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ABSTRACT

In an editorial in ASTIN BULLETIN, Hans  Bühlmann (2002) suggests it is time
to change the teaching of life insurance theory towards the real life challenges
of that industry. The following note is a response to this editorial. In Bergen we
have partially taught the NUMAT, or the NUMeraire based Actuarial Teach-
ing since the beginning of the 90’s at the Norwegian School of Economics and
Business Administration (NHH). In this short note we point out that there
may be some practical problems when these principles are to be implemented.

1. ACTUARIAL MATHEMATICS VS FINANCIAL ECONOMICS

As recognized by Bühlmann the model used in Life Insurance Mathematics is
built on the two elements: (i) mortality, and (ii) time value of money. This is,
however, not sufficient to comprise a consistent pricing theory of a financial
product, such as a private life insurance contract, a pension or an annuity.
It is rather remarkable that mathematicians have, for more that 200 years,
arrogantly (or more precisely, ignorantly) disregarded any economic principles
in pricing such products (or any other insurance products for that matter).
It should not come as a surprise that it is rather natural to use the economic
theory of contracts to study — insurance contracts.

Financial pricing of life insurance contracts often starts by assuming the
existence of a market of zero coupon bonds. The market price at time zero B0(t)
of a default free unit discount bond maturing at the future time t is typically
given by the formula
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where r(t) is the spot interest rate process, and Q is a risk adjusted probability
measure equivalent to the originally given probability P. Standard references
such as Heath, Jarrow, and Morton (1992) or Duffie (2001) show that most
popular term structure models lead to this representation of the market price
of a unit disount bond.

1 In addition to the response from Hans Bühlmann, the authors appreciate the comments from Editor
Andrew Cairns.

ASTIN BULLETIN, Vol. 33, No. 2, 2003, pp. 117-122

https://doi.org/10.2143/AST.33.2.503685 Published online by Cambridge University Press

https://doi.org/10.2143/AST.33.2.503685


Without going into further technical details regarding such models, let us
consider some standard actuarial formulae for the most common life insurance
contracts. We consider first the two building blocks for life and pension insur-
ance regarding one life: pure endowment insurance and whole life insurance.
We start with the former, stating that “one unit’’ is to be paid to the insured
if he is alive at time t. Let t px be the probability that a person of age x shall
still be alive after time t. That is, if Tx represents the remaining life time of an
x year old representative insurance customer at the time of initiation of an
insurance contract, then t px =P(Tx > t). In the traditional framework, the single
premium for a pure endowment insurance is
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where d is the “force of interest’’, or technical interest rate, and mx is the death
rate of an x year old insurance buyer. On the other hand, the above formula
reads in the new language
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provided the mortality risk is “diversifiable’’, or uncorrelated with the finan-
cial risk and “unsystematic’’. The superscript M will be used to indicate marked
based valuation. Notice that the difference between (2) and (3) is how we value
the “unit’’ at the inception of the contract.

The simplest way to show relation (3) is as follows: Let I(Tx > t) denote the
indicator function of the event (Tx > t), i.e., I(Tx > t) = 1 if Tx > t and zero other-
wise. Observe that E(I(Tx > t)) = t px.

By financial theory the market value of the above contract is
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where EQ{·} denotes the expectation under an equivalent martingale measure Q.
The expectation under the measure Q can alternatively be written
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where zt is the “density’’ process, i.e., ep z ( )
t t

r s dst
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0

# is a state price. Under
the stipulated conditions the state price depends only on market variables, in
this case the interest rate process, and is thus independent of the random vari-
able Tx. By this independence we get:
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the first equality follows from independence, the second from from properties
of the probability measure Q. The result finally follows from expression (1).
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Turning to the other building block in life insurance, the whole life insurance
contract, here “a unit’’ is payable upon death. The single premium is denoted
by Ax, and is given by the formula

p e dtdA 1x t x
td
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-# (4)

in the traditional approach, while in the new approach it is given by
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2
. Here the difference between (4) and (5) stems from how

we compute time changes in the present value of the “unit’’ in the two different
models. Again it is the difference in how we value the “unit’’ in a dynamic
financial market based framework that matters.

From these two contracts all the other standard contracts could easily be
developed. One example which we use below is term insurance, i.e., “a unit” is
payable upon death, but only if death occurs before a given horizon T. The sin-
gle premium A :x T

1
e
of the term insurance contract can be expressed as
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where p e dtdA 1:x T t x
tT d= - -

0e
# , is the single premium of the endowment insur-

ance. In the new language this formula becomes
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This approach would also be the starting point for valuing guarantees, and
other financial derivatives that exist in this industry today. Other numeraires
than the zero cupon bond would have to be considered as the contracts may
be related to different portfolios of financial primitives.

The principles described above were indeed included in an elementary text-
book in insurance mathematics (see1 Aase (1996)) already in the beginning
of the 90’s. At NHH this could be easily done, in the Humboltian tradition,
since our program does not have any formal ties, or strings attached to the
actuarial profession, and could e.g., ignore any legal aspects or accounting
standards2.
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1 This book is based on lecture notes from 1993.
2 Some universities have, in our view, a too close connection to the professional industry, which in

some cases may actually hamper the natural development of the field.
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POSSIBLE PROBLEMS WITH THE NEW APPROACH

There are several scientific papers on the issues raised above3, but our aim is
not to give a complete account of these here. We would, however, like to point
out a few difficulties with the new approach.

First, the above price B0(t) could, according to Bühlmann (2002), “be read
in today’s newspaper’’. A quick look at the existing markets for bonds reveals
that this is not possible, not even in highly liquid markets such as the UK Mar-
ket, see e.g., Davis and Mataix-Pastor (2003). On the contrary, there is a seri-
ous “missing markets’’ problem, meaning that the complete term structure
for maturities longer than 1 year must typically be extracted from only a small
number (maybe not more than two or three) of bond prices.

The above formulae require, on the other hand, the functions B0(t) to be
given for all t, and moreover, this should be possible at every instant, e.g., at
every day, as time goes.

Even if this difficulty could be partially overcome technically, by smooth-
ing the yield curve (see e.g., Adams and van Deventer (1994) or Cairns (1998)),
the issuer of the insurance products would face a second problem, this time of
a pedagogical nature: Identical and long term insurance contracts may obtain
discernible different single premia on consecutive days, or even within the same
day. This difference would thus be due to daily (or intra-daily!) fluctuations in
the financial market, ceteris paribus. None of these issues arise in the traditional
approach, which is based on a so-called technical interest rate, completely sep-
arated from real world financial market conditions.

Let us illustrate the latter problem here. We use term structure data for the
Norwegian market4 from the first Friday of each month in 2002. Daily obser-
vations of the 1 year, 3 year, 5 year, and 10 year interest rates were available.
These observations were interpolated to obtain the 2 year, 4 year, and the 6-9
year interest rates. Single premiums for a 10 year pure endowment and 10 year
term insurance were calculated using the Norwegian N 1963 mortality table.
The benefit is normalized to 100.

Table 1 only reports monthly changes in single premiums, and thus, does
not illustrate the potential problem of daily or even intra-daily price fluctua-
tions. However, Table 1 does indicate that monthly price changes may vary
from 0.47% to 3.44% for pure endowment single premiums. Actually, the aver-
age monthly change in the pure endowment single premium is 1.6%. For term
insurance the monthly changes in single premiums are less, from 0.02%
to 1.87%, with an average (over the 3 age groups) of the mean montly price
change of 0.92%.

The volatility of a financial asset is the (annualized) square root of the
instantaneous variance of the logarithmic return. We estimated the volatilities

120 KNUT K. AASE AND SVEIN-ARNE PERSSON

3 The authors have been involved e.g., in the following articles: See Persson (1998); Bacinello and
Persson (2002) for pricing of life insurance under stochastic interest rates, Persson and Aase (1997);
Miltersen and Persson (1999, 2003) for guarantees in life insurance, Miltersen and Persson (1999)
also briefly discuss different numeraires.

4 Found at www.norges-bank.no.
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of the same 6 contracts used as examples in Table 1, but now based on daily
observations from 2002. The volatilities of all three pure endowment contracts
are identical and equal to 6.73%, which by the very nature of this contract is
the same as the volatility of the 10 year bond. The volatility of the term insur-
ance contracts are 3.47%, 3.45%, and 2.76%, for an insurance customer of age
of 40, 60, and 80 years, respectively, at the inception of the contract. These
volatilities are roughly of the same magnitude as the average of the volatilities
of the 1-10 year bonds, estimated to 3.26% from the data.

Also notice that 10 years is a relative short horizon for a life insurance or
pension contract. Both the problem of “missing markets” and of fluctuations
of the single premiums are expected to be more severe for contracts with longer
horizons.

CONCLUSIONS

We have pointed out that the approach of using financial market data to
price life insurance and pension contracts may lead to substantial variations
in the premiums charged. The variations are due to financial market volatility,
rather than any differences in idiosyncratic risk. The data period we have picked
is very normal, and one can easily envision substantially more discernable effects
in more volatile times, and in financial markets in other countries of the world.
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TABLE 1

Date Pure endowment Term Insurance
40 year 60 year 80 year 40 year 60 year 80 year

Jan 4, 02 52,26 42,36 9,90 3,09 16,00 62, 25
Feb 1, 02 52,02 42,16 9,85 3,06 15,82 61,53
Mar 1, 02 51,39 41,65 9,73 3,04 15,72 61,19
Apr 5, 02 50,38 40,84 9,54 3,02 15,63 61,02
May 3, 02 50,01 40,53 9,47 2,99 15,49 60,49
Jun 7, 02 48,94 39,67 9,27 2,95 15,25 59,67
Jul 5, 02 49,87 40,42 9,45 2,98 15,41 60,17
Aug 2, 02 51,58 41,81 9,77 3,03 15,70 61,05
Sep 6, 02 53,16 43,08 10,07 3,09 15,98 61,95
Oct 4, 02 52,86 42,84 10,01 3,08 15,96 61,93
Nov 1, 02 52,56 42,60 9,96 3,09 15,97 62,05
Dec 6, 02 53,46 43,33 10,13 3,12 16,15 62,63

Single premiums for pure endowment and term insurance contracts with benefit 100 and 10 years horizon for
male insurance customer with age 40, 60, and 80 years, respectively, at the inception of the contract. Single
premiums are calculated by NUMAT as follows: Equation (3) is used for the pure endowment contract. For
the term insurance contract we have discretized equation (7). First observe that ( ) ( )A f t B t dt
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# where

fx(t) = mx+t t px represents the probability density of an x-year old person’s remaining life time. Then A
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e
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discretized as 
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x x
#- = -^ h represents the probability of an x-year

old customer to die in year i after the contract is initiated. The single premiums are calculated using the
prevailing term structure from the first Friday of each month in 2002 and the N 1963 mortality table.
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