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Abstract. Supervised deep learning approaches can arti�cially increase
the resolution of microscopy images by learning a mapping between two
image resolutions or modalities. However, such methods often require a
large set of hard-to-get low-res/high-res image pairs and produce syn-
thetic images with a moderate increase in resolution. Conversely, recent
methods based on GAN latent search o�ered a drastic increase in res-
olution without the need of paired images. However, they o�er limited
reconstruction of the high-resolution image interpretable features. Here,
we propose a robust super-resolution method based on regularized la-
tent search (RLS) that o�ers an actionable balance between �delity to
the ground-truth and realism of the recovered image given a distribution
prior. The latter allows to split the analysis of a low-resolution image
into a computational super-resolution task performed by deep learning
followed by a quanti�cation task performed by a handcrafted algorithm
and based on interpretable biological features. This two-step process
holds potential for various applications such as diagnostics on mobile
devices, where the main aim is not to recover the high-resolution details
of a speci�c sample but rather to obtain high-resolution images that
preserve explainable and quanti�able di�erences between conditions.

Keywords: Microscopy· Super-resolution· Generative-prior· Diagnostic.

1 Introduction

Various deep learning models have shown excellent performance in the single-
image super-resolution (SISR) task which aims to restore a high-resolution (HR)
image from its low-resolution (LR) counterpart. Deep-learning SISR models have
been applied few years ago to enhance the resolution of microscopy images [1�3].
More recently, studies have explored image-to-image translation models, that are
trained to learn a parameterized function between two di�erent image resolutions
or modalities. These supervised approaches require a large number of paired
images and rely on generative models that output arti�cial images [4]. These
arti�cial images were accepted by the community as real mainly because they
were measured as approaching real image instances. However, for the latter to
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hold, these approaches only o�ered a moderate increase in resolution of up to
4x.

Importantly, learning a parameterized mapping from a low- to a high-resolution
image is an ill-posed problem: a single low-resolution image corresponds to in-
�nitely many highly resolved ones. Therefore, the super-resolution task cannot
only consist of maximizing the �delity of the recovered high-resolution image;
it must be further constrained to be well-posed. In this work, we propose to
constrain this task by imposing that the reconstructed super-resolution image
be realistic, i.e. , belongs to a given image distribution, a principle that is also
explored by utilizing gradient distribution prior in the context of biomedical im-
ages [5]. In short, on the one hand, �delity refers to recovering a super-resolution
image that, once downgraded, is close to the original image. On the other hand,
realism refers to keeping the image within a given image domain.

In this paper, we aim to better de�ne the super-resolution task by enforcing
the solution to be a trade-o� between �delity to the original low-resolution image
and realism, that includes the preservation of biologically relevant content, which
we describe as �interpretable features�. Assessing these features is essential for
accurate phenotypic interpretation and discrimination. By guiding the super-
resolution process towards this end, we generate images that are both faithful
to the sample and biologically interpretable and quanti�able. In this way, we
anticipate super-resolution in biology could exploit more than recovering only
the details of a given sample, but bene�t from features measured over a set of
recovered images.

Our approach, Regularized Latent Search (RLS), consists of a regularized
search in the latent space of a pre-trained generative model for high-resolution
images. By doing so, we both suppress the need for paired images and make the
problem well-posed as we search for the closest image a generator can produce
that, when down-scaled, matches the low-resolution image input. Moreover, as
we keep the super-resolved image in the original domain, instead of producing
a moderate increase in resolution, we propose to push further the synthesis: we
anticipate that creating very highly resolved (up to 32x) but controlled arti�cial
images could be of great interest for applications such as diagnostic. This is
because what is at stake, in this case, is the preservation of measurable and
interpretable features of microscopy images, not the absolute matching with real
image samples.

Similar to image-to-image translation methods like CycleGAN[6], which op-
erate without the need for paired images, our method di�erentiates itself in its
approach to super-resolution. It is speci�cally designed to address the ill-posed
nature of super-resolution by utilizing a GAN's latent space to identify plausible
HR images for any given LR input. Once the model is trained, it enables the
super-resolution of any LR image with just an adjustment in the degradation
function during inference. Unlike CycleGAN, which is deterministic and tailored
for speci�c domain translations requiring individual models for each task, our
method o�ers versatility and is suitable for a broad spectrum of super-resolution
tasks. It eliminates the need to learn domain-speci�c features and is intended for
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widespread application in super-resolution, capable of being trained on a single
dataset to enhance any LR image.

2 Related Work and Background

2.1 Super-resolution of microscopy images

While optical super-resolution techniques such as STED [7] and PALM [8] can
break the di�raction limit, they are limited by the need for specialized equip-
ment and complex sample preparation. Computational super-resolution meth-
ods on the other hand, while they rely on existing training data, can represent a
cheap way to enhance the resolution of images acquired with conventional micro-
scopes. Several approaches were developed to address the problem of computa-
tional super-resolution of microscopy images. Deep-STORM [9] uses an encoder-
decoder network to localize emitters in super-resolved images. Content-aware
image restoration [1] uses a U-Net architecture and is trained with low signal-
to-noise ratio (input) and high signal-to-noise ratio (target) image pairs. These
approaches produced interesting results but recovered images often lacking high-
frequency details due to the MSE loss. To balance this issue, other approaches
such as ANNA-PALM [3] are based on generative adversarial network (GAN).
The authors trained a U-Net, and in contrast with Deep-STORM, a combi-
nation of pixel-wise reconstruction loss and adversarial losses is used to obtain
image reconstructions of better quality. Using a similar network architecture and
training loss, Wang et al. [2] achieved super-resolution in �uorescence microscopy
across di�erent modalities. Overall, using an adversarial loss results in output
images that are sharper and of better perceptual quality and these methods
demonstrated the potential of deep learning to improve the spatial resolution of
�uorescence microscopy images. While the deep learning architectures and the
applications of these methods di�er, they all require hard-to-get paired image
data for training and o�er a moderate increase in resolution of up to 4x.

It is essential to note that computational super-resolution techniques e�ec-
tively enhance the resolution of images by optimizing the use of available data
in the original images. However, these methods are constrained by the existing
information and cannot add details beyond what the original optical systems
could capture.

2.2 Style-based generative models

StyleGAN models [10, 11] are well-known for their ability to generate highly re-
alistic images. The StyleGAN architecture consists of two sub-networks: a map-
ping network denoted by Gm : Rd → Rd, and a synthesis network consisting
of L layers denoted by Gs : RL×d → Rn. Here, d represents the dimensional-
ity of the latent space. The mapping network takes a sample z ∈ Rd from a
standard normal distribution and maps it to a vector w ∈ W, where W denotes
the intermediate latent space. StyleGAN2 introduced path length penalty, which
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encourages a �xed-size step in w to result in a �xed-magnitude change in the im-
age. The regularization term is computed using the Jacobian determinant, and
penalizing changes in it promotes the generation of smoother and more realistic
images. L copies of the d-dimensional vector w are fed to the L-layer synthesis
network Gs, with each copy representing the input to the corresponding layer of
Gs. The Gs network controls the level of detail in the generated image at each
layer. Individual modi�cation of these L layers, by adjusting the latent vector
copy of w for each layer, extends the latent space intoW+. This extended latent
space enhances the model's capability for accurate image reconstruction, which
is vital for super-resolution tasks, o�ering more nuanced control over the image
generation process [12, 13].

2.3 GAN-based high-resolution image reconstruction

The problem of obtaining a super-resolution (SR) image of dimension n from
a low resolved (LR) image of dimension m is ill-posed as, for a non-invertible
forward operator D with m < n, there are in�nitely many high resolution (HR)
images that match a given LR image. Thus the reconstruction procedure must be
further constrained by prior information to better de�ne the objective and lead
to a stable solution. One such prior consisted of considering the reconstructed
HR image to be part of a given domain. First, the distribution of HR images is
learned in an unsupervised fashion, thanks to a GAN, then the latent space of
this trained GAN is searched to �nd a latent vector producing an HR image that,
once down-scaled, is the closest to the LR image input. GAN-prior-based images
reconstruction was �rst introduced by Bora et al. [14] and further improved using
StyleGAN [10, 11] by Menon et al. in PULSE [15] by constraining the search to
remain on the image manifold. To this end, PULSE and two other studies [16,
13] use an invertible transformation of the intermediate latent space W+ which
includes a leaky recti�ed linear unit (ReLU) [17] followed by an a�ne whitening
transformation, so that transformed latent vectors approximately followed the
standard Gaussian distribution N (0, Id). Sampled vectors are then constrained
to lie around a hypersphere with radius

√
d hypothesizing that most of the mass

of a high-dimensional Gaussian distribution is located at or near
√
dSd−1, where

Sd−1 is the d-dimensional unit hypersphere. Constraining samples to lie in a
dense area of the StyleGAN style distribution resulted in increased realism of
the generated images.

Although the above approach showed major improvements over previous
work, it also presents important caveats that in practice led to image artifacts.
Here we show that transforming the intermediate latent space in this way does
not lead to an accurate standard Gaussian distribution, and so prevents proper
regularization based on this hypothesis. Moreover, as the search is strictly lim-
ited to the spherical surface Sd−1, this limitation may prevent the search from
reaching the closest reconstruction of the high-resolution image.

In this work, we regularize the search in the latent space for a latent code
located in �healthy� regions of the latent space. In this way, the system is con-
strained to produce images that belong to the original image domain StyleGAN
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was trained on. To do so, we take advantage of normalizing �ow to gaussianize
the latent style sample distribution which leads to a much closer standard Gaus-
sian distribution. We then use this revertible transformation to regularize the
search in W+ such that it remains in a high-density area of the style vector dis-
tribution. We then show experimentally that the latter produces reconstructed
images that are not only realistic but also more faithful to the original HR image.

3 Method

3.1 Super-resolution by Regularized Latent Search

Super-resolution aims to reconstruct an unknown high resolution-image x ∈
Rn×n from a low-resolution image y ∈ Rm×m, which is related to the HR image
by a down-scaling process described by y = D(x) + δ, where D : Rn×n →
Rm×m is a non-invertible down-scaling forward operator and δ is an independent
noise with distribution pδ. We can formulate this task in terms of Maximum A
Posteriori (MAP) estimation [18]. Given an LR image y, our goal is to recover
the HR image x as the MAP estimate of the conditional distribution pG(x|y):

argmax
x

log pG(x|y) = argmax
x

[log pδ(y − D(x)) + log pG(x)]. (1)

The �rst term is the likelihood term describing the image degradation process
D and the second is the image prior, describing the manifold of real HR images.

Image prior Let Gs be the synthesis network of a StyleGAN [11] pretrained on
the considered image domain. Gs takes as input w, produced by the mapping
network, and outputs an image. The image prior log pG(x) can be expressed with
respect to the latent variables w:

log pG(Gs(w)) = log pw(w) + log |det JG−1
s
(w)|. (2)

The second term can be dropped as the path length penalty in StyleGAN2
implies that the Jacobian determinant is constant for allw. The �rst term pw(w)
is the image prior we de�ne on w ∈ W+ by:

log pw(w) = λwPw + λcPcross (3)

where:

• Pw is a prior that keeps w in the area of high density in W+: Pw =
1
L

∑L
i=1 log pF(wi) , where pF(w) is estimated by a normalizing �ow model

F explained in further detail below.
• Pcross is a pairwise euclidean distance prior on w = [w1, . . . ,wL] ∈ W+

that ensures w ∈ W+ remains close to the trained manifold in W: Pcross =
−
∑L−1
i=1

∑L
j=i+1 ||wi −wj ||22

• λw and λc are hyperparameters that control the relative importance of the
two priors.
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Normalizing Flow Using a sequence of invertible mappings, a Normalizing
Flow F : Rd → Rd is a transformation of an unknown complex distribution into
a simple probability distribution that is easy to sample from and whose density
is easy to evaluate such as standard Gaussian [19].

Let z = F(w) with probability density function p(z). Using the change-of-
variable formula, we can express the log-density of w by [20]:

log pF(w) = log p(z) + log |det JF(w)|, z = F(w) (4)

where JF(w) is the Jacobian of F evaluated at w. In practice the Jacobian
determinant in Eq. (4) should be easy to compute so that the density pF(w)
can be evaluated. Furthermore, as a generative model, the invertibility of F
allows new samples w = F−1(z) to be drawn through sampling from the base
distribution. In the literature, several �ow models were proposed, such as Real
Non-volume Preserving Flow [21] and Masked Auto-regressive Flow (MAF) [22].

Optimization process In the likelihood term presented in Eq. (1), we assume
that the noise follows a Laplace distribution, that is δ ∼ Laplace(0, λlI). This
assumption simpli�es the log-density of δ to: log pδ(δ) = −||δ||1 −C, where C is
a constant. Thus the optimization problem in Eq. (1) is e�ectively transformed
into an optimization over w, resulting in the �nal objective function:

ŵ = argmin
w
||y − D(Gs(w))||1 − log pw(w) (5)

The selection of the Laplace distribution for noise modeling is favored due to
its simple form, which simpli�es the log-density function and makes the loss func-
tion easier to optimize. Moreover, the L1 norm, which arises in the log-density of
the Laplace distribution, o�ers greater robustness to outliers than the L2 norm.
This characteristic is particularly bene�cial in the context of super-resolution,
where the ability to handle irregular noise or artifacts in low-resolution images
is crucial, especially given the challenges commonly associated with microscopy
data.

3.2 Evaluation of the Gaussianization process

To assess the quality of the gaussianization process, we sampled 5000 vectors
z ∼ N (0, Id). These vectors were then transformed into style vectors w = Gm(z)
using the mapping network Gm of StyleGAN. We then gaussianized the distribu-
tion of W using alternatively PULSE and our method. The quality of the gaus-
sianization process was evaluated by computing the squared norm for all of these
vectors within the transformed distribution (see Fig. 1). Ideally, the squared
norm of the standard Gaussian distribution Z should follow a chi-squared dis-
tribution i.e. ||zn||22 ∼ χ2

d and thus forms a narrow distribution centered around
d = 512, the dimensionality of W. We can see that this is the case for Z which
is Gaussian. However, the W does not follow this pattern, which is inconsistent
with the prior assumption held by BRGM [18]. Furthermore, while the PULSE
method results in a broader distribution, our method more accurately narrows
the squared norm distribution to match the expected chi-squared distribution.
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Fig. 1: Distribution analysis of squared L2 norms demonstrating the gaussian-
ization of latent style vectors. The graph compares the density of squared norms
from the original Z space (blue), untransformed W space (orange), and the
distributions resulting from the PULSE (green) and our method (red).

4 Experiments

4.1 Experimental settings

A critical aspect of our study was the necessity to work with high downscaling
factors, such as 16x and 32x, which are central to our application scenario. These
factors are not commonly used in the literature, to the best of our knowledge
there are no experimental datasets available with such high downscaling factors.
Most existing datasets typically focus on moderate downscaling factors of 2x or
4x, which is not aligned with the needs of our study, where we aim to address
more extreme cases of resolution enhancement. Therefore, we had to generate
our own low-resolution images.

As for implementation details, we began by training a StyleGAN2-ADA [23]
model on a subset of the BBBC021 dataset [24, 25] which comprises cells treated
with drugs acquired following the cell painting assay [26]. That is, cells were
�uorescently stained with markers for F-actin, B-tubulin, and DNA, as described
in [26]. The dataset comprises wide-�eld epi-�uorescence images, captured using
the automated ImageXpress imaging platform. From this dataset, we extracted
images of size 128× 128 centered around each cell nucleus and used 400 images
per compound treatment (approximately 28,000 in total) to train StyleGAN2-
ADA [23]. We then proceeded to generate 100000 random samples z ∼ N (0, Id)
and used their associated style vector w = Gm(z) to train the normalizing �ow
model. We opted for MAF, as it tends to perform better than RealNVP for
density estimation tasks. Our normalizing �ow model comprised �ve �ow blocks
with all hidden dimensions set to 1024. For super resolving the images using our
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regularized latent search algorithm, we employed an Adam optimizer over 200
iterations with a learning rate of 0.5 and initialized the search using the mean
of 10,000 randomly generated latent vectors.

To �ne-tune the regularization parameters λw and λc, we empirically evalu-
ated a spectrum of values, eventually setting them to 5e-5 and 0.01, respectively.
This process revealed that the algorithm's performance remained relatively sta-
ble across a broad range of these parameters, indicating a lack of sensitivity as
long as the values fell within a speci�c boundary. Precisely, we observed optimal
performance when λw was between 1e-6 and 5e-4, and λc ranged from 0.005 to
0.05. These �ndings suggest that while the exact values of λw and λc are �ex-
ible, maintaining them within these determined ranges ensures the algorithm
functions e�ectively.
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Fig. 2: Qualitative comparison of super-resolution reconstructions on the
BBBC021 dataset: visualizing the performance of RLS against baseline meth-
ods in reconstructing cellular structures and phenotypes under negative control
(DMSO) and various treatment conditions at a 16x upscaling factor.

For evaluation, we used 100 random samples from various compound treat-
ments, ensuring samples were not included in the training of the generative
network. We simulated degraded images from these high-resolution images us-
ing bicubic down-sampling, which is a common choice in the literature. We then
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compared the results of our algorithm with those of Pix2Pix and two state-of-
the-art unsupervised image reconstruction methods based on StyleGAN inver-
sion: PULSE [15] and BRGM [18]. For the baseline methods, we used the same
parameter settings reported by the original papers.

4.2 Results

RLS recovers high-quality cell images We reconstructed images using RLS
and compared them to images generated with baseline methods. The results of
this comparison is presented in Fig. 2. At these high upscaling factors, due to the
lack of proper regularization, the competing methods fail to produce reasonable
cellular details and tend to produce images that can be accurately downscaled to
the LR image at the cost of generating distorted cellular structures. In contrast,
our approach produces highly realistic images for most examples and can re-
produce cell phenotypes induced by compound treatment even if the �ne-grain
details are not similar. For instance, when reconstructing the images of cells
treated with Nocodazole, a known microtubule destabilizer, RLS captures the
typical fragmented microtubule phenotype, resulting in a more accurate texture.
Reconstructing images of cells at higher resolution obviously provides access to
�ner-grain measurable features.

To quantitatively assess this gain in performance, we evaluate the SR im-
ages using Frechet Inception Distance (FID) [27] and Kernel Inception Distance
(KID) [28] to measure the discrepancy between the real HR images and the re-
constructed one. As expected, the scores of FID and KID listed in Table 1 show
that with both upscaling factors, our method signi�cantly improves realism.

Upscaling factor Method FID↓ KID(×103)↓ MSSIM↑ LPIPS↓ PSNR↑

32x

Pix2Pix [29] 67.141 66.515 0.507 0.420 15.846
PULSE [15] 13.629 9.056 0.526 0.378 16.469
BRGM [18] 15.862 13.293 0.400 0.475 14.207
RLS 7.571 3.209 0.528 0.343 16.536

16x

Pix2Pix [29] 45.503 41.700 0.708 0.274 19.983
PULSE [15] 17.354 14.937 0.723 0.244 20.806

BRGM [18] 19.862 17.254 0.608 0.301 17.914
RLS 6.983 3.347 0.660 0.262 19.177

Table 1: Quantitative evaluation of RLS and baseline methods for super-
resolution on the BBBC021 dataset at 32x and 16x upscaling factors. The best
and the second-best are highlighted in bold and italic respectively.

RLS achieves better perceptual scores We evaluated the reconstruction ac-
curacy of RLS using LPIPS [30], PSNR, and MS−SSIM [31] metrics to compare
the reconstructed SR images to the real HR images. As expected, RLS did not
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achieve the best pixel-wise reconstruction losses but achieved either the lowest
or the second-lowest LPIPS scores on both 32x and 16x upscaling factors. The
latter suggested that while the recovered SR image is not exactly the same as
the HR image, it is perceptually closer. It is worth noting that although Pix2Pix
produced images with high PSNR and MSSIM scores, it struggled to accurately
reconstruct cellular details. This observation highlights the fact that PSNR and
SSIM metrics may not be fully appropriate to evaluate the performances of the
super-resolution tasks.

DMSO TNFα

LR SR GT LR SR GT

Fig. 3: Visual examples of super-resolving Translocation assay low-resolution im-
ages at a 32x upscaling factor under negative control (DMSO) and TNFα treat-
ment conditions: left: low-resolution image, middle: super-resolution reconstruc-
tion, right: ground truth.

RLS preserves interpretable features RLS achieves a balance between real-
ism and �delity when super-resolving microscopy images. However, as any deep
learning method for super-resolution, it cannot generate details it would not
have seen during training. Therefore it cannot be used in a context where novel
events can be expected. However, it could possibly be used to perform measure-
ments to quantify expected phenotypic changes. This is the case for many assays
used in basic research in biology. It is also the case in diagnostics such as par-
asitemia for instance where the tool must assess if a parasite is present or not.
Instead of relying on a blind classi�cation or regression of low-resolution images,
these tasks on low-resolution images in such a context could be decomposed in
two steps. A �rst step based on our deep learning approach would consist of
reconstructing a high-resolution image, while a second step would use a dedi-
cated handcrafted analysis to quantify a phenotypic feature, making the analysis
explicitly interpretable.

To evaluate to what degree the information conveyed by the SR images can
be used for such quantitative assays and maybe later for interpretable diagnos-
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tics, we applied it to two assays that allowed straightforward quanti�cation of
�interpretable features� on HR images but not on LR images. Here, interpretable
features refer to the measurable and explainable phenotypic changes crucial for
biological assessment, such as the nucleo-cytoplasmic ratio in response to TNFα
treatment and alterations in the Golgi apparatus morphology in reaction to
nocodazole. Quantitative analysis was conducted on the SR images to assess the
reconstruction of these features, and results were compared against those ob-
tained from HR images as well as baseline methods, including BRGM, PULSE,
and an unregularized latent search ('w/o regu.').

The �rst assay aimed to track the location of the NF-κB (nuclear factor kappa
B) protein within the cell. Upon treatment with TNFα, a pro-in�ammatory cy-
tokine, the protein moves to the nucleus, causing a shift in �uorescence signal
from the cytoplasm to the nuclear area, resulting in bright green nuclei. We
observed that the nucleo-cytoplasmic �uorescence ratio measured on 1000 high-
resolution (HR) treated and untreated images, could be replicated when com-
puted from super-resolved (SR) images (Fig. 5a). We also provided some visual
examples of super-resolving the low-resolution images i.e. the �rst step in Fig. 3
, which shows that our method can reconstruct images of wild-type and treated
cell images obtained with this common assay.

The second assay we conducted aimed to monitor changes in the morphology
of the Golgi apparatus. When cells are exposed to nocodazole, microtubules
disassemble, causing the Golgi, originally located near the center of the cell, to
break up into smaller stacks. Fig. 4 shows that a standard assay such as the
nocodazole-induced Golgi scattering (green) were reproduced with SR images.
Moreover, as illustrated in Fig. 5b, when computed only from SR images, a
straightforward average spot size di�erence measured on 1000 HR treated and
1000 untreated images could be retrieved.

Furthermore, we utilized cells treated with DMSO as negative controls and
cells treated with nocodazole (or TNF in the case of the translocation assay) as
positive controls. We developed a classi�er trained on high-resolution (HR) im-
ages to distinguish between the two phenotypes and evaluated its performance
on both HR and super-resolved (SR) images, ensuring that the datasets for GAN
training and classi�er training were distinct to maintain the integrity of our re-
sults. Additionally, we trained a separate classi�er on low-resolution (LR) images
for phenotype di�erentiation, and its testing was con�ned to LR images. The
results as shown in Table 2, indicate that the super-resolution operation does
not degrade the discriminative signal contained in LR images, the classi�cation
accuracy is about the same on SR and LR images. Furthermore, we show ev-
idence that this signal di�erence can be retrieved when quantifying the same
interpretable feature variation present in HR images using handcrafted image
analysis (see Fig. 5)

It is worth noting that in Fig. 5 the similarity in performance between the
�w/o regu� model and RLS during the Translocation assay reveals an interesting
insight. It suggests that, for this speci�c assay, the additional regularization does
not signi�cantly change the outcome. However, it's important to note that this
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DMSO Nocodazole

LR SR GT LR SR GT

Fig. 4: Super-resolution of images from a Golgi assay at a 16x upscaling factor
under negative control (DMSO) and Nocodazole treatment conditions. The left
column shows the low-resolution images, the middle column shows the super-
resolution reconstructions and the right column shows the ground truth images.

assay was designed to evaluate strong phenotypic changes where the expected
changes are substantial and easy to detect. In this case, the non-regulated ver-
sion can also accurately capture the phenotypic changes, since the di�erences
between the images are large. This is evidenced by the comparative classi�ca-
tion accuracies in Table 2 for the Translocation assay, where RLS achieves similar
performance to the �w/o regu� version and the baseline methods. The advantages
of regularization in RLS are more apparent in assays with more subtle pheno-
typic variations, where detecting nuanced di�erences is more challenging. For
example, in the Golgi morphology assay, where detecting changes requires more
detailed analysis, RLS's regularization reconstructs realistic images that more
faithfully represent biological structures required for detailed quantitative eval-
uations. Furthermore, considering the overall performance, RLS demonstrates
consistent and enhanced performance compared to both the baselines and the
non-regularized version, as indicated by the superior classi�cation results in Ta-
ble 2. This suggests that RLS is a more robust method for super-resolving mi-
croscopy images, especially in assays where the phenotypic changes are subtle.
Overall, the experiments con�rm that the quality of super-resolved images is ad-

LR BRGM PULSE w/o Regu. RLS HR

DMSO vs TNFα (32x) 85.60 79.20 85.60 85.80 87.00 97.60
DMSO vs Nocodazole (16x) 72.80 53.00 62.60 67.80 74.20 96.80

Table 2: Comparison of classi�cation accuracy for identifying phenotypic changes
between negative control (DMSO) and positive control (TNFα and Nocodazole
and Nocodazole conditions) in the translocation and Golgi assays respectively,
using super-resolved (SR) images and high-resolution (HR) images as a bench-
mark.
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(a) Translocation (32x) (b) Golgi (16x)

Fig. 5: Making interpretable measurements from low-resolution images: �rst in-
creasing the resolution by a super-resolution method, then measuring a hand-
crafted interpretable feature. Each pair in the boxplots displays the distribu-
tion of handcrafted interpretable measurements, where the solid box represents
the negative control (DMSO) and the dotted box signi�es the positive con-
trols (TNFα for translocation and Nocodazole for Golgi), across various super-
resolution methods including RLS, BRGM, PULSE and �w/o regu� alongside
with the high-resolution (HR) images for benchmarking. (a) Translocation ra-
tio measurement: The y-axis quanti�es the translocation ratio, an interpretable
metric indicating TNF-induced NFκB translocation (green). The translocation
ratio can be di�erentiated between two conditions from real high-resolution im-
ages (HR), but also from super-resolution images (SR). (b)Mean spot area mea-
surement: The y-axis quanti�es the mean spot area, an interpretable metric indi-
cating nocodazole-induced Golgi spreading (green), distinguishable between two
conditions from real high-resolution images (HR), but also from super-resolution
images (SR) reconstructed by our method.

equate for further analysis. Our method enables a two-stage process: employing
deep learning for the challenging task of super-resolution followed by a hand-
crafted, interpretable method for the subsequent quantitative measurements.

4.3 Robustness

In opposition to supervised methods that are sensitive to the input image do-
main, this approach is not restricted to a particular degradation operator that
is used during training. To evaluate this aspect we applied additional degrada-
tion operators such as Gaussian noise, Salt and Pepper, and Gaussian blur to a
bicubic downscaled image DS before reconstruction. As depicted in Fig. 6, the
reconstruction closely matches the DS image. This result validates our choice of
using the bicubic downscaling operator during training instead of more compli-
cated speci�c degradation.

https://doi.org/10.1017/S2633903X24000084 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000084


14 Marzieh Gheisari and Auguste Genovesio

GT DS
Gaussian Noise

(σ = 0.05)

Gaussian Noise

(σ = 0.1)

Salt&Pepper

(σ = 0.05)

Gaussian Blur

(σ = 0.5)

D
M
S
O

C
y
t
o
c
h
a
la
s
in

B

1
0
µ
M

A
p
h
id
ic
o
li
n

1
0
µ
M

Fig. 6: Evaluation of RLS performance under various degradation conditions:
images downscaled by bicubic method are further altered with Gaussian noise,
Salt and Pepper noise, and Gaussian blur to assess the stability of the proposed
method across a range of image perturbations (at a 16x upscaling factor).

4.4 Ablation study

Fig. 7 demonstrates ablation experiments highlighting the impact of the compo-
nents of our image prior. First, �w/o Regu.� searches the latent space without
any regularization for the image that, once downscaled matches the LR image.
The second variant is denoted �w/o Pw�, i.e. , the image prior does not include
the prior term Pw. Similarly, �w/o Pcross� refer to the suppression of Pcross.

To evaluate the three variants, we use the same set of parameters described
in Section 4.1. One can see that searching the latent space without any regu-
larization produces images that do not necessarily belong to the original image
manifold and therefore do not appear realistic. It also tends to generate images
that are accurately downscaled to the LR image but at the cost of generating
distorted images when Pcross or Pw is discarded. This implies that both priors
play an important role in generating realistic details.
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Variant FID↓PSNR↑
w/o Regu.14.6920.56
w/o pw 7.96 20.21
w/o pcross 8.99 21.24
RLS 6.98 19.18

Fig. 7: Ablation study showcasing the impact of regularization components on
RLS performance, with qualitative results in the left column and quantitative
results in the right column. The variants include: �w/o Regu.� (searching the
latent space without any regularization), �w/o pw� (the image prior does not
include the prior term pw), �w/o pcross� (the image prior does not include the
prior term pcross), and �RLS� (the full RLS model) (at a 16x upscaling factor).

4.5 Uncertainty.

An important challenge of the super-resolution task is that it is an ill-posed
problem. Although we can improve this aspect by using an image prior con-
straint, several closely related highly resolved images could still be consistent
with a single LR image. To generate n realistic SR images, we sample n latent
codes denoted as w1,w2, . . . ,wn. We assume that their distribution follows a
Gaussian distribution N (µ, σ), where the parameter σ follows an inverse gamma
distribution. Using the Bayes rule, we estimate the distribution's parameters by:

max
µ,σ

[
n∑
i=1

log p(wi|y)−
n

2
log σ2 − n

2
log(2π)− 1

2σ2

n∑
i=1

(wi − µ)2 + log p(σ)

]

Here, the �rst term is the log-likelihood of the posterior distribution of p(w|y),
which is de�ned in Eq. (5), the second term is the regularization term, which
penalizes large values of σ and log p(σ) is the log prior distribution of σ. Fig. 8
displays multiple solutions for a given LR image we can obtain with our ap-
proach. Sampling close variations of HR images from a single LR input can be
used to enhance the robustness of the estimation of an image-based quantitative
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feature by reducing the e�ects of noise or artifacts that may exist in the input
LR image.

LR GT SR1 SR2 SR3 SR4 SR5

Fig. 8: Visualizing the ill-posed nature of the super-resolution task and the uncer-
tainty associated with SR reconstruction. Five distinct SR images (SR1 to SR5)
are generated for each LR image by sampling �ve di�erent latent codes from the
latent space, alongside the ground truth (GT) (at a 16x upscaling factor).

5 Conclusion

In this paper, we propose a robust super-resolution method based on regularized
latent search within a pre-trained StyleGAN. It does not require coupled image
pairs for training and constraints the super-resolution task to a given image prior
to o�er a trade-o� between �delity and realism of the SR reconstruction. Further-
more, we show that such a method could be used to split analyses, such as the
classi�cation of low-resolution images, into a reconstruction of super-resolution
images performed by deep learning and a simple dedicated handcrafted analysis
of an interpretable feature.

The latter could be used for instance for rapid diagnostic based on smart-
phone directly available on the �eld. In this case, a dataset of low-resolution
images of slides acquired from fast and/or cheap solutions available on the �eld
could be coupled with the acquisition of the same slides using high-end expen-
sive high-resolution microscopes with limited access. In this application, high-
resolution images could then be reconstructed directly on the �eld to perform
an explainable diagnostic such as a parasite count.

6 Limitations and future work

One common challenge with deep learning-based methods, especially those using
generative priors like in our study, is their limited generalizability to unfamil-
iar and unseen data. Our approach, which utilizes StyleGAN for unsupervised
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learning within a speci�c domain, may not encompass the full diversity encoun-
tered in real-world scenarios. To enhance the model's generalizability, strategies
such as incorporating data augmentation to introduce training data variability,
or applying transfer learning for domain adaptation, could be bene�cial.
Our current �ndings serve as an initial validation of our method's capabilities.
However, we acknowledge the necessity of further evaluations using more var-
ied datasets, encompassing a broader range of imaging techniques and sample
preparation methods. The absence of such diverse experimental data in our cur-
rent research is due to the speci�c requirement of our study to explore super-
resolution at high upscaling factors, like 16x and 32x. These factors, which are
crucial to our application's needs, are rarely addressed in the available litera-
ture, and to our knowledge, datasets with such extreme upscaling factors are
not yet available. Existing datasets generally focus on more moderate upscaling
factors, such as 2x or 4x, which do not meet the demands of our research that
targets signi�cantly higher levels of resolution enhancement. We are committed
to extending our validation to include real-world imaging conditions as soon as
datasets meeting our high upscaling factor requirements become available. This
will enable a more comprehensive assessment of our method's applicability and
performance in practical scenarios.

7 Acknowledgments

We thank GENCI for the access to the HPC resources of IDRIS under the
allocation 2020-AD011011495.

8 Competing interests

The authors declare no competing interests.

9 Author contributions

MG proposed and implemented the RLS method. AG hypothesized that RLS
reconstructs interpretable features and suggested experiments to validate it. MG
run the experiments. MG and AG wrote the manuscript.

10 Funding statement

This work was supported by the ANR VISUALPSEUDOTIME, ANR�10�LABX�54
MEMOLIFE and ANR�10 IDEX 0001�02 PSL* Université Paris.

11 Data availability

We used the BBBC021 image set available from the Broad Bioimage Benchmark
Collection (https://bbbc.broadinstitute.org/).

https://doi.org/10.1017/S2633903X24000084 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000084


18 Marzieh Gheisari and Auguste Genovesio

References

1. Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas Müller, Alexandr Dibrov,
Akanksha Jain, Benjamin Wilhelm, Deborah Schmidt, Coleman Broaddus, Siân
Culley, et al. Content-aware image restoration: pushing the limits of �uorescence
microscopy. Nature methods, 15(12):1090�1097, 2018.

2. Hongda Wang, Yair Rivenson, Yiyin Jin, Zhensong Wei, Ronald Gao, Harun Gü-
nayd�n, Laurent A Bentolila, Comert Kural, and Aydogan Ozcan. Deep learning
enables cross-modality super-resolution in �uorescence microscopy. Nature meth-
ods, 16(1):103�110, 2019.

3. Wei Ouyang, Andrey Aristov, Mickaël Lelek, Xian Hao, and Christophe Zimmer.
Deep learning massively accelerates super-resolution localization microscopy. Na-
ture biotechnology, 36(5):460�468, 2018.

4. David P Ho�man, Isaac Slavitt, and Casey A Fitzpatrick. The promise and peril
of deep learning in microscopy. Nature methods, 18(2):131�132, 2021.

5. Yuanhao Gong and Ivo F Sbalzarini. A natural-scene gradient distribution prior
and its application in light-microscopy image processing. IEEE Journal of Selected
Topics in Signal Processing, 10(1):99�114, 2015.

6. Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-
to-image translation using cycle-consistent adversarial networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 2223�2232,
2017.

7. Stefan W Hell and Jan Wichmann. Breaking the di�raction resolution limit by
stimulated emission: stimulated-emission-depletion �uorescence microscopy. Optics
letters, 19(11):780�782, 1994.

8. Eric Betzig, George H Patterson, Rachid Sougrat, O Wolf Lindwasser, Scott
Olenych, Juan S Bonifacino, Michael W Davidson, Jennifer Lippincott-Schwartz,
and Harald F Hess. Imaging intracellular �uorescent proteins at nanometer reso-
lution. Science, 313(5793):1642�1645, 2006.

9. Elias Nehme, Lucien E Weiss, Tomer Michaeli, and Yoav Shechtman. Deep-storm:
super-resolution single-molecule microscopy by deep learning. Optica, 5(4):458�
464, 2018.

10. Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture
for generative adversarial networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4401�4410, 2019.

11. Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Analyzing and improving the image quality of stylegan. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8110�8119, 2020.

12. Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed im-
ages into the stylegan latent space? In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4432�4441, 2019.

13. Jonas Wul� and Antonio Torralba. Improving inversion and generation diversity
in stylegan using a gaussianized latent space. arXiv preprint arXiv:2009.06529,
2020.

14. Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sens-
ing using generative models. In Proceedings of the International Conference on
Machine Learning, pages 537�546. PMLR, 2017.

15. Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin.
Pulse: Self-supervised photo upsampling via latent space exploration of generative

https://doi.org/10.1017/S2633903X24000084 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000084


Reconstructing Interpretable Features via Regularized Latent SearchY 19

models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2437�2445, 2020.

16. Peihao Zhu, Rameen Abdal, Yipeng Qin, John Femiani, and Peter Wonka.
Improved stylegan embedding: Where are the good latents? arXiv preprint
arXiv:2012.09036, 2020.

17. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

18. Razvan Marinescu, Daniel Moyer, and Polina Golland. Bayesian image reconstruc-
tion using deep generative models. In NeurIPS Workshop on Deep Generative
Models and Downstream Applications, 2021.

19. Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing �ows: An
introduction and review of current methods. 43(11):3964�3979, 2020.

20. George Papamakarios, Eric T Nalisnick, Danilo Jimenez Rezende, Shakir Mo-
hamed, and Balaji Lakshminarayanan. Normalizing �ows for probabilistic model-
ing and inference. 22(57):1�64, 2021.

21. Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using
real nvp. arXiv preprint arXiv:1605.08803, 2016.

22. George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive
�ow for density estimation. 2017.

23. Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and
Timo Aila. Training generative adversarial networks with limited data. pages
12104�12114, 2020.

24. Juan C Caicedo, Claire McQuin, Allen Goodman, Shantanu Singh, and Anne E
Carpenter. Weakly supervised learning of single-cell feature embeddings. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 9309�9318, 2018.

25. Vebjorn Ljosa, Peter D Caie, Rob Ter Horst, Katherine L Sokolnicki, Emma L
Jenkins, Sandeep Daya, Mark E Roberts, Thouis R Jones, Shantanu Singh, Au-
guste Genovesio, et al. Comparison of methods for image-based pro�ling of cellu-
lar morphological responses to small-molecule treatment. Journal of biomolecular
screening, 18(10):1321�1329, 2013.

26. Peter D Caie, Rebecca E Walls, Alexandra Ingleston-Orme, Sandeep Daya, Tom
Houslay, Rob Eagle, Mark E Roberts, and Neil O Carragher. High-content pheno-
typic pro�ling of drug response signatures across distinct cancer cells phenotypic
pro�ling across cancer cell types. Molecular cancer therapeutics, 9(6):1913�1926,
2010.

27. Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local
nash equilibrium. 30, 2017.

28. Mikoªaj Bi«kowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. De-
mystifying mmd gans. arXiv preprint arXiv:1801.01401, 2018.

29. Hao-Chih Lee, Sarah T Cherng, Riccardo Miotto, and Joel T Dudley. Enhancing
high-content imaging for studying microtubule networks at large-scale. In Pro-
ceedings of Machine Learning for Healthcare Conference, pages 592�613. PMLR,
2019.

30. Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The
unreasonable e�ectiveness of deep features as a perceptual metric. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
586�595, 2018.

https://doi.org/10.1017/S2633903X24000084 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000084


20 Marzieh Gheisari and Auguste Genovesio

31. Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity
for image quality assessment. In Proceedings of Asilomar Conference on Signals,
Systems & Computers, volume 2, pages 1398�1402. IEEE, 2003.

https://doi.org/10.1017/S2633903X24000084 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000084

