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Methods of the theory of hyperbolic
differential equations

This chapter discusses the notions of the theory of hyperbolic differential

equations and the existence theorems employed to construct solutions to the

conformal Einstein field equations. Conformal methods allow, under suitable

circumstances, the use of very general theorems of the theory of partial

differential equations (PDEs) to obtain conclusions of a global nature about

solutions to the Einstein field equations. The results presented in this chapter

have been tailored to fit the general discussion of this book.

The basic result of the theory of hyperbolic PDEs that will be used in this

book is Kato’s existence, uniqueness and stability result for symmetric hyperbolic

systems; see Theorem 12.4. In view of applications to the construction of anti-

de Sitter-like spacetimes a basic existence and uniqueness result of the initial

boundary value problem of symmetric hyperbolic equations is also discussed;

see Theorem 12.6. The chapter concludes with an overview of the basic theory

behind characteristic initial value problems; see Theorem 12.7.

12.1 Basic notions

As will be seen in Chapter 13, the conformal Einstein equations give rise to

quasilinear evolution equations which, in local coordinates x ≡ (xμ) on an

open set U ⊂ M of the spacetime manifold, take the form

Aμ(x,u)∂μu = B(x,u) (12.1)

where u is a CN -valued unknown for some positive integerN andAμ, μ = 0, . . . 3,

are (N ×N) matrix-valued functions of the coordinates and of the vector-valued

unknown u; thus, one has as many equations as components in the vector u.

Finally, B(x,u) is a vector-valued function of x and u. In what follows, it will

be assumed that the components of u are scalars. The functions Aμ(x,u) and

B(x,u) are, in principle, non-linear functions of the entries of u. If the matrices
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12.1 Basic notions 295

Aμ do not depend on u, one has a semilinear system. Without loss of generality,

U can be regarded as some suitable subset of R4.

Following the terminology of Section 11.2 the term

Aμ(x,u)∂μu

is known as the principal part of Equation (12.1). The symbol with respect

to the unknown u at the point p ∈ U with coordinates x = x(p) for a covector

ξ ∈ T ∗|p(U) is given by the matrix

σ(x,u, ξ) ≡ Aμ(x,u)ξμ.

Under a coordinate transformation x′ = x′(x), it follows from Equation (12.1)

that

Aμ′(x′,u)∂μ′u = B(x′,u),

with

A′μ(x′,u) =
∂x′μ

∂xν
Aν(x(x′),u). (12.2)

It then follows from the transformation law of covectors under coordinate

transformations and Equation (12.2) that the symbol of the differential

Equation (12.1) is an invariant.

12.1.1 Symmetric hyperbolic systems

The basic properties of the PDE (12.1) and of its solutions depend on the

structure of its principal part. Given a matrix A, the operation of taking the

transpose of its complex conjugate will be denoted by A∗. One has the following

definition:

Definition 12.1 (symmetric hyperbolic systems) Given a solution u(x),

the system (12.1) is said to be symmetric hyperbolic at (x,u) if:

(i) the matrices Aμ(x,u) are Hermitian; that is (Aμ)∗ = Aμ

(ii) there exists a covector ξ such that σ(x,u, ξ) = Aμ(x,u)ξμ is a positive-

definite matrix.

Given two vectors u, v ∈ CN , their inner product is defined by

〈u,v〉 ≡ u∗v.

It follows then that 〈u,v〉 = 〈v,u〉 with the overbar denoting the usual complex

conjugation of scalars. Moreover, if A is a Hermitian N ×N matrix, then

〈u,Av〉 = 〈Au,v〉, 〈u,Au〉 = 〈u,Au〉.
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296 Methods of the theory of hyperbolic differential equations

Spacelike and timelike hypersurfaces with respect to a

symmetric hyperbolic system

In what follows, let S denote a hypersurface on U ⊂ M defined in terms of a

smooth scalar φ ∈ X (M) as

S ≡ {p ∈ U |φ(p) = 0}, (12.3)

where it is assumed that dφ �= 0 so that S has everywhere a well-defined normal.

The positivity condition (i) in Definition 12.1 allows one to define the causal

nature of the hypersurface S with respect to solutions of Equation (12.1).

More precisely, the hypersurface S is said to be spacelike with respect to

a solution u to the symmetric hyperbolic system (12.1) if σ(x,u,dφ)

is positive definite for p ∈ S. If σ(x,u,dφ) has a non-vanishing determinant

and is not positive definite, one says that S is timelike for the solution u.

Finally, if σ(x,u,dφ) has a vanishing determinant, one says that S is null – this

case is tied to the notion of characteristics to be discussed in the next section.

These causal definitions are, in principle, independent of the homonymous notion

defined in terms of a metric g on M. However, as discussed in Chapter 14, for

evolution equations arising from the Einstein field equations, the geometric and

PDE notions agree; see Theorem 14.1.

12.1.2 Initial value problems and characteristics

Of particular relevance for a symmetric hyperbolic system of the form (12.1) is

the so-called initial value problem whereby some initial data on a hypersurface

S is prescribed and one purports to obtain the solution to the equation away

from the initial hypersurface.

An initial data set for Equation (12.1) on a hypersurface S which is spacelike

with respect to Equation (12.1) consists of a CN -valued function u� on S which

is interpreted as the value of the solution u to Equation (12.1) on S. A question

which arises naturally in this context is whether all the components of the vector

u� can be specified freely on S.
It is convenient to introduce on U coordinates x = (x0, x) = (x0, x1, x2, x3)

adapted to S so that the hypersurface is represented by the condition x0 = 0.

Using these adapted coordinates and the initial data u� one can compute the

spatial derivatives ∂αu� of u on S. In order to determine the time derivatives

∂0u on S one substitutes the above into Equation (12.1) to obtain

A0(0, x;u�)(∂0u)� +Aα(0, x;u�)∂αu� = B(0, x;u�), (12.4)

where it is observed that (∂αu)� = ∂αu�. This equation can be read as a linear

algebraic system for (∂0u)� ≡ ∂0u|S which can be solved if A0(0, x,u�) can be

inverted, that is, if

det
(
A0(0, x;u�)

)
�= 0.
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If detA0(0, x;u�) = 0, then M ≡ rankA0(0, x,u�) < N , and one can make

linear combinations of the equations in (12.4) to obtain a new system on S of

the form

Ā0(0, x;u�)(∂0u)� + Āα(0, x;u�)∂αu� = B(0, x;u�),

where

Ā0(0, x,u�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a011(0, x;u�) · · · a01N (0, x;u�)
...

. . .
...

a0M1(0, x;u�) · · · a0MN (0, x;u�)

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

has N − M rows consisting of zeros. Hence, not all the derivatives (∂0u)� are

determined by the initial data, and one has N−M constraint equations which

have to be satisfied by the initial data u�.

The discussion of the previous paragraphs leads to the following general

definition which also applies to evolution systems of the form (12.1) which are

not necessarily symmetric hyperbolic:

Definition 12.2 (characteristic surfaces of a first order PDE ) A

hypersurface S defined by a condition of the form (12.3) is said to be a

characteristic of a solution u of Equation (12.1) if

det
(
σ(x,u,dφ)

)
= 0 for p ∈ S. (12.5)

If

det
(
σ(x,u,dφ)

)
�= 0 for p ∈ S,

then S is said to be nowhere characteristic for the solution u of

Equation (12.1).

On a characteristic, the system (12.1) implies M transversal equations and

N − M interior equations on S. If M = 0, so that the full system (12.1)

reduces to interior equations, one says that S is a total characteristic of the

system. More generally, given a point p ∈ U , one defines its characteristic set

(or Monge cone) with respect to a solution u of Equation (12.1) as the subset

C∗
p ⊂ T ∗|p(U) defined by

C∗
p ≡

{
ξ ∈ T ∗|p(U)

∣∣ det(σ(x,u, ξ)) = 0, ξ �= 0
}
.

That is, the elements of C∗
p are in the kernel of the symbol. The covectors ξ

are sometimes called the null directions at p. The quantity det(σ(x,u, ξ)) can

be read as a polynomial for the components of the covector ξ – the so-called

characteristic polynomial.
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Well-posedness

An initial value problem for a system of the form (12.1) (not necessarily

symmetric hyperbolic) with data prescribed on a hypersurface S which is nowhere

characteristic and timelike with respect to the evolution system at the prescribed

data u� will be called a Cauchy initial value problem. If the initial data

is prescribed on a hypersurface N which is characteristic, one speaks of a

characteristic initial value problem.

The definitions given in the previous paragraph are motivated by the notion

of well-posedness. In broad terms, an initial value problem is well posed if:

(i) There exist solutions to all initial data.

(ii) The solutions are uniquely determined by the initial data.

(iii) The solutions depend continuously on the initial data.

The first step in the analysis of the well-posedness of an initial value problem for

a given class of PDEs is the formulation of the above requirements in a precise

manner; see, for example, Rendall (2008) for further discussion on this. Initial

value problems which are not well posed are said to be ill-posed.

The Cauchy problem for a symmetric hyperbolic system of the form (12.1)

is well-posed. By contrast, an initial value problem with data prescribed on a

timelike hypersurface is ill-posed. A further example of an ill-posed problem is

the Cauchy problem for elliptic equations. In the case of characteristic initial

value problems the well-posedness of the problem depends on the causal relation

between the region where one wants to obtain the solution and the initial

characteristic surfaces; see Section 12.5.1. Although well-posed initial value

problems are of natural importance in general relativity, ill-posed problems also

arise in applications such as the uniqueness of stationary black holes; see, for

example, Ionescu and Klainerman (2009a,b).

12.1.3 Some examples

The discussion of the previous paragraphs is best illuminated by a couple of

explicit examples. Many of the features of these examples are generic and arise

in the analysis of the evolution equations implied by the (conformal) Einstein

field equations.

In what follows, let (M, g) denote a spacetime. On U ⊂ M consider some

local coordinates x = (xμ) and a null frame {eAA′} with associated cobasis

{ωAA′}. In terms of the local coordinates one writes eAA′ = eAA′μ∂μ and

ωAA′
= ωAA′

μdx
μ. Moreover, let {εAA} be a spinorial frame giving rise to the

vector frame {eAA′}; see the discussion in Section 3.1.9.

A spinorial curl equation

As a first example consider on U ⊂ M a spinorial equation of the form

∇Q
A′ϕQA···D = FA′A···D, (12.6)
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for the components ϕQA···D of a spinor ϕQA···D with respect to the spin frame

{εAA}. The spinor ϕQA···D is not assumed to have any particular symmetries

and the field FA′A···D may depend on the coordinates or any other field. Notice

that the unknowns of Equation (12.6) are scalars.

It is claimed that the combination

∇Q
1′ϕQA···D = F1′A···D, (12.7a)

−∇Q
0′ϕQA···D = −F0′A···D, (12.7b)

is a symmetric hyperbolic system. In order to see this, observe that

∇Q
A′ϕQA···D = ∇1A′ϕ0A···D −∇0A′ϕ1A···D.

Thus, the principal part of the system (12.7a) and (12.7b) can be written in

matricial form as

Aμ∂μϕ ≡
(

e11′μ −e01′μ

−e10′μ e00′μ

)
∂μ

(
ϕ0A···D
ϕ1A···D

)
.

The matrices Aμ are Hermitian as e00′ and e11′ are real vectors and e01′ = e10′ .

Letting ξμ ≡ ω00′
μ + ω11′

μ, a calculation shows that

Aμξμ =

(
e11′μω00′

μ + e11′μω11′
μ −e01′μω00′

μ − e01′μω11′
μ

−e10′μω00′
μ − e10′μω11′

μ e00′μω00′
μ + e00′ω11′

μ

)
.

Using eAA′μωBB′
μ = εA

BεA′B
′
it follows that

Aμξμ =

(
1 0

0 1

)
,

which is clearly positive definite. Thus, the system (12.7a) and (12.7b) is

symmetric hyperbolic as claimed. Given a generic covector ξ, the characteristic

polynomial is given by

det(Aμξμ) = det

(
e11′μξμ −e01′μξμ
−e10′μξμ e00′μξμ

)
=
(
eμ11′e00′ν − e01′μe10′ν

)
ξμξν

=
1

2
gμνξμξν ,

where, in the last equality, Equation (3.30) relating the null frame and the

metric has been used. Thus, the characteristics of Equation (12.6) are given

by null hypersurfaces with respect to the metric g. Furthermore, spacelike

hypersurfaces with respect to solutions to the equation coincide with the

g-spacelike hypersurfaces so that the causal notions given by Equation (12.6)

and the background metric g coincide.
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300 Methods of the theory of hyperbolic differential equations

The wave equation as a symmetric hyperbolic system

As a second example consider the wave equation

∇a∇aφ = 0 (12.8)

on a region U ⊂ M. In contrast to the previous example, this equation is second

order, and thus, it does not fit into the scheme discussed so far. Nevertheless,

the wave equation can be recast as a symmetric hyperbolic system for the scalar

field φ and some further auxiliary fields.

The spinorial version of Equation (12.8) is given by

∇AA′∇AA′φ = 0. (12.9)

As a first step one introduces the auxiliary variable φAA′ ≡ ∇AA′φ. Reading

this definition as an equation for the scalar field φ and contracting with a spinor

τAA′
representing a timelike vector τa, one obtains the evolution equation

Pφ = ϕ, (12.10)

where ϕ ≡ τAA′
φAA′ and P ≡ τAA′∇AA′ is the directional derivative

along τa; see Section 4.3.1. Now, defining ϕAB ≡ τ(B
A′

φA)A′ one obtains the

decomposition

φAA′ =
1

2
ϕτAA′ − τQA′ϕAQ. (12.11)

Having introduced the auxiliary variable φAA′ one needs to consider a suitable

field equation for it. A convenient choice is given by the no torsion condition

∇AA′∇BB′φ−∇BB′∇AA′φ = 0,

which, in view of the definition of φAA′ , can be rewritten as

∇AA′φBB′ −∇BB′φAA′ = 0. (12.12)

Contracting the indices A′ and B′ and using the see-saw rule one obtains

∇(A
Q′

φB)Q′ = 0,

which, as a result of the hermicity of φAA′ is completely equivalent to

Equation (12.12). Finally, using the identity

∇A
Q′

φBQ′ = ∇(A
Q′

φB)Q′ − 1

2
εAB∇QQ′

φQQ′

and observing that from Equation (12.9) it follows that ∇QQ′
φQQ′ = 0, one

concludes that

∇A
Q′

φBQ′ = 0.
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12.2 Uniqueness and domains of dependence 301

Using Equation (12.11) one can perform a space spinor split of this equation.

After some calculations one obtains the pair of equations

Pϕ+ 2DABϕAB = 0, (12.13a)

PϕAB −DABϕ+ 2D(A
QϕB)Q = 0, (12.13b)

where DAB denotes the directional derivative associated to the Sen connection

relative to τAA′
; see Section 4.3.1. Equations (12.10), (12.13a) and (12.13b)

are the basic evolution equations. For simplicity of presentation in Equations

(12.13a) and (12.13b) the covariant derivatives of τAA′
have been assumed to

vanish. To obtain a system which is symmetric hyperbolic, some normalisation

factors have to be added. Some experimentation renders

Pφ = ϕ,

Pϕ+ 2DABϕAB = 0,

4

(A+B)!(2−A−B)!

(
PϕAB −DABϕ+ 2D(A

QϕB)Q

)
= 0,

which is claimed to be symmetric hyperbolic. From these equations, a calculation

similar to the one carried out for the Maxwell equations yields the following

matricial expression for the principal part:

Aμ∂μφ ≡

⎛
⎜⎜⎜⎜⎝

τμ 0 0 0 0

0 τμ 2e11
μ −4e01

μ 2e00
μ

0 −2e00
μ 2τμ − 4e01

μ 4e00
μ 0

0 −4e01
μ −4e11

μ 4τμ 4e00
μ

0 −2e11
μ 0 −4e11

μ 2τμ + 4e01
μ

⎞
⎟⎟⎟⎟⎠ ∂μ

⎛
⎜⎜⎜⎜⎝

φ

ϕ

ϕ0

ϕ1

ϕ2

⎞
⎟⎟⎟⎟⎠ ,

where ϕ0 ≡ ϕ00, ϕ1 ≡ ϕ01 and ϕ2 ≡ ϕ11. Taking into account the reality

conditions satisfied by the various frame coefficients one concludes that the

matrices are Hermitian. Moreover, a short computation shows that Aμτμ is

positive definite so that, indeed, one has obtained a symmetric hyperbolic

system for the wave equation. Finally, a further computation shows that the

characteristic polynomial of the system is given by

det(Aμξμ) = 8(τμξμ)(g
νλξνξλ)

2.

Accordingly, g-null hypersurfaces are characteristics of the system.

12.2 Uniqueness and domains of dependence

An important property of the Cauchy initial value problem for symmetric

hyperbolic systems is the uniqueness of solutions for a given prescription

of initial data. The discussion of the uniqueness of solutions is naturally carried

out in subsets of R4 known as lens-shaped domains. A lens-shaped domain
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G

S0

S1

Figure 12.1 Schematic depiction of a lens-shaped domain G. The hypersurfaces
S0 and S1 are spacelike with respect to a solution u of a symmetric hyperbolic
system of the form (12.1).

with respect to a solution u to a symmetric hyperbolic system of the form (12.1)

is an open subset G ⊂ R4 with compact closure and whose boundary is given

by the union of two subsets S0 and S1 of hypersurfaces which are spacelike with

respect to u; see Figure 12.1. In terms of these domains one has the following

result which exploits all the algebraic conditions in Definition 12.1:

Theorem 12.1 (uniqueness of solutions of symmetric hyperbolic sys-

tems) Let G be a lens-shaped domain. If u1 and u2 are two solutions to the

initial value problem for the symmetric hyperbolic system

Aμ(x,u)∂μu = B(x,u), u|S0
= u�

then u1 = u2 on G.

Proof This proof follows closely the discussion in Friedrich and Rendall (2000).

Assume one has a symmetric hyperbolic system of the form (12.1) such that the

matrices Aμ and B are C1 functions of their arguments. Moreover, let u1 and

u2 denote two C1 solutions. Let G denote a lens-shaped region with respect to

u1 and u2 whose boundary is given by the union of two hypersurfaces S0 and S1.

Using a refined version of the mean value theorem (see the Appendix to this

chapter for further discussion) it follows that there exist continuous functions

Mμ and N such that

Aμ(x,u1)−Aμ(x,u2) = Mμ(x,u1,u2)(u1 − u2),

B(x,u1)−B(x,u2) = N(x,u1,u2)(u1 − u2).

It follows then from Equation (12.1) that

Aμ(x,u1)∂μ(u1 − u2) +

(
Mμ(x,u1,u2)∂μu2 +N(x,u1,u2)

)
(u1 − u2) = 0.

This equation can be written in a more compact form as

Aμ(x,u1)∂μ(u1 − u2) = Q(x,u1,u2, ∂u2)(u1 − u2)

with Q(x,u1,u2, ∂u2) a continuous function of its arguments.
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Now, choosing coordinates such that x = (t, x) and using the evolution

Equation (12.1) one can verify the identity

∂μ

(
e−kt〈u1 − u2,A

μ(x,u1)(u1 − u2)〉
)

= e−kt〈u1 − u2,P(x,u1,u2, ∂u2)(u1 − u2)〉, (12.14)

where

P(x,u1,u2, ∂u2) ≡ −kA0(x,u1) + ∂μA
μ(x,u1)

+Q(x,u1,u2, ∂u2) +Q∗(x,u1,u2, ∂u2).

Integrating the identity (12.14) over the lens-shaped region G and using the

Gauss theorem one has that∫
G
∂μ
(
e−kt〈u1 − u2,A

μ(x,u1)(u1 − u2)〉
)
d4x

=

∫
S1

e−kt〈u1 − u2,A
μ(x,u1)(u1 − u2)〉νμdS

−
∫
S0

e−kt〈u1 − u2,A
μ(x,u1)(u1 − u2)〉νμdS, (12.15)

where d4x is the standard volume element in R4 and νμ denotes the outward

pointing unit normal to ∂G.
As S1 is spatial with respect to the symmetric hyperbolic system, it follows that

Aμ(x,u1)|S1
is positive definite. Hence, the integral over S1 in Equation (12.15)

is non-negative. By assumption one has that (u1−u2)|S0
= 0 so that the integral

over S0 in (12.15) vanishes. Hence, one concludes that∫
G
e−kt〈u1 − u2,P(x,u1,u2, ∂u2)(u1 − u2)〉d4x ≥ 0. (12.16)

Finally, as the matrix A0(x,u1) is positive definite and G is compact, it follows

that the constant k > 0 can be chosen so that P(x,u1,u2, ∂u2) is negative

definite uniformly on G. In other words, there exists a positive constant C such

that

0 > −C〈u1 − u2,u1 − u2〉 ≥ 〈u1 − u2,P(x,u1,u2, ∂u2)(u1 − u2)〉.

Accordingly, the integral over G in inequality (12.16) can be made negative by a

suitable choice of k. This is a contradiction unless u1 = u2 in G.

A corollary of the above theorem is the following:

Corollary 12.1 If u|S0
= 0 and B(x,u) is homogeneous in u, then u = 0

in G.

Proof The result follows directly from the previous theorem, observing that

u = 0 is a solution.
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The uniqueness Theorem 12.1 shows that, in a neighbourhood of an initial

hypersurface S, the solution of a symmetric hyperbolic system is determined

by initial data on a compact subset of S as any point sufficiently close to S
is contained in a lens-shaped region. This consideration leads to the notion of

domain of dependence.

Definition 12.3 (domain of dependence) Let R ⊂ S. The domain of

dependence D(R) of R is the set of all points p ∈ U ⊂ R4 such that the

value of a solution u to Equation (12.1) at p is determined (uniquely) by the

restriction of the initial data to R.

Remark. The term “domain of dependence” is sometimes used in the PDE

literature to denote the set of points determining the value of a solution u at a

given point. The notion of domain of dependence used in this book is then called

domain of influence; see Rendall (2008) for further discussion.

The main property singled out by Definition 12.3 is that the solution of

a symmetric hyperbolic system is determined at a given point by data on

a proper subset of the initial hypersurface. Thus, the process of solving the

Cauchy problem for the symmetric hyperbolic system (12.1) can be localised in

space. This is a particular property of hyperbolic differential equations which

distinguishes them from other types of PDEs. More precisely, if two initial data

sets u� and ū� coincide on an open subset R ⊂ S, then the corresponding

domains of influence and the solutions u and ū coincide as well. In other words,

in the domain of influence D(R) a solution u is independent of the behaviour

of the data u� outside R. In particular, there is no need to impose boundary

or fall-off conditions away from R. This observation is usually known as the

localisability property of symmetric hyperbolic systems; that is, the theory

does not depend on the global knowledge of the initial data in space. A related

observation is that if on S one has two different intersecting coordinate patches

R and R′ such that on R ∩ R′ one has x′ = x′(x), then, as a consequence the

transformation rule of Equation (12.1) and the uniqueness of the solution on

D(R∩R′), one has that u′(x′) = u(x(x′)).

Finite speed of propagation of solutions

A consequence of the existence of a domain of dependence for symmetric

hyperbolic systems is the so-called finite speed of propagation of their

solutions. A rough estimate of this phenomenon can be constructed using an

argument given in Rendall (2008).

As in previous sections, let u denote a solution to a symmetric hyperbolic

system of the form (12.1) with initial data u� prescribed on the hypersurface

S0 ≡ {p ∈ U | t(p) = 0}.

In what follows, assume that the support of u� is contained on a ball of radius

r� around the origin.
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Now, given a point p ∈ U with coordinates (t•, x•) ≡ (t, xα
• ) and a constant

β > 0 consider the paraboloidal hypersurface

Sβ;(t•,x•)
≡
{
p ∈ U

∣∣ t(p) = t• − β δαβ
(
xα(p)− xα

•
)(
xβ(p)− xβ

•
)}

.

The normal to these hypersurfaces is given by

ν = dt− 2βδαβx
αdxβ .

Hence, assuming that A0(x,u) is positive definite on S0 it follows that

Aμ(x,u)νμ = A0(x,u) + 2βδαβx
αAβ(x,u)

can be made positive definite by choosing β sufficiently small, say, β < β0, so

that Sβ;(t•,x•)
is spacelike with respect to Equation (12.1). For this choice of β

the region G bounded by S0 and Sβ;(t•,x•)
is a lens-shaped domain. Now, it can

be verified that the intersection of Sβ;(t•,x•)
with S0 lies outside a ball of radius

r ≡ |x•| −
√

t•
β
, |x•|2 ≡ δαβx

α
•x

β
• .

Thus, if

|x•| −
√

t•
β

> r�,

then the solution satisfies u(t•, x•) = 0 as (t•, x•) lies on the boundary of a lens-

shaped region with trivial data. Accordingly, the support of u on the hypersurface

St• =
{
p ∈ U | t(p) = t•

}
must lie within a ball of radius r� +

√
t•/β; see Figure 12.2 for further details.

Thus, the support of the solution gradually spreads in space at finite speed.

t

xsupp u

supp u•

r + t/β

(t•, x•)

Sβ;(t•,x•)

S0

Figure 12.2 Schematic depiction of the rough estimate of the spread of the
support of a solution to a symmetric hyperbolic system. The solution at (t•, x•)
is determined by trivial data at the initial hypersurface S0; see the main text
for further details.
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12.3 Local existence results for symmetric hyperbolic systems

The purpose of this section is to analyse the basic existence and stability results

for symmetric hyperbolic systems of the form (12.1). The precise formulation

of existence results is more technical than the one for uniqueness and requires

a certain number of notions from the theory of functional analysis. These are

discussed in the following subsection.

12.3.1 Sobolev spaces

The precise discussion of existence results for symmetric hyperbolic systems is

carried out in terms of Sobolev spaces. The purpose of this section is to introduce

some of the basic ideas concerning these function spaces. In a first step, the

discussion will consider Sobolev spaces of functions over R3. These notions can

be suitably extended to three-dimensional manifolds with a different topology.

In what follows, let x ≡ (xα) denote some particular choice of Cartesian

coordinates and let d3x be the standard volume element of R3. The discussion

of solutions of symmetric hyperbolic systems of the form (12.1) leads to consider

CN -valued functions on R3; that is, w : R3 → CN . The space of smooth

functions of this type will be denoted by C∞(R3,CN ). On C∞(R3,CN ) one can

introduce, for m ∈ N, a Sobolev norm via

||w||R3,m ≡
(

m∑
k=0

3∑
α1,...αk=1

∫
R3

|∂αk
· · · ∂α1

w|2d3x
)1/2

, (12.17)

for w ≡ (w1, . . . , wN ) ∈ C∞(R3,CN ) where |w|2 = 〈w,w〉 is the standard norm

in CN . For example, if u = (u) is a C-valued function, one has that

||u||2
R3,1 =

∫
R3

(uu+ ∂1u ∂1u+ ∂2u ∂2u+ ∂3u ∂3u)d
3x.

Not all functions w ∈ C∞(R3,CN ) satisfy ||w||R3,m < ∞. For example, a

constant function from R3 to CN will have infinite Sobolev norm. In order for a

function to have finite Sobolev norm, it must decay suitably at infinity. In view

of the localisability property of hyperbolic equations discussed in Section 12.2

this restriction does not pose a problem in the subsequent considerations. Thus,

in what follows, attention is restricted, for given m ∈ N, to the space{
w ∈ C∞(R3,CN )

∣∣ ||w||R3,m < ∞
}

of CN -valued functions over R3 with finite Sobolev norm of order m. This set

is clearly a vector space, but not a Banach space ; that is, not all Cauchy

sequences of functions in the set have a limit in the space. To obtain a

Banach space one needs to complete the space by including the limit points

of its Cauchy sequences. The completion of the space under the norm || ||R3,m

defined by Equation (12.17) is called the Sobolev space Hm(R3,CN ). Given

https://doi.org/10.1017/9781009291347.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.016


12.3 Local existence results for symmetric hyperbolic systems 307

w• ∈ Hm(R3,CN ), the (open) ball of radius ε centred at w• with respect to the

norm || ||R3,m is defined as the set

Bε(w•) ≡
{
w ∈ Hm(R3,CN )

∣∣ ||w −w•||R3,m < ε
}
.

When discussing symmetric hyperbolic systems of the form (12.1), it is

convenient to consider their solutions u as Hm(R3,CN )-valued functions of the

time coordinate t. This point of view is expressed by writing

u(t, ·) : [0, T ] −→ Hm(R3,CN ).

If a CN -valued function u is such that for every t ∈ [0, T ], u(t, ·) ∈ Hm(R3,CN )

with Ck-dependence on t, one writes

w ∈ Ck
(
[0, T ];Hm(R3,CN )

)
.

For further details on Sobolev spaces, the reader is referred to Evans (1998).

Embedding theorems

Functions in the Sobolev space Hm(R3,CN ) are not necessarily smooth. The

reason for this is that by completing the space one has included functions with

lower regularity. There is, nevertheless, a relation between functions in Hm and

Ck spaces. This relation is expressed in terms of so-called embedding theorems.

For the particular case under consideration one has the following:

Proposition 12.1 (Sobolev embedding theorem) If m ≥ 2 + k, then

Hm(R3,CN ) ⊂ Ck(R3,CN ).

In other words, if a function belongs to the Hm space, then it has at least

m − 2 continuous derivatives. A proof of this result can be found in Taylor

(1996a), chapter 4, section 1. It follows from Proposition 12.1 that a function

over R3 is smooth (i.e. C∞) if it belongs to Hm for every m.

Extensions of functions

To exploit the localisability property of hyperbolic equations it is often conve-

nient to extend functions which are defined only on bounded subsets R ⊂ R3 to

functions with domain on the whole of R3. Defining in a natural way the norm

|| ||R,m and the Sobolev space Hm(R,CN ) one has the following result:

Proposition 12.2 (extension of functions on a compact domain)

Assume that R ⊂ R3 is bounded with smooth boundary ∂R. Then there exists a

linear operator

E : Hm(R,CN ) −→ Hm(R3,CN )

such that for each u ∈ Hm(R,CN ):
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(i) Eu = u almost everywhere in R.

(ii) Eu has support in an open bounded set R′ ⊃ R.

(iii) There exists a constant C depending only on U and R such that

||Eu||R3,m ≤ C||u||R,m.

The CN -valued function Eu is called an extension of u to R3.

A discussion on how to prove this result can be found in Evans (1998).

12.3.2 Kato’s existence and stability theorems

Using the terminology introduced in the previous subsections, it is now possible

to discuss the basic existence and stability result for quasilinear symmetric

hyperbolic systems of the form

A0(t, x,u)∂tu+Aα(t, x,u)∂αu = B(t, x,u). (12.18)

In what follows, it will always be assumed that the matrices Aμ are smooth

functions of their arguments.

The basic local existence theorem

As it can be seen from the proof of the Uniqueness Theorem 12.1, the positive-

definiteness of the matrix A0(t, x,u) plays a key role in determining the

properties of solutions to the equation. On an initial hypersurface S, this

positivity can be set by fiat by choosing suitable initial data. However, in view

of the quasilinearity of the equation, the positive-definiteness could be violated

at some time as the solution evolves. Intuitively, one would expect this to lead

to some sort of problems in the solution. For fixed (t, x), and given a CN -valued

function w, one says that A0(t, x,w) is positive definite and bounded away

from zero by δ > 0 if

〈z,A0(t, x,w)z〉 > δ〈z, z〉

for all z ∈ CN .

The basic local existence result for the Cauchy problem of symmetric

hyperbolic systems to be considered in this book is the following:

Theorem 12.2 (local existence of solutions to symmetric hyperbolic

systems) Consider the Cauchy problem

A0(t, x,u)∂tu+Aα(t, x,u)∂αu = B(t, x,u),

u(0, x) = u�(x) ∈ Hm(R3,CN ) m ≥ 4,

for a quasilinear symmetric hyperbolic system. If δ > 0 can be found such that

A0(0, x,u�) is positive definite with lower bound δ for all p ∈ R3, then there
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exists T > 0 and a unique solution u to the Cauchy problem defined on [0, T ]×R3

such that

u ∈ Cm−2
(
[0, T ]× R3,CN

)
.

Moreover, A0(t, x,u) is positive definite with lower bound δ for (t, x) ∈
[0, T ]× R3.

This theorem is an adaptation of similar theorems given in Kato (1975a) and

Friedrich (1986b). A proof of this result falls beyond the scope of this book. The

interested reader is referred to references given above.

Remarks

(a) For convenience, the regularity of the solution has been stated in terms of

Ck spaces. However, the conclusions of the theorem can be expressed in a

more detailed manner. In particular, one has that the solution satisfies

u ∈ C1
(
[0, T ], Hm−1(R3,CN )

)
.

The latter can be shown to imply u ∈ Hm([0, T ] × R3,CN ) which, in turn,

using a Sobolev embedding theorem in four-dimensions gives the regularity

stated in the theorem.

(b) In most of the applications given in this book, the initial data u� will be

assumed to be smooth, so that u� ∈ Hm(R3,CN ) for all m. However, as

R3 is an unbounded set, one cannot simply assume that u� ∈ C∞(R3,CN );

compare the remark after Equation (12.17).

(c) As A0 is a smooth function of its arguments, it follows from the regularity

of the solution u that 〈z,A0(t, x,u)z〉 for z ∈ CN depends continuously on

(t, x).

(d) As A0(t, x,u) is positive definite for (t, x) ∈ [0, T ] × R3, it follows that

the hypersurfaces of constant t are spacelike with respect to the symmetric

hyperbolic system (and the solution).

(e) The value of the lower bound δ can often be determined by inspection.

The basic stability result

Of great relevance is the notion of Cauchy stability – namely, the idea that,

given a symmetric hyperbolic system, initial data which are close to each other

should lead to solutions which are close in some sense and have a common

existence time interval. In view of the inherent error in the physical process of

measurement, Cauchy stability is fundamental for the applicability of differential

equations to describe physical phenomena. In mathematical terms, the precise

formulation of the closeness of initial data and solutions is expressed in terms

of Sobolev norms.

In the remainder of this section letD be a bounded open subset ofHm(R3,CN )

such that for w ∈ D the matrix A0(0, x,w) is positive definite bounded away
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from zero by δ > 0 for all p ∈ R4. The basic result describing the Cauchy

stability of the symmetric hyperbolic system (12.18) is the following theorem,

adapted from Kato (1975a):

Theorem 12.3 (basic Cauchy stability for symmetric hyperbolic sys-

tems) Let m ≥ 4. If u� ∈ D is given as an initial condition for the system

(12.18), then:

(i) There exists ε > 0 such that a common existence time T can be chosen for

all initial conditions in the open ball Bε(u�) ⊂ D.

(ii) If the solution u with initial data u� exists on [0, T ] for some T > 0, then

the solutions to all initial conditions in Bε(u�) exist on [0, T ] if ε > 0 is

sufficiently small.

(iii) If ε and T are chosen as in (i) and one has a sequence un
� ∈ Bε(u�) such

that

||un
� − u�||R3,m → 0 as n → ∞,

then for the solutions un(t, ·) with un(0, ·) = un
� it holds that

||un(t, ·)− u(t, ·)||R3,m → 0, as n → ∞,

uniformly for t ∈ [0, T ].

Remarks

(a) Point (i) in the previous theorem essentially states that, given a sufficiently

small ball in the space of data on which the Existence Theorem 12.2 can be

applied, then a common existence time for the solutions arising from this

data can be found. Observe, however, that one has no control over the size

of the common existence time; one only knows there is one.

(b) If the existence of a particular solution is known, then point (ii) states that,

by shrinking the ball on the space of data, one can choose the known existence

time as the common existence time.

(c) Point (iii) states that data close to certain reference data give rise to

developments which are also close to the reference solution; this is the

statement of Cauchy stability.

(d) The convergence stated in (iii) is uniform on [0, T ]× R3.

12.3.3 Localising solutions

The localisability property of hyperbolic equations allows one to apply the

existence and stability results discussed in the previous sections to the case of

an initial data problem where data are prescribed only on a compact region R.

Given smooth initial data u� for a symmetric hyperbolic equation of the form

(12.1) on a region R ⊂ R3, one can make use of Proposition 12.2 to extend the
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D(R)

R3

R

Figure 12.3 Localised solution arising from data prescribed on an open set
R ⊂ R3. The associated domain of dependence is denoted by D(R).

initial data u� to the whole of R3 in a controlled manner. Denoting this extension

by Eu�, one has that by point (iii) of Proposition 12.2, Eu� ∈ Hm(R3,CN ).

In order to make use of Theorems 12.2 and 12.3 it is necessary to assume that

A0(0, x,Eu�) is positive definite with some non-zero lower bound uniform on R3.

Thus, one obtains a solution to Equation (12.1) with initial data on R3 given

by u(0, x) = Eu�(x). As a consequence of the uniqueness of solutions on the

domain of dependence, the solution u on D(R) is independent of the particular

extension of the initial data u� on R to R3; see Figure 12.3.

12.3.4 Existence and stability result on manifolds with

compact spatial sections

The existence and stability Theorems 12.2 and 12.3 can be modified so as to

apply to Cauchy problems where data is prescribed on compact, orientable three-

dimensional manifolds. In what follows, the main ideas behind this construction

are discussed.

Patching together solutions

In the remainder of this section let S denote an orientable, compact three-

dimensional manifold – in most of the applications to be considered in this book

one has S ≈ S3; however, any other compact, orientable topology will work as

well. As a result of compactness, there exists a finite cover consisting of open

sets R1, . . . ,RM ⊂ S; that is, one has ∪M
i=1Ri = S. On each of the open sets

Ri, i = 1, . . . ,M , one can introduce local coordinates xi ≡ (xα
i ) which allow

one to identify Ri with open subsets Bi ⊂ R3. As S is assumed to be a smooth

manifold, the coordinate patches can be chosen so that the change of coordinates

on intersecting sets is smooth.

Now, assume that a smooth function u� : S → CN has been prescribed on S.
In what follows, the restriction of u� to a particular open set Ri will be denoted

by ui�. Using the local coordinates xi, the function ui� can be regarded as a

function ui� : Bi → CN .
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D2

R3D1
D3

Figure 12.4 Construction of a solution by patching localised solutions to data
prescribed on open sets D1, D2, D3 ⊂ R3.

The strategy is now to use the same procedure as described in Section 12.3.3

to ensure the existence of a solution on the domain of dependence of Bi.

Accordingly, one makes use of Proposition 12.2 to extend ui� to a function Eui�

defined on the whole of R3. Using the extended functions Eui� one defines the

norm

||u�||S,m ≡
M∑
i=1

||ui�||R3,m. (12.19)

Assuming, as in Section 12.3.3, that A0(0, x,Eui�) is positive definite with

lower bound δi > 0, one obtains a unique solution ui of Equation (12.1) with

initial data u(0, x) = Eui�(x) with existence interval [0, Ti]. The solution on

D(Bi) is independent of the particular extension Eui� being used, so that one

can speak of a solution ui on a domain Di ⊂ [0, Ti]×Ri; see Figure 12.4.

Now, given two solutions ui and uj defined, respectively, on intersecting

domains Di and Dj one has – following the discussion on the change of

coordinates given in Section 12.1 and as a consequence of uniqueness – that

ui and uj must coincide on Di ∩ Dj . Proceeding in the same manner over the

whole finite cover of S, one obtains a unique solution u on [0, T ] × S with

T ≡ mini=1,...M{Ti} which is constructed by patching together the localised

solutions u1, . . . ,uM defined, respectively on the domains Di, . . . ,DM . Observe

that the compactness of S ensures the existence of a minimum non-zero existence

time for the whole of the domains Di.

A general existence and stability result

Using the ideas of the localisation of solutions discussed in the previous

subsection, one can formulate a quite general existence and stability result for

symmetric hyperbolic systems on manifolds whose spatial sections are given by

orientable, compact three-dimensional manifolds. The hypotheses of this theorem

are very similar to the ones in Theorems 12.2 and 12.3.
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Theorem 12.4 (existence and stability result for symmetric hyperbolic

systems on compact spatial sections) Given an orientable, compact, three-

dimensional manifold S, consider the Cauchy problem

A0(t, x,u)∂tu+Aα(t, x,u)∂αu = B(t, x,u),

u(0, x) = u�(x) ∈ Hm(S,CN ) for m ≥ 4,

for a quasilinear symmetric hyperbolic system. If δ > 0 can be found such that

A0(0, x,u�) is positive definite with lower bound δ for all x ∈ S, then:

(i) There exists T > 0 and a unique solution u to the Cauchy problem defined

on [0, T ]× S such that

u ∈ Cm−2
(
[0, T ]× S,CN

)
.

Moreover, A0(t, x,u) is positive definite with lower bound δ for (t, x) ∈
[0, T ]× S.

(ii) There exists ε > 0 such that one common existence time T can be chosen

for all initial conditions in the open ball Bε(u�) and such that Bε(u�) ⊂ D.

(iii) If the solution u with initial data u� exists on [0, T ] for some T > 0, then

the solutions to all initial conditions in Bε(u�) exist on [0, T ] if ε > 0 is

sufficiently small.

(iv) If ε and T are chosen as in (ii) and one has a sequence un
� ∈ Bε(u�) such

that

||un
� − u�||S,m → 0, as n → ∞,

then for the solutions un(t, ·) with un(0, ·) ≡ un
� it holds that

||un(t, ·)− u(t, ·)||S,m → 0, as n → ∞

uniformly in t ∈ [0, T ].

Remarks similar to the ones after Theorems 12.2 and 12.3 apply to this result.

Further discussion and details can be found in Friedrich (1991).

12.4 Local existence for boundary value problems

As will be seen in Chapter 17, the construction of anti-de Sitter-like spacetimes

leads one to consider initial boundary value problems for symmetric hyperbolic

systems of the form (12.1). In this type of problem one prescribes initial data

on a spacelike hypersurface S and boundary data on a timelike hypersurface T .

These two hypersurfaces intersect on a two-dimensional hypersurface E ≡ S ∩T ,

the edge , on which the initial and the boundary conditions need to satisfy some

compatibility conditions; see Figure 12.5. In view of the localisation property of
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T

S

E = S ∩ T

Figure 12.5 Geometric setting of the initial boundary value problem for
symmetric hyperbolic systems. The initial data are prescribed on the three-
dimensional spacelike hypersurface S; boundary data are prescribed on the
three-dimensional timelike hypersurface T . The initial and boundary data
must satisfy certain compatibility conditions (corner conditions) on the edge
E = S ∩ T .

symmetric hyperbolic systems, it is sufficient to analyse the problem close to the

edge. The solution away from the boundary is obtained by patching domains of

dependence.

12.4.1 Basic setting

In a neighbourhood of a point p ∈ E , one can introduce coordinates x = (xμ)

such that the domain U in which the solution to the boundary value problem

takes the form

U = {x ∈ R4 |x0 ≥ 0, x3 ≥ 0},

while the initial hypersurface and the boundary are given, respectively, by

S ≡ {x ∈ U |x0 = 0},
T ≡ {x ∈ U |x3 = 0}.

The normal matrix A3(x,u) in a symmetric hyperbolic system of the form

(12.1) plays a crucial role in the specification of admissible boundary conditions

leading to a well-posed initial boundary value problem. Due to the use of

coordinates adapted to the boundary, the properties of the matrix A3 determine

the relation between the timelike boundary T and the characteristics of the

hyperbolic evolution equation.

In what follows let T(x) denote a smooth map from T to the vector subspaces

of CN and require as boundary condition that

u(x) ∈ T(x), x ∈ T .
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The map T is restricted by the requirements:

(i) The set T is a characteristic of (12.1) of constant multiplicity; that is,

dimKer
(
A3
)
= constant > 0, x ∈ T .

(ii) The map T satisfies the non-positivity condition

〈u,A3(x,u)u〉 ≤ 0, u ∈ T(x), x ∈ T .

(iii) The dimension of the subspace T(x), x ∈ T , is equal to the number of

non-positive eigenvalues of A3(x,u) counting multiplicities.

An important property of Hermitian matrices is that they can be diagonalised

by unitary matrices and that all their eigenvalues are real. Accordingly, after a

redefinition of the dependent variables one can assume that, at a given point

x ∈ T , the normal matrix A3(x,u) has the form

A3(x,u) = κ

⎛
⎝ −Ij×j 0 0

0 0k×k 0

0 0 Il×l

⎞
⎠ , κ > 0,

where Ij×j and Il×l are, respectively, j × j and l × l unit matrices and 0k×k is

the k × k zero matrix. Moreover, one has that j + k + l = N . Writing

u(x) =

⎛
⎝ a(x)

b(x)

c(x)

⎞
⎠ ∈ Cj × Ck × Cl,

one finds that the linear subspaces admitted by condition (ii) are of the form

c−Ha = 0

with H = H(x) an l × j matrix satisfying

−〈a,a〉+ 〈Ha,Ha〉 ≤ 0, a ∈ Cj .

This condition can be reexpressed, alternatively, as H∗H ≤ Ij×j . The key

observation is that the above procedure gives no freedom to prescribe data for

the component b of u associated with the kernel of the normal matrix A3(x,u).

In particular, if A3(x,u) = 0, one has that the boundary is a total characteristic

(see Section 12.1.2) and no boundary conditions can be specified on T – the

solution u on T is directly determined by the initial conditions on the edge E .
More generally, by a further redefinition of the dependent variables one obtains

the inhomogeneous maximally dissipative boundary conditions

q(x) = c(x)−H(x)a(x), x ∈ T ,

with q(x) a Cl-valued function representing the free boundary data on T .
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Corner conditions

To obtain a smooth solution to an initial boundary value problem for a symmetric

hyperbolic system of the form (12.18), the initial data prescribed on S and the

boundary data at T must satisfy certain compatibility conditions at the edge

E = ∂S = S ∩ T – the so-called corner conditions. More precisely, if one has

initial data of the form

u(0, x) = u�(x) on S,

with u� smooth and maximally dissipative boundary conditions of the form

T(t, x)u(t, x) = q(t, x) on T , (12.20)

then one requires that

T(0, x)u�|E = q(0, x).

Higher order corner conditions can be obtained by considering the system (12.18).

Evaluating at E one obtains

A0(u�)|E(∂tu)|E +Aα(u�)|E(∂αu�)|E = B(u�)|E .

As A0(u�)|E is positive definite, the above equation can be used to solve for

(∂tu)|E . The result should be consistent, upon substitution, with what is obtained

from differentiating the boundary condition (12.20). Namely,

(∂tT)|Eu|E +T|E(∂tu)|E = (∂tq)|E .

Further higher order boundary conditions are obtained in an analogous manner

by differentiating (12.18) successively with respect to t.

12.4.2 Uniqueness of the solutions to the boundary value problem

Insight into the role of the maximally dissipative boundary conditions can be

obtained from the analysis of the uniqueness of solutions to the boundary

value problem. The argument follows a strategy similar to the one employed in

Theorem 12.1 with a domain G whose boundary consists of portions of the initial

hypersurface S0, the boundary T and a hypersurface S1 which is spacelike with

respect to the symmetric hyperbolic system; see Figure 12.6. Set M = [0,∞)×S
such that S and T can be identified, in a natural way, as the boundary of M.

Define the coordinate x0 ≡ t in such a way that S0 = {p ∈ M| t = 0}.

Theorem 12.5 (uniqueness of solutions of the initial boundary problem

with maximally dissipative boundary conditions) Let G be a domain as

given above. If u1 and u2 are two solutions to the initial value problem for the

symmetric hyperbolic system

Aμ(x,u)∂μu = B(x,u), u|S0
= u�,

with the same maximally dissipative boundary conditions, then u1 = u2 on G.
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G

S0

S1

T

Figure 12.6 Integration domain for the uniqueness argument for initial
boundary value problems. The boundary ∂G consists of portions of the initial
hypersurface S0, the timelike boundary T and a spacelike hypersurface S1.

Proof Starting from the identity (12.14) one integrates over a domain G as

depicted in Figure 12.6, where S1 is spacelike with respect to the symmetric

hyperbolic system. Applying the Gauss identity one obtains∫
S1

e−kt〈u1 − u2,A
μ(x,u1)(u1 − u2)〉νμdS

−
∫
S0

e−kt〈u1 − u2,A
μ(x,u1)(u1 − u2)〉νμdS

−
∫
T
e−kt〈u1 − u2,A

μ(x,u1)(u1 − u2)〉νμdS

=

∫
G
e−kt〈u1 − u2,P(x,u1,u2, ∂u2)(u1 − u2)〉d4x,

with

P(x,u1,u2) ≡ −kA0(x,u1) + ∂μA
μ(x,u1)

+Q(x,u1,u2, ∂u2) +Q∗(x,u1,u2, ∂u2)

and Q obtained as in Theorem 12.1 using the mean value theorem. Exploiting

the positive definiteness of A0(x,u1), one can make the volume integral over G
negative. Moreover, as u1 and u2 coincide on S0 one obtains∫

S1

e−kt〈u1 − u2,A
μ(x,u1)(u1 − u2)〉νμdS

≤
∫
T
e−kt〈u1 − u2,A

μ(x,u1)(u1 − u2)〉νμdS ≤ 0,

where the last inequality follows from the negative definiteness of the maximally

dissipative boundary conditions. Thus, one obtains a contradiction with the fact

that the surface integral over the spacelike hypersurface S1 is positive unless

u1 = u2.
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12.4.3 The basic existence result for the initial boundary value

problem of symmetric hyperbolic systems

One has the following basic local existence theorem for the initial boundary value

problem with maximally dissipative boundary conditions:

Theorem 12.6 (local existence for initial boundary value problems)

Given the initial boundary value problem

A0(t, x,u)∂tu+Aα(t, x,u)∂αu = B(t, x,u), (12.21a)

T(t, x)u = q(t, x) on T , (12.21b)

u(0, x) = u�(x), on S, (12.21c)

with (12.21a) symmetric hyperbolic, A0(0, x,u�) positive definite and q, u�

smooth, assume that the boundary condition (12.21b) is maximally dissipative

with respect to the normal matrix A3(t, x,u) and that the boundary data satisfy

corner conditions at E = S ∩ T to all orders. Then, the initial boundary value

problem has a unique smooth solution u(t, x) defined on

MT = {p ∈ [0,∞)× S | 0 ≤ t(p) < T},

for some T > 0.

The reader is refereed to Guès (1990), Friedrich (1995) and Friedrich and

Nagy (1999) for details and remarks concerning the proof. As a consequence

of the localisability property of hyperbolic equations, the problem can be split

into two parts: an interior one away from the boundary in which the standard

D1

S

D2
T

D3

T

Figure 12.7 Construction of a solution to an initial boundary value problem
which is global in space by patching domains. The solution patch D1 near the
boundary T is obtained using Theorem 12.6. The existence on the domains D2

and D3 away from the boundary are obtained by means of Theorem 12.3. The
uniqueness of solutions ensures that the solution on the intersections “match
together”. Due to the compactness of the initial hypersurface it is possible to
obtain an existence time T common to all domains.
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local existence for the Cauchy problem (as described in Section 12.3) is used,

and a boundary part in which the boundary and edge conditions play a role; see

Figure 12.7. The local solutions are then patched together to obtain the solution

on the whole of MT .

Remark. The question of the stability of solutions to the initial boundary value

problem will not be analysed here. Stability questions for initial boundary value

problems are much more complicated than for the Cauchy case. At the time of

writing, there are no applications of stability results for boundary value problems

involving the conformal field equations.

12.5 Local existence for characteristic initial value problems

Characteristic initial value problems arise naturally in applications to general

relativity; see Chapter 18. The purpose of this section is to discuss a method to

analyse the local existence of solutions to the characteristic initial value problem

for symmetric hyperbolic equations due to Rendall (1990). The idea behind this

method is to reduce the characteristic problem to a standard Cauchy problem

where the standard theory of Section 12.3 can be applied.

12.5.1 General remarks on the characteristic problem

In what follows, consider a quasilinear symmetric hyperbolic system of the form

given by Equation (12.1) on R4. In contrast to the analysis of the Cauchy problem

where it is convenient to single out one of the coordinates as a time coordinate,

in the characteristic problem it is convenient to make use of coordinates adapted

to the characteristic hypersurfaces.

As discussed in Section 12.1.2, for quasilinear equations like (12.1), the notion

of characteristic hypersurfaces depends on the solution u. Thus, it is, in principle,

unclear on which hypersurfaces one can prescribe the characteristic initial data.

There are two approaches to get around this difficulty:

(i) Fix the data first, then look for the hypersurface. Choose a smooth

function v on U ⊂ R4 such that the matrices Aμ(x,v) are defined at each

point of R4, and choose a smooth function φ ∈ X (U), dφ �= 0 in U , such
that the hypersurface

N ≡ {x ∈ U | φ(x) = 0} (12.22)

is characteristic with respect to Aμ(x,v), that is, such that

det(Aμ(x,v)∂μφ) = 0.

The characteristic data on N is then given as the restriction of v to N ; that

is, u� = v|N .
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N ′ N

Z

Figure 12.8 Initial hypersurfaces N and N ′ on a characteristic initial value
problem. The set Z �= Ø is the intersection of N and N ′.

(ii) Choose the hypersurface first, then look for suitable data. Alterna-

tively, one can choose some hypersurface N in U ⊂ R4 defined as in (12.22),

and then consider only those smooth functions u� such that

det(Aμ(x,u�)∂μφ) = 0.

Approach (ii) is more natural in applications where geometric information of

the initial hypersurface is available. This point of view will be adopted in the rest

of this section.

A peculiarity of characteristic initial value problems for the system (12.1) is

that data need to be prescribed on two intersecting characteristic hypersurfaces

N and N ′; see Figure 12.8. Intuitively, this is a consequence of the existence of a

subsystem of equations in (12.1) which is intrinsic to the hypersurface N , so that

one does not have enough evolution equations transverse to the hypersurface for

all the components of u. Alternatively, one can formulate characteristic initial

value problems by prescribing initial data on a cone. This is a more technically

involved problem and will not be discussed here. The interested reader is referred

to Cagnac (1981) and Dossa (1997) for further details.

Well- and ill-posed characteristic problems

In what follows, let N and N ′ denote two hypersurfaces on U ⊂ R4 with non-

empty intersection Z ≡ N ∩ N ′. One can introduce coordinates u and v such

that, at least in a neighbourhood of N ∩N ′, one can write

N ≡ {p ∈ U |u(p) = 0}, N ′ ≡ {p ∈ U | v(p) = 0}. (12.23)

Given suitable initial data on N ∪N ′ one would like to make some statement

about the existence and the uniqueness of solutions to Equation (12.1) on some

open set

V ⊂ {p ∈ U |u(p) ≥ 0, v(p) ≥ 0}.

By symmetry, one could also look for a solution in the region

{p ∈ U |u(p) ≤ 0, v(p) ≤ 0};

see Figure 12.9 (a).
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ill-posedwell-posed

v=0 u=0
u ≥ 0, v ≥ 0

u ≤ 0, v ≤ 0

v=0 u=0

u ≥ 0, v ≤ 0 u ≤ 0, v ≥ 0

(a) (b)

Figure 12.9 Schematic representation of well-posed (a) and ill-posed (b)
characteristic initial value problems.

The problem of looking for solutions in domains of the form

V̄ ⊂ {p ∈ U |u(p) ≤ 0, v(p) ≥ 0}

or

¯̄V ⊂ {p ∈ U |u(p) ≥ 0, v(p) ≤ 0}

is ill-posed – the reason will become clear once the Rendall’s reduction procedure

to a Cauchy problem is discussed in Section 12.5.3. Under suitable circumstances,

it may be possible to establish uniqueness of a solution – but not existence – for

this ill-posed problem. These ideas have been used by Ionescu and Klainerman

(2009a,b) to obtain a new strategy to prove the uniqueness of stationary black

holes.

12.5.2 Interior equations on the characteristic hypersurfaces

As seen in Section 12.1.2, on a characteristic surface, a system of the form (12.1)

implies a subsystem of interior equations on the hypersurface. Assuming that the

freely specifiable part of u is smooth on the characteristic hypersurface, these

interior equations can be used to compute the remaining components of u and

their derivatives to any arbitrary order. For conciseness, the subsequent analysis

is restricted to the characteristic N as given by (12.23). The situation on N ′ is

completely analogous. Letting x ≡ (u, y) with y ≡ (yα) = (v, x2, x3) and using

the chain rule, Equation (12.1) can be rewritten as

σ(u, y;u,du)∂uu+Aα(u, y;u)∂αu = B(u, y;u) (12.24)

with

σ(u, y;u,du) ≡ Aμ(u, y;u)
∂u

∂xμ
.
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If N is a characteristic hypersurface for some function u�, then one has that

det
(
σ(0, y;u�,du)

)
= 0.

Let m = dimKerσ(0, y;u�,du). It follows that there exist m vectors k(i), i =

1, . . . ,m such that

σ(0, y;u�,du)k(i) = 0.

That is, the k(i) are eigenvectors of σ(0, y;u�,du) with zero eigenvalue. Thus,

one has that

〈k(i),σ(0, y;u�,du)∂uu〉 = 〈σ(0, y;u�,du)k(i), ∂uu〉 = 0,

since σ(u, y;u,du) is Hermitian as a consequence of the symmetric hyperbolicity

of (12.1). Thus, from Equation (12.24) one obtains

〈k(i),A
α(0, y;u�)∂αu�〉 = 〈k(i),B(0, y;u�)〉, i = 1, . . .m, (12.25)

a system of m (scalar) interior equations for the components of u. In what

follows, it will be assumed that the components of u have been chosen such that

the free data on N consist of N − m variables ŭ� – the so-called u-data. The

remaining m variables, ū�, constrained by the equations in (12.25), are called

the u-variables. Thus, one obtains the split

u� = (ŭ�, ū�) on N . (12.26)

In terms of this split, the scalar intrinsic equations (12.25) can be rewritten in

matricial form as

Āα(y, ŭ�, ū�)∂αū = B̄(y, ŭ�, ū�), (12.27)

for some (m ×m)-matrix valued smooth functions Āα and an m-vector valued

function B̄. For simplicity, it will assumed that the system (12.27) is a symmetric

hyperbolic system on N which can be solved, at least locally, in a neighbourhood

W ⊂ N of the two-dimensional surface Z where initial data for the u-variables

ū� is prescribed. In this way, one obtains the value of the whole components of

u� on W. Assuming that ŭ� is smooth on N , higher intrinsic derivatives can be

obtained in a similar manner by formally differentiating Equation (12.27) with

respect to ∂α an arbitrary number of times, say, M . In this manner, one obtains

a system of the form

Āα(y, ∂αŭ�, ∂αū�)∂αūα = B̄(y, ∂αŭ�, ∂αū�, ūα), (12.28)

where multi-index notation has been used so that

∂αŭ� ≡
(
ŭ�, ∂αŭ�, ∂α1

∂α2
ŭ�, . . . , ∂α1

· · · ∂αM−1
ŭ�

)
,

∂αū� ≡
(
ū�, ∂αū�, ∂α1

∂α2
ū�, . . . , ∂α1

· · · ∂αM−1
ū�

)
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and

ūα ≡ ∂α1
· · · ∂αM

ū�.

By assumption, Equation (12.28) is a symmetric hyperbolic system on N
so that by prescribing initial data for ūα on Z and assuming that the lower

order intrinsic derivatives ∂αū have been solved for, one obtains a solution in a

neighbourhood of Z on N . Thus, one can obtain, recursively, the interior partial

derivatives

u�, ∂αu�, ∂α1
∂α2

u�, . . . , ∂α1
· · · ∂αM

u� on W ⊂ N ,

with W ⊃ Z.

Now, not only the interior derivatives on N can be computed. Using the split

(12.26), the subset of N −m equations in (12.1) which are transversal to N can

be written as

Cu(0, y, ŭ�, ū�)∂uŭ� +Cα(0, y, ŭ�, ū�)∂αŭ� = D(0, y, ū�, ū), (12.29)

with Cμ smooth (N −m)× (N −m)-matrix valued functions and D an (N −m)-

vector valued function of their arguments. For clarity of the presentation it is

convenient to write ∂uŭ� ≡ (∂uŭ)�. By construction, the matrix Cμ is invertible,

so that Equation (12.29) can be regarded as an algebraic linear system of

equations determining the transversal derivatives ∂uŭ on N in terms of u�

and ∂αu�. To compute the transversal derivatives of the u-variables ū�, one

differentiates the interior system (12.27) to obtain a system of the form

Āα(y, ŭ�, ū�)∂α(∂uū�) = B̄(y, ŭ�, ∂uŭ�, ū�, ∂uū�).

As in the case of the system (12.27), the above system can be solved in some

neighbourhood of Z on N if initial data for ∂uū� are given on Z. This procedure

can be repeated to obtain higher order transversal derivatives.

The procedure described in the previous paragraphs can also be implemented

on the characteristic hypersurface N ′. By analogy to the case of N , one can split

the unknown u as

u = (ŭ′
�, ū

′
�), on N ′,

where ŭ′
� are v-data which can be specified freely on N ′ and ū′

� are v-variables

constrained by interior equations analogous to (12.28). In what follows, these

interior equations are assumed to be symmetric hyperbolic on N ′. Applying a

procedure similar to that used on N , all the derivatives of u on N ′ to any desired

order can be computed if ŭ� is suitably smooth, and the required initial data are

supplied on Z.

The discussion described in the previous paragraphs is summarised in the

following proposition:
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Proposition 12.3 (evaluation of derivatives on the initial characteristic

surface) Let N and N ′ denote two characteristic hypersurfaces for the symmet-

ric hyperbolic system (12.1) having a non-empty two-dimensional intersection

Z = N ∩N ′. If smooth u-data and v-data are prescribed, respectively, on N and

N ′ and the values of the u-variables and v-variables are prescribed on Z in such

a way that the freely specifiable data are smooth on N ∪N ′, then all derivatives

of u on N ∪N ′ to any desired order can be computed in a neighbourhood W ⊂ N
of Z.

12.5.3 Reduction to a standard Cauchy problem

The observations summarised in Proposition 12.3 are the cornerstone of a

reduction procedure of the characteristic problem on N ∪ N ′ to a standard

Cauchy problem for which the theory discussed in Section 12.3 is applicable.

This approach to analysing the characteristic initial value problem for hyperbolic

equations was originally introduced by Rendall (1990).

In what follows, suppose that characteristic initial data have been prescribed

on N ∪ N ′ in a manner consistent with Proposition 12.3 so that the values of

u and its derivatives to any order are known in a neighbourhood W of Z on

N ∪N ′. Rendall’s reduction proceeds first by constructing an extension of u to

a neighbourhood U of Z in R4. This type of extension of functions is different

from the one discussed in Section 12.3.1 where functions defined on open subsets

of a certain space are extended to functions on the whole space. In the present

case one needs to extend a function defined on a closed set of R4. There exists a

general result, Whitney’s extension theorem, which allows one to obtain the

required extension; see the Appendix to this chapter for more details.

To apply Whitney’s extension theorem to the collection of fields

{u�, (∂μu)�, (∂μ1
∂μ2

u)�, . . . , (∂μ1
· · · ∂μM

u)�} (12.30)

on W ⊂ N ∪ N ′ for some non-negative integer M , one has to verify that the

various fields in this collection are related to each other in the same way as the

derivatives of a function are related to each other in a Taylor expansion. The key

condition on these Taylor-like expansions ensuring the existence of an extension

is a requirement on the vanishing rate of the remainder of the expansions. Given

two points on N away from Z this vanishing of the remainder follows from

smoothness of the free data on the characteristic hypersurface, and the fact that

the derivative candidates in (12.30) have been obtained solving hyperbolic

differential equations on N and algebraic equations. The functions thus obtained

are smooth on N and admit a standard Taylor expansion on the characteristic

hypersurface. This also holds for two points on N ′ away from Z. Thus, the

difficulty is to verify Whitney’s condition for two points, respectively, on N and

N ′, so that one writes

x = (0, v, x2, x3), x′ = (u, 0, x′2, x′3).
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The complication arises from the fact that the characteristic initial hypersurface

N ∪N ′ is continuous only at Z. It is convenient to define a point x∗ ∈ Z as

x∗ ≡
(
0, 0, 1

2 (x
2 + x′2), 1

2 (x
3 + x′3)

)
.

Using the cosines law, it follows that there exists a constant C > 0 such that

|x− x∗|2 + |x′ − x∗|2 ≤ C|x− x′|2.

To apply Whitney’s extension theorem it is necessary to establish that the

remainder of the Taylor-like expansion about x vanishes at x′ as fast as it would

do if the function had an extension as x and x′ tend to a common point, say, x∗.

The inequality above shows that the points x and x′ cannot get closer to each

other without getting close to a point on Z. This idea, together with the Cauchy

stability of solutions to the interior equations which determine the constrained

components of the data on N ∪N ′ yields the required vanishing rate.

Applying Whitney’s extension theorem to the collection of derivative candi-

dates (12.30) one obtains a smooth function û in a neighbourhood U of Z on R4.

The function û satisfies

û = u�, ∂μû = (∂μu)�, ∂μ2
∂μ1

û = (∂μ2
∂μ1

u)�, . . . ,

on W ⊂ N ∪ N ′. In general, û is not a solution to Equation (12.1) away from

N ∪N ′. Nevertheless,

Δ ≡ Aμ(x, û)∂μû−B(x, û)

vanishes to all orders on W ⊂ N ∪N ′ and

δ ≡
{

0 u > 0, v > 0,

Δ elsewhere,

is smooth in a neighbourhood of N ∩N ′ where û exists.

The desired reduction to a Cauchy problem is now obtained by considering

the equation

Aμ(x, û+ v)∂μ(û+ v)−B(x, û+ v) = δ, (12.31)

for the unknown v together with the initial data

v� = 0, on S ≡ {p ∈ R4 |u(p) + v(p) = 0}. (12.32)

By assumption, the hypersurface S has a neighbourhood around N ∩N ′ which

is spacelike with respect to Equation (12.31) so that the Cauchy problem given

by (12.31) together with the initial data (12.32) is well posed and the theory of

Section 12.3 is readily applicable. In particular, one obtains a unique solution v

in a neighbourhood V of Z on R4; see Figure 12.10.

Outside the intersection of V with the quadrant

{p ∈ R4 |u(p) ≥ 0, v(p) ≥ 0},
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Nt

U

N

S

Figure 12.10 Schematic reduction of a characteristic initial value problem to
a Cauchy problem. The data on N ∪ N ′ (thick line) are extended by means
of Whitney’s extension theorem to a neighbourhood U (light gray region) of
Z ≡ N ∩N ′. This extension implies data for an auxiliary initial value problem
on the spacelike hypersurface S. The solution to the characteristic problem is
found in the upper and lower quadrants (dark gray areas).

Equation (12.31) takes the form

Aμ(x, û+ v)∂μ(û+ v)−B(x, û+ v) = Aμ(x, û)∂μû−B(x, û)

so that v = 0 is clearly a solution – by uniqueness, it is the only solution. In

contrast, on V ∩ {p ∈ R4 |u(p) ≥ 0, v(p) ≥ 0} one has the equation

Aμ(x, û+ v)∂μ(û+ v) = B(x, û+ v).

As û+v coincides with u� on N ∪N ′ one concludes, again by uniqueness of the

solution of the reduced Cauchy problem, that

u ≡ û+ v

is the required solution to the posed characteristic initial value problem.

The discussion in this section is summarised in the following theorem:

Theorem 12.7 (local existence for the standard characteristic problem)

Let N and N ′ denote two characteristic hypersurfaces for the symmetric

hyperbolic system (12.1) with smooth, freely specifiable data on N and N ′ as given

in Proposition 12.3. Then there exists a unique solution u to the characteristic

initial value problem in a neighbourhood V of Z with u ≥ 0, v ≥ 0.

Remark. If one were to attempt a similar reduction procedure to construct

a solution on the regions for which either u ≥ 0, v ≤ 0 or u ≤ 0, v ≥ 0,
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N

N

Z

Figure 12.11 Characteristic cones N and N ′ intersecting on a two-dimensional
hypersurface Z which is diffeomorphic to S2.

one would end up with an initial value problem with data prescribed on a

timelike hypersurface. This is an ill-posed problem. Accordingly, the original

characteristic problems are, themselves, also ill-posed.

The case Z ≈ S2

A case that occurs naturally in applications of conformal methods in general

relativity is an initial characteristic problem where the intersection Z = N∩N ′ is

diffeomorphic to the 2-sphere S2. This is the case, for example, of the intersection

of two light cones; see Figure 12.11. The method discussed in the previous section

can be adapted to this case; see Kánnár (1996b).

Assuming in what follows that Z ≈ S2, consider an atlas {(U1, φ1), (U2, φ2)} of

Z and closed sets V1 ⊂ U1 and V2 ⊂ U2 which also cover Z; that is, Z = V1∪V2.

Furthermore, define two smooth functions η1 and η2 with compact support on

R2 by

η1(x) ≡
{

1 x ∈ φ1(V1)

0 x ∈ R2 \ φ1(U1),
η2(x) ≡

{
1 x ∈ φ2(V2)

0 x ∈ R2 \ φ2(U2).

In what follows, denote by ŭ1� and ŭ2�, respectively, the restriction to U1 and

U2 of the freely specifiable data on N ∪ N ′. It follows that the functions η1ŭ1�

and η2ŭ2� define a smooth initial value data set on the initial hypersurfaces

N1 ≡ R+ ×{0}×R2 and N2 ≡ {0}×R+ ×R2 which coincides with u1� and u2�

on R+ × {0} × φ1(V1) and {0} × R+ × φ2(V2).

The intrinsic equations on N1 and N2 can now be solved in a manner similar

to what was done in Section 12.5.2. In this way, one obtains two complete

characteristic initial data sets u1� and u2� on N1 ∪ N2. The (interior and

transversal) derivatives of these data can be computed to any desired order.

Using Theorem 12.7 one obtains two solutions u1 and u2 in a neighbourhood V
of N1 ∩N2. Their restrictions to the Cauchy development of R+ × R+ × φ1(V1)

and R+ ×R+ × φ2(V2) are local solutions to the original problem. The solutions

u1 and u2 can be glued together to obtain a global solution on Z ≈ R2. As a
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consequence of the uniqueness of the local solutions u1 and u2, it follows that

their restriction to a part of the Cauchy development of R+ ×R+ × φ1(V1 ∩ V2)

and R+ ×R+ × φ2(V1 ∩ V2) – where both solutions exist – must be related by a

coordinate transformation. In this manner, one obtains a smooth function in a

neighbourhood of Z.

12.6 Concluding remarks

This chapter has provided a succinct discussion of the theory of the local exis-

tence and uniqueness of quasilinear symmetric hyperbolic evolution equations.

Of course, this is not the only way the subject can be approached. Nor are the

issues raised the only relevant ones in the analysis of the evolution problem in

general relativity. Thus, it is important to make some remarks concerning some

ideas and approaches which have been omitted.

12.6.1 Wave equations

The analysis of Section 12.1.3 gives a hint on how the theory of second-

order hyperbolic equations (wave equations) can be reduced to the analysis of

symmetric hyperbolic equations. There is, however, a well-developed theory for

the local existence and stability of systems of quasilinear equations of the form

gμν(x,u)∂μ∂νu = B(x,u, ∂u), (12.33)

which does not rely on the reduction to a first order system; see Hughes et al.

(1977). Equation (12.33) is quasilinear in the sense that gμν is the contravariant

version of a Lorentzian metric which is allowed to depend not only on the

coordinates but also on the unknowns. This “stand alone” theory relaxes the

differentiability assumptions made on the equation and data; see, for example,

Rendall (2008) for more details.

The results of Hughes et al. (1977) are similar, in spirit, to the results given in

Theorems 12.2 and 12.3: given suitably smooth initial data for Equation (12.33)

one obtains a unique solution for some existence time T ; moreover one also

has a Cauchy stability result. It should be pointed out that this theory applies,

in fact, to a class of second-order equations more general than that given in

Equation (12.33).

Systems of quasilinear wave equations of the form (12.33) arise naturally in

the reduction procedure for the Einstein field equations based on the use of wave

coordinates; see the Appendix to Chapter 14. Historically, this was the first

approach to the Cauchy problem in general relativity; see Fourès-Bruhat (1952).

12.6.2 Global existence of solutions

Conformal methods allow the reformulation of several questions on the global

existence of solutions to the Einstein field equations as a local existence question
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for symmetric hyperbolic systems. Accordingly, the issue of global existence

of solutions to symmetric hyperbolic equations has not been addressed in this

chapter. Nevertheless, this question is at the heart of current research work in

the area; see, for example, Klainerman (2008) for a discussion.

As already pointed out, the local theory of solutions to hyperbolic equations

depends solely on the properties of the principal part of the equations. To

construct a theory of global existence one has to include the lower order terms of

the equations into the analysis. Under certain circumstances, the analysis of the

eigenvalues of the matrix arising from the linearisation of the lower order terms

of a quasilinear system gives a strong indication of whether one can expect global

existence and stability of solutions; see, for example, Kreiss and Lorenz (1998).

More generally, one can identify structures in the evolution equations which

allow one to prove global existence. One of these structures is the so-called null

condition ; see, for example, Klainerman (1984).

12.7 Further reading

The theory of hyperbolic differential equations, in general, and their application

to the analysis of solutions of the Einstein field equations, in particular, is an

extensive area of research so that any list of references can provide only a partial

impression of the field. For an overview of the whole field of the theory of PDEs

and the interconnection between the various types of equations the reader is

referred to Klainerman (2008).

Readers interested in further details of the basic aspects of the theory of PDEs

are referred to the classical references by Garabedian (1986) and Courant and

Hilbert (1962). A modern introduction to the subject is given in Evans (1998).

A comprehensive exposition of the subject is given in the three-volume treatise

of Taylor (1996a,b,c). Detailed accounts of the theory of the Cauchy problem

for symmetric hyperbolic systems are discussed in the original references by

Kato (1975a); Fischer and Marsden (1972) for first-order symmetric hyperbolic

systems and Hughes et al. (1977) for second-order equations. A review of the

ideas contained in these works can be found in Kato (1975b).

A comprehensive discussion of the role of PDEs in general relativity is given

in Rendall (2008). A more compact review is Friedrich and Rendall (2000).

Complementary discussions on the topics covered in these references can be

found in Rendall (2006) and Reula (1998).

Appendix

A generalised mean value theorem

In the proofs of the uniqueness of solutions for symmetric hyperbolic systems,

Theorems 12.2 and 12.5, the following generalisation of the mean value theorem
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has been used; see Hamilton (1982). In the following result, M(N×N,C) denotes

the set of N ×N matrices with complex entries.

Lemma 12.1 Let U ⊂ RN , and let F : U → CN be a C1 map. Then there exists

a continuous map M : U × U → M(N ×N,C) such that

F(u)− F(v) = M(u,v)(u− v).

The proof is an application of the fundamental theorem of calculus.

Whitney’s extension theorem

In what follows, let α = (α1, . . . , αn), β = (β1, . . . , βn) denote multi-indices. The

factorial α! is defined as α! ≡ α1! · · ·αn!. Moreover, let

|β| ≡ β1 + · · ·+ βn.

In terms of this notation one has the following:

Theorem 12.8 (Whitney’s extension theorem) Given a non-negative

integer k, suppose {fα}, |α| < k is a collection of real valued functions defined

on a closed set A ⊂ Rn satisfying

fα(x) =
∑

|β|≤k−|α|

1

β!
fα+β(x

′)(x− x′)β +Rα(x, x
′),

for every x, x′ ∈ A and each multi-index α with |α| ≤ k such that for every

x0 ∈ A

Rα = o
(
|x− x′|k−|α|), as x, x′ → x0.

Then there exists a Ck function g : Rn → R such that

g = f0, ∂αg = fα on A.

In other words, for a closed set A, if one is given a function f and candidates

fα for its partial derivaties on A, then f can be extended to all of Rn in such a

way that the candidates are indeed the derivatives of f as long as the remainder

has a suitable behaviour. A priori, it is not possible to identify the functions fα
with the derivatives of f as A is a closed set and transversal derivatives f to ∂A
may not be defined. For further details on Theorem 12.8 and its proof, see, for

example, Abraham and Robbin (1967).
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