
From these expressions it is easily seen that

£ +k

P )S[ 106 18:(5, V)] dE + 62, ), (10)

y+1
)= [ 10, M 18, G, ) dn + 67z, 9). (11)

We now multiply (10) and (11) together and integrate over I' twice to find, with the help
of the Cauchy-Schwarz inequality:

3R 12 2
sz e"dAéklj eszf B;ae;,,dA+(k+l){J' 92dA} U e;,,e;,,dA} +{j OZdA}.
r r r r r r

(12)

https://doi.org/10.1017/50017089500008181 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500008181

158 BRIAN STRAUGHAN

We now make use of the Wirtinger inequality, see Hardy et al. [1], p. 184, which
shows

4kl
f 6%dA é—;j 6.,0.,dA.
T T Jr

Putting this into (12) and dividing by kl we arrive at (9).
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