A NOTE ON THE JENSEN-GOULD CONVOLUTIONS

BY

M. E. COHEN AND H. S. SUN

Abstract. With the aid of a recent result obtained by the first author, an expression is derived which unifies the well-known Jensen and Gould formulas.

Jensen [4] gave the well-known convolution

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{\alpha+\beta k}{k}\binom{\gamma-\beta k}{n-k}=\sum_{k=0}^{n}\binom{\alpha+\gamma-k}{n-k} \beta^{k} . \tag{1}
\end{equation*}
$$

Gould [3] proved the Abel-type analog of (1)

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{(\alpha-\beta k)^{k}}{k!} \frac{(\gamma-\beta k)^{n-k}}{(n-k)!}=\sum_{k=0}^{n} \frac{(\alpha+\gamma)^{k}}{k!} \beta^{n-k} \tag{2}
\end{equation*}
$$

Furthermore, Carlitz [1] established that under certain specified conditions if

$$
\begin{equation*}
\sum_{k=0}^{n} Q_{k}(\alpha+\beta k) Q_{n-k}(\gamma-\beta k)=\sum_{k=0}^{n} \beta^{k} Q_{n-k}(\alpha+\gamma-k) \tag{3}
\end{equation*}
$$

then

$$
Q_{n}(\alpha)=\binom{\alpha}{n} \quad(n=0,1,2, \ldots)
$$

and if

$$
\begin{equation*}
\sum_{k=0}^{n} Q_{k}(\alpha+\beta k) Q_{n-k}(\gamma-\beta k)=\sum_{k=0}^{n} \beta^{k} Q_{n-k}(\alpha+\gamma) \tag{4}
\end{equation*}
$$

then

$$
Q_{n}(\alpha)=\frac{\alpha^{n}}{n!} \quad(n=0,1,2, \ldots)
$$

The purpose of the present note is to present a result which gives as special cases the expressions (1) and (2).

Theorem. For $a, b, \beta, \mu, s, \sigma$ complex numbers and n, m nonnegative integers, then

$$
\begin{align*}
& \sum_{k=0}^{n} \sum_{p=0}^{m} A_{k}(a+s k+\sigma p) A_{n-k}(b-a-s k-\sigma p) \\
& \times B_{p}(-\beta+s k+\sigma p) B_{m-p}(\mu+\beta-s k-\sigma p) \tag{5}\\
&=\sum_{k=0}^{n} \sum_{p=0}^{m}\binom{k+p}{p} s^{k} \sigma^{p} A_{n-k}(b-k) B_{m-p}(\mu)
\end{align*}
$$

where

$$
A_{n}(\alpha)=\binom{\alpha}{n}, B_{n}(\alpha)=\frac{\alpha^{n}}{n!} .
$$

Proof. Equating equations (2.7) and (2.9) in Cohen [2] and multiplying both sides of the resulting equation by $(1-z)^{-\lambda} \exp (\mu y)$, and replacing α by $-a-1$, s by $-s, s^{\prime}$ by $-\sigma$, one obtains

$$
\begin{gather*}
\sum_{k=0}^{\infty} \sum_{p=0}^{\infty} \frac{(-z)^{k}(-y)^{p} \exp (y \beta+\mu y-y s k-y \sigma p)(\beta-s k-\sigma p)^{p}(-a-s k-\sigma p)_{k}}{k!p!(1-z)^{-a-s k-\sigma p+k+\lambda}} \tag{6}\\
=\frac{(1-z)^{-\lambda} \exp (\mu y)}{(1-s z-\sigma y)} \\
=\sum_{n, m, p=0}^{\infty} \frac{(\lambda)_{n} z^{n}}{n!} \frac{\mu^{m} y^{m}}{m!} \frac{(k+p)!s^{k} \sigma^{p} z^{k} y^{p}}{k!p!} \\
=\sum_{n, m=0}^{\infty} z^{n} y^{m} \sum_{k=0}^{n} \sum_{p=0}^{m} \frac{(\lambda)_{n-k} \mu^{m-p}(k+p)!s^{k} \sigma^{p}}{(n-k)!k!(m-p)!p!}
\end{gather*}
$$

Now, consider equation (6), which may be expanded to give

$$
\begin{equation*}
\sum_{n, m, k, p=0}^{\infty} \frac{z^{n} y^{m} z^{k} y^{p}(-\beta+s k+\sigma p)^{p}(\mu+\beta-s k-\sigma p)^{m}(-a+\lambda-s k-\sigma p+k)_{n}}{k!p!n!m!(a+1+s k+\sigma p)_{-k}} \tag{10}
\end{equation*}
$$

where $(\alpha)_{k}=\Gamma(\alpha+k) / \Gamma(\alpha)$, quotient of two gamma functions. Equation (10) may be expressed as

$$
\begin{equation*}
\sum_{n, m=0}^{\infty} z^{n} y^{m} \sum_{k=0}^{n} \sum_{p=0}^{m} \frac{(-\beta+s k+\sigma p)^{p}(\mu+\beta-s k-\sigma p)^{m-p}(-a+\lambda-s k+k-\sigma p)_{n-k}}{k!p!(n-k)!(m-p)!(a+1+s k+\sigma p)_{-k}} \tag{11}
\end{equation*}
$$

Now equating coefficients of (9) and (11), putting $\lambda=b-n+1$, and some simplification gives the required result (5).

It may be noted that by putting $m=0$ in (5), one obtains essentially the Jensen formula (1), and in symbolic form, the equation (3). Similarly, $n=0$ in (5) gives the Gould formula (2) and (4).

References

1. L. Carlitz, Some formulas of Jensen and Gould, Duke Math. J. 27, (1960), 319-321.
2. M. E. Cohen, Some classes of generating functions for the Laguerre and Hermite polynomials, Math. of Comp. 31 (1977), 511-518.
3. H. W. Gould, Generalization of a theorem of Jensen concerning convolutions, Duke Math. J., 27 (1960), 71-76.
4. J. L. W. V. Jensen, Sur une identité d'Abel et sur d'autres formules analogues, Acta Mathematica, 26 (1902), 307-313.

Department of Mathematics
California State University, Fresno

