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Abstract

Objective: This study aims to develop a generalizable architecture for enhancing an enterprise
data warehouse for research (EDW4R) with results from a natural language processing (NLP)
model, which allows discrete data derived from clinical notes to be made broadly available for
research use without need for NLP expertise. The study also quantifies the additional value that
information extracted from clinical narratives brings to EDW4R. Materials and methods:
Clinical notes written during one month at an academic health center were used to evaluate the
performance of an existing NLP model and to quantify its value added to the structured data.
Manual review was utilized for performance analysis. The architecture for enhancing the
EDW4R is described in detail to enable reproducibility. Results: Two weeks were needed to
enhance EDW4Rwith data from 250million clinical notes. NLP generated 16 and 39% increase
in data availability for two variables. Discussion: Our architecture is highly generalizable to a
new NLP model. The positive predictive value obtained by an independent team showed only
slightly lower NLP performance than the values reported by the NLP developers. The NLP
showed significant value added to data already available in structured format.Conclusion:Given
the value added by data extracted using NLP, it is important to enhance EDW4Rwith these data
to enable research teams without NLP expertise to benefit from value added by NLP models.

Introduction

Unstructured data are reported to contain about 80% of clinical information stored in electronic
health records (EHR) [1]. Natural language processing (NLP) methods have been applied to
develop models to extract medical terminology from clinical narratives, such as disease states
and medication names, and to describe health conditions or behaviors [2–17]. These models
have been successfully used inmany research studies to unlock important information hidden in
unstructured clinical narratives. However, development of an NLP model is a complex process
often bottlenecked by manual annotation of notes for model training [18]. Even when an
accurate model exists, generalizability and portability to new populations and information
systems environments have been a longstanding challenge [19–20] because documentation
practices vary widely across providers and availability of recommended compute infrastructure
and trained informatics staff may differ among institutions [20–22]. Even when anNLPmodel is
applied at the same institution where it was trained and developed, it can still be time-,
compute-, and labor-intensive to apply NLPmodels to clinical narratives by a different research
team or in a different project [23], which may limit its adoption and use.

Several studies have focused on standardizing information extracted from clinical narratives
to internationally adopted common data models, such as Informatics for Integrating Biology
and the Bedside (i2b2) [14] and Observational Medical Outcomes Partnership (OMOP) [24], or
to local tabular format [25–26]. Many of these studies have shown the improved results obtained
in data analysis and in defining a computable phenotype when the model incorporated
information extracted from clinical narratives in comparison to using only data available in
structured format in EHR. However, each of these studies focuses on a specific disease, and
the information extracted from clinical narratives was only used by the research team that
developed the NLP model.

Health sciences researchers can benefit when NLP is applied to enterprise-wide clinical data,
especially for commonly used social or behavioral concepts. This study presents an architecture
for enhancing an enterprise data warehouse for research (EDW4R) [27] with results from an
NLP model, which allows discrete data derived from clinical notes to be made broadly available
for research use. We focus on the integration of the NLP to extract smoking behavior into the
extract, transform, load (ETL) process in the local EDW4R at the University of Florida Health
(UF Health). These data are not reliably collected in structured form, however, their availability
as structured data allows computation of clinical and research-relevant information such as
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identifying patients who fit guidelines for lung cancer screening
[28–33] and recruitment for cancer-related clinical trials [34–37].
We explain how this architecture can be generalized for future NLP
models that extract different concepts. We also quantify the
additional value that information extracted from clinical narratives
brings to EDW4R by comparing data already available in
structured format describing smoking behaviors to the results of
the NLP model.

Materials and methods

Setting

UF Health is an academic health center, which includes 11
hospitals and hundreds of multispecialty physician practices and
outpatient locations in urban and rural areas in North and
Central Florida, managing more than three million inpatient
and outpatient visits per year and serving patients from all 67
Florida counties and beyond [38–39]. The UF Health EDW4R
(also named the Integrated Data Repository) contains more
than two billion facts on about 2.4 million patients cared for in
the last 12 years. In addition to commonly used structured data,
such as demographics, diagnoses, procedures, medications,
laboratory results, and vitals, the EDW4R contains unstructured
clinical narratives.

The UF Health EDW4R contains more than 250 million
unstructured clinical narratives written over more than 12 years,
including progress, history and physical, and nursing notes among
others. These narratives include content written in all settings,
including inpatient, outpatient, and emergency department, and
including more than 50 different departments and specialties. All
narratives that are classified as “notes” by Epic, the electronic
health record (EHR) provider used by UF Health, were included in
the study.

The UF Health EDW4R also contains other unstructured data
such as procedure narratives, pathology results, and imaging
impressions. These narratives, which are not classified as “notes”
by Epic, were not currently included in the study. While some of
this free-text content might contain relevant information, the NLP
model was not trained on these types of documents, so we decided
to pilot the process using only data from one Epic table.

Process to enhance EDW4R with NLP-extracted information

We developed a process to enhance our institutional EDW4R with
the results of an existing NLP model. We present the approach
using an NLP code that targets extraction of smoking behavior
information from clinical narratives. Figure 1 shows four main
steps in the process: NLP model development by the NLP
researcher team, independent validation of the model by the
EDW4R team, running the pipeline to load NLP extracted data
into EDW4R, and enabling the use of NLP extracted information
by all researchers.

NLP model

The NLP model was trained, validated, and disseminated by
NLP researchers in collaboration with clinical experts [5]. The NLP
package for extracting smoking information is a rule-based NLP
model that contains a Java executable file, a set of files containing
rules, and a documentation file describing the executable
environment requirements, the format of the input and output
files, and the instructions on how to run the code. The code

requires a .csv file as the input containing five columns: a note
identifier, a patient identifier, note date, note type, and note text.
The output is a .tsv file containing five columns: a note identifier, a
patient identifier, note date, extracted data type, and extracted data
value. The extracted data type is one of five data elements on which
the NLP model was trained to extract related to smoking habits:
smoking years (SYs) are the number of years the person had
smoked; packs-per-day (PPD) is the average number of cigarette
packs that the person smokes each day; pack-years (PYs) are
the product of PPD and SYs; year at quit (YQ) is the year when the
person quit smoking; quit year (QY) is how many years ago
the person quit smoking. These data elements are often used to
identify patients eligible for lung cancer screening and clinical trials.

NLP model validation by EDW4R team

Our EDW4R team validated the design and performance of the
model independently of the validation previously performed by the
model developers. We processed all notes written during one
month. For each data category (e.g., PPD) and for each note type
(e.g., progress note), we counted the number of notes for which the
NLP model extracted a value for that category. Next, we randomly
selected 1% of each note type and performed manual extraction of
values from the category. From the selected 1% of notes for manual
annotation, we cleaned the NLP results by eliminating those results
that did not fit the expected range of values. For QY, the expected
result is a four-digit year, and all other data categories are expected to
contain a nonnegative number. However, during initial validation,
we noticed that for some categories, the NLP extracted adjectives,
such as “approximately” instead of a numeric value. After removing
the NLP results that did not comply with the expected data values,
we computed positive predictive value (PPV) by utilizing manual
annotation as our gold standard. We only focus on PPV since NLP
results are extracted to supplement existing structured data.

Implementation of system to enhance EDW4R with NLP
extracted data

Figure 2 shows steps in implementing the system to enhance
EDW4R with data extracted by an existing NLP model. After the
NLP model is installed in the proper environment and the final
database destination is designed, the system runs the NLPmodel to
backfill the database with data from notes already existing in
EDW4R and then runs a weekly ETL process to insert information
extracted from the new notes into the database.

The NLP model provided by the developers was installed in the
EDW4R ETL environment and its features and process of running
and interpreting results were learned by our independent EDW4R
team in collaboration with the model developers. The installation
was straightforward since the executable environment only needs
Java and minimal central processing unit and memory require-
ments. However, we installed the code on a much more powerful
graphical processing unit (GPU) server to make this process
generalizable to future NLP packages that we might deploy, which
might require more computing power or programming libraries
that require GPUs.

The database was designed so that the results of NLP can be
easily linked to other EHR data already existing in the database.
Even though the output of the specific NLP model includes data
such as patient identifier, note date, and note type, these data
elements were not included in the database. We only included the
note identifier, extracted data type, and extracted data value in
the database, and we rely on using the note identifier to link the
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NLP-extracted information to other EHR data such as patient,
encounter, and note metadata.

The NLP model was initially run on 255 million clinical
narratives that existed in our EDW4R at the time of the initial run,
and the resultant data were backfilled. We included inpatient and
outpatient clinical narratives, such as progress, history and
physical, telephone, consult, discharge, and nursing notes. For
the initial implementation, we focused on clinical narratives stored
in the EHR’s notes tables and therefore did not include imaging,
pathology, and other narratives describing specific procedures and
their results. Once all existing notes were processed, a pipeline was
set to run weekly on all new notes from the last week.

Figure 3 shows the steps in processing notes. Both backfill and
weekly runs follow the same process.We developed customPython
scripts for all steps in the process except the last step, which is done
following an EDW4R-established method using SAP Data
Services [40].

The first step in the process is identifying relevant notes. While
it was straightforward to use all notes already existing in the
database for the backfill stage, for the weekly run, we identify all
clinical narratives that were created or might have been updated in
the last week using a custom field previously built that denotes
when a note was loaded into the EDW4R database. Due to the
number of notes and the compute power of the server that runs
NLP, we create seven input files with each file containing notes
edited during a specific day.

In the next step, preprocessing is performed to generate the file
format needed for the NLP model and to load data to the GPU

server. Even though the NLP model requires five specific columns
as the input, our design of the EDW4R required only two distinct
input columns: note identifier and note text.We use dummy values
for the other required columns to simplify querying the database
to pull all relevant notes data. These steps are completed in parallel
on four cores. Finally, files are loaded to the GPU server for NLP
processing.

The NLP is launched to process multiple files in parallel. For the
weekly run, all seven files are processed simultaneously. Once the
NLP is completed on all files, the files are postprocessed to generate
the format needed for the EDW4R. The resulting .csv files are
available for the SAP data service job to load data into EDW4R.
Loading data into EDW4R step also checks the compliance to the
primary key constraint and resolves any found issues if possible or
throws an error message.

The weekly pipeline is set using a cron job, which is a utility on
Linux server that allows a job to be scheduled to run automatically
on specific days. The pipeline runs each Monday to identify notes
that were written or updated during the past week, and run
preprocessing, NLP, and postprocessing steps. Data load to
EDW4R is scheduled using an SAP Data Services repository
scheduler to run on Tuesdays to ensure proper completion of the
previous steps before its start.

Availability of NLP-extracted data to all researchers

Our team of honest brokers uses a SAP Business Intelligence [41]
layer to identify relevant data elements for research teams that we

Figure 1. A reliable process to enhance enterprise data warehouse for research (EDW4R) with results of a natural language processing (NLP) model and enable it for use in
research.

Figure 2. Natural language processing (NLP) to enterprise data warehouse for research (EDW4R) system.

Figure 3. Natural language processing (NLP) data extraction and loading to enterprise data warehouse for research (EDW4R).
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serve. Thus, we have designed a process to expose NLP-extracted
data elements within this business layer and link it to other relevant
EHR data, including patient information, encounter information,
and metadata about the note from which the information was
extracted. These data elements can be queried by the team of
honest brokers in the same way as all the other structured data
elements and therefore served to researchers in the same manner.

Value added by NLP-extracted information

To assess the value added by the NLP-extracted information, we
extracted all structured data describing smoking behavior for all
patients seen in our health system over one month in addition to
notes that we processed viaNLP. Structured data that are available
in our EDW4R contain only PPD and YQ information. Thus, for
further analysis, we focused only on PPD and YQ since these are
the only two elements available in both EHR data available as
structured data and in NLP extracted data. We kept only data that
have nonzero values. We counted the number of unique patients
who have smoking behavior information as structured data, as
NLP extracted data, and in both methods to calculate the number
of patients whose smoking information was a value added to
EDW4R viaNLP pipeline due to smoking information not existing
in structured form for these patients. We also compared the values
that exist in structured data to those values extracted by the NLP
for patients who have smoking information available in both
methods to evaluate the agreement between two methods of
recording smoking information. We also examined potential
reasons for information mismatches between two sources of data.

Results

Data summary

We processed over 255 million clinical narratives during the
backfill stage split into about 200 files. The notes accumulated over
600 GB of data and encompassed more than ten years of activity
across about two million patients. Figure 4 shows the distribution
of notes based on the most common note type, setting in which the
note was written, and the leading departments that initiated
writing a note.

The NLP pipeline resulted in approximately 17.5 million new
facts, including SY, PPD, PY, YQ, and QY, that were imported into
EDW4R. Figure 5 shows that almost 50% of the extracted values
are PPD. The categories with the smallest portion of the extracted
data include YQ and QY, which is expected given that many
patients are still active smokers.

Since completing the backfill, we completed 38 weekly runs
during which we processed on average 8.7 million notes
accounting for 20 GB of data and resulting in 90 thousand new
facts per week with similar note types, settings, and department
distributions.

Time to process notes

The backfill stage was done manually with preprocessing step
completed in about two days on four cores, NLP processing steps
done in about nine days on 30 cores, postprocessing step done in
one day, and loading data into EDW4R done in three days.

Weekly runs are scheduled to run automatically and take about
a half hour for the preprocessing step, 1.5 hours for NLP processing
on seven cores, and several minutes for postprocessing and loading
data into EDW4R.

Positive predictive value

We removed 0, 0, 0.4, 43.5, and 0.5% of NLP results from SY, PPD,
PY, YQ, and QY, respectively, due to results not matching the
expected format. We calculated the PPV for the remaining notes
resulting in 96.9, 93.8, 94.8, 80.8, and 98.6% for SY, PPD, PY, YQ,
and QY, respectively. Many incorrect extractions by the NLP
model were due to multiple values existing in a note for the same
data element. In all cases, the NLP model extracted only one of the
values provided in the notes. Notably, 100% of incorrect YQ values
were the result of this error.

Comparison of NLP-extracted data to structured data

Table 1 shows the counts of unique patients with nonzero values.
The NLP provided data for more than 2000 patients that do not
have structured info (10.2% increase) for PPD and more than 550
patients (3.5% increase) for YQ considering one month of data.

We compared the data values for those patients that have both
structured and NLP data available in the given month. Table 2
shows the results of the comparison. PPD has matching value in
97% of cases. For nonmatching cases, 60% of cases are mismatched
by no more than a half-pack. YQ has a matching value in 74% of
cases with 42% of nonmatching differing only by one year. We
manually reviewed ten notes that had amismatch ofmore than one
year and noted that there were two different quit years listed in the
note, but the NLP extracted only one value.

Discussion

We created an effective and adaptable process for enhancing
our EDW4R by processing clinical narratives with NLP and
extracting smoking behavior information. By backfilling data and
then routinely running this process, approximately 12 years of
smoking behavior information is available to all researchers at our
institution. The process obviates the need for researchers interested
in smoking behavior for clinical trial recruitment and various
observational studies to include NLP experts on their research
teams. This process is easily adaptable to NLP models extracting
different concepts as well as to different settings at other
organizations.

This process also increases data protection by allowing our
honest brokers to deliver only discrete data to researchers rather
than complete clinical narratives, thus allowing for all data to be
completely deidentified. Additionally, the size of delivered data is
significantly reduced allowing for quicker data transfer and easier
data storage.

We compared PPV obtained during our validation of the
pipeline to the values presented in the original validation paper [5],
which reported 100, 100, 94, n/a, and 100 percent for SY, PPD, PY,
YQ, and QY, respectively. These values are slightly higher than the
values we obtained in our analysis, therefore, emphasizing that it is
essential to have an independent group to validate the results of an
NLPmodel to avoid potential biases introduced during the training
phase such as selection of data, annotation process, and research
design [42,43]. By selecting notes from a different time period than
the data used for training and validation by the NLP team as well as
data for all patients regardless of their medical history as compared
to using notes of only lung cancer patients by the NLP team, the
EDW4R team reduced the bias potentially introduced by selecting
only patients with specific phenotype. During EDW4R validation,
notes were annotated by team members who did not interact with
the NLP developers, therefore using their own judgment for
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extracting results from clinical narratives. This approach ensured
that the extracted variables follow themost common interpretation
of the concepts as defined by end users rather than NLP experts.
Lastly, the independent validation ensured that NLP research
design did not result in overfitting to data available to the NLP
team for training and testing.

We compared the value added by the NLP extraction to the
information already available in EHR as structured data. While the
NLP extracted five different variables, only two of these variables
are available in EHR structured data, thus providing additional
information for all patients with smoking information contained in
clinical notes. Even though some data that was NLP extracted from
notes is already available in structured data, we noted that some
patients had smoking-relevant information only in notes, thus

significantly increasing the number of patients with smoking
behavior information available for research. When looking at the
agreement between NLP extracted data and the structured data
available in EHR, we noted that most mismatched values differ by
less than a half-pack for PPD and by only one year for YQ. These
small differences in mismatched values might be contributed to
difficulty in estimating how many packs per day a person smokes
when the number is less than a full pack and to the difficulty in
remembering when exactly the person stopped smoking, therefore,
the patient might report different values when askedmultiple times
for the estimates. This hypothesis is strengthened by manual
evaluation of a set of notes that revealed that some notes contain
multiple inconsistent values for the variables.

The implemented process is generalizable to other NLPmodels.
In particular, the independent validation method by the EDW4R
team can be applied to evaluate performance of any NLP model,
and the Python code written for this purpose would only need
minor modifications. The pipeline to load NLP-extracted data into
EDW4R has many reusable steps and code. The EDW4R design
will remain unchanged, and the database already exists in the
database. The pipeline would still need to contain backfill and
weekly run steps with notes already staged for the backfill stage,
therefore simplifying some of the work. Preprocessing and
postprocessing steps of the pipeline might have to be slightly
modified depending on the input and output format required by a
new NLP model, however, since our team of honest brokers
provides clinical notes to all researchers in the exact same format,
we expect that all NLP models developed at our institution would
have same input format requirements. Lastly, loading data to the
EDW4R would require a new job in SAP Data Services, but the job
would be exactly the same as the existing job with the exception of
the input file names. Finally, enabling the use of NLP-extracted
information by all researchers would follow the exact process as
described.

In this initial implementation, we used only clinical notes from
the notes tables in the EHR system. This process is generalizable to
other note types such as pathology and radiology result narratives.
A majority of the developed Python code would be reusable in its
current format or require minor edits to adapt to getting notes text
from different sources.

In this study, we loaded discrete data into a locally designed
database without standardization to commonly used data models
such as i2b2 [44] or Observational Medical Outcome Partnership
(OMOP) [45], and we enabled the access via the institution’s
honest broker process. Future work includes mapping these data
elements to standard concepts and enabling researchers to access
them with easily accessible self-service tools (e.g., i2b2) as well as
mapping to OMOP standard terminologies [46].

The architecture presented in this paper relies on GPU-
powered Linux server, SAP Data Suite, and custom Python
scripts. These choices were selected to make the use of already
existing tools and processes in our team, but they could be
replaced with other comparable tools without changing the
high-level design of the system and steps in the data processing.
However, it is important to consider the ability to run NLP
models in a given computational environment. Some novel NLP
models use programming approaches that rely on the processing
power of GPUs and cannot be executed otherwise, thus high
importance should be given to consideration of this part of the
system architecture. Other parts of the system are easier to
replace with other technologies, which might alter the efficiency
of data processing.

Figure 5. Proportion of extracted data categories from clinical narratives. The
categories include: packs-per-day (PPD), pack-years (PY), year at quit (YQ), quit years
(QY), and smoking years (SY).

Table 1. Number of unique patients with smoking information available in
Natural Language Processing (NLP), structured data, both sources, and at least
one source

Packs-Per-Day
(PPD)

Year at Quit
(YQ)

NLP extracted data 16,867 2,103

Structured data 22,524 16,526

Overlap between NLP and
structured data

14,564 1,535

NLP or structured data 24,827 17,094

Table 2. Comparison between values stored in structured data and extracted
from notes using the Natural Language Processing (NLP). Close disagreement is
defined as no more than 0.5 packs per day difference for PPD or no more than 1
year difference for YQ

Packs-Per-Day (PPD) Year at Quit (YQ)

Agreement 97% 74%

Close disagreement 1.8% 10.9%

Other disagreement 1.2% 15.1%
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Afshar et al. [23] examined a very different architecture, using
Hadoop network, to evaluate the possibility of implementing
enterprise-wide NLP data extraction. Similar to our initial
experience, they concluded that processing large data at once
could slow down or completely stop data processing, therefore
setting up properly the queue or multiple batches of data is highly
important. As the authors mention, their approach to apply
cTAKES [2] NLP software to extract all medical terminology from
notes is susceptible to dictionary updates and would require
multiple runs on the same set of notes to re-extract data when new
terminology becomes available. In contrast, our approach to
extract only one or a set of related medical terms overcomes the
problem of re-extracting the already extracted data. However, we
would need to process notes multiple times to run different NLP
tools that are specialized in extracting specific terms. This
approach might result in longer processing time, but it also allows
the implementation in sequential order, whichmight be carried out
on smaller architecture. Lastly, while the work of Afshar et al.
showed that enterprise-wide architecture for NLP processing could
be beneficial for downstream research, our work has taken the next
step to design the process to automatically process all new notes on
the enterprise-wide level.

While this study has several strengths, it also has limitations.
First, high PPV and analysis of value added by NLP extracted data
indicate benefits of enterprise-wide NLP application. However, we
did not evaluate the sensitivity of the NLP model, so we are unsure
whether the full benefit of clinical notes analysis is delivered to
researchers. Second, even though we were able to identify several
systemic reasons for imperfect behavior of the NLP model as
measured by PPV, we were unable to overcome these issues. This is
an important area of future work. For example, a future study to
determine patterns in notes that contain multiple quit years could
improve the algorithm by which the NLP model extracts the
information from the note.

Conclusion

We implemented an efficient process for enhancing the EDW4R
with discrete data extracted using an NLPmodel to enable research
teams without NLP expertise and large compute environment to
benefit from common social and behavioral concepts stored in
clinical narratives. We provided a structured description of the
design and implementation of each step of the process, including a
robust repeatable process for validation of the accuracy perfor-
mance of the NLP developed by an independent NLP team,
routinized extraction and storage of discrete data from clinical
notes, and practical method to deliver these results to research
teams. We also dove into details of hardware, software, and
estimated processing time needs for each step in the process and
described how this process can be generalized to different NLP
models and note types. This study presented choices and rationale
for the process implementation at our institution, and we hope that
these details will enable other organizations to adopt this approach
to improving access to important clinical concepts hidden in
clinical narratives.
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