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1. Introduction

This paper is concerned with the convergence of Rayleigh-Ritz approx-
imations to the solution of an elliptic boundary value problem. Although
the work arose in connection with the aerofoil problem (and it is to this
problem that the results obtained are immediately applied), the methods
here employed are suitable for use on the wider class of problem mentioned
above.

The subsonic aerofoil problem for two dimensional, steady, isentropic,
irrotational flow can be expressed as a variational principle [1]. Thus,
if we denote the velocity potential for a uniform stream by <£„<,, and the
velocity potential for the corresponding incompressible flow by </>0, the
velocity potential <f> maximizes

where R is the (infinite) region occupied by the fluid. The pressure p is a
function of the density p only, and we are to express p in terms of (/> by use
of Bernoulli's equation. The admissible functions are of the form <f> = <j>0+%
where (i) for r(= V>2+?/2)) ^rge, \%\ ^ K'r-1, \VX\ ^ K'r~2, the constant
K' being independent of the polar angle d, and (ii) d<f>\dn = 0 on the obstacle
C.

In [1] it was shown that the Rayleigh-Ritz procedure applied to the
integral J[<f>] yields a sequence of approximations {<f>n} to the velocity
potential. If the functions <f>n are such that

(1-1) |V0J ^ c < c*,

where c* is the sonic speed, then [2] the sequence {</>„} converges uniformly
in any bounded sub-domain of R, provided C is sufficiently regular. The
regularity (of C) required is that any two points P, Q of R may be joined
by N semi-circles lying wholly within R — the number N being bounded
uniformly for all P, Q. For the case where C is convex, N fS 5.

In this paper we extend the class of obstacles for which the above
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argument holds to include those for which (i) C is a simple, closed, rectifiable
Jordan curve, and (ii) C satisfies the

SMOOTHNESS CONDITION. If we denote by S(X, r0, /?„) the sector of a
circle defined by centre X, radius r0, and angle /?0 (0 < /?„ < nj4) where
A»» ro (> 0) are given constants which are independent of X, then at each
point X of C some sector S(X, r0, /?„) lies wholly within R.

As a by-product, we also show that the error involved in approximating
to <f> by use of </>„ is at most K{J[<f>]— /[<£„]}", where K{= K(v)) is a constant
independent of n, and v may be given any value in 0 < v < \ — this
represents a considerable improvement on [2] where the corresponding
estimate involves v = ^. To do this we need a form of a theorem due to
Morrey ([3], summarized in [4]) that is applicable when P is on C and PQ
is 'close' to C. For completeness, we give an ab inito presentation of this
result.

2. A form of Morrey's theorem

Let Sr be a sector of a circle with radius r and angle /? lying wholly
within the region R, and denote by Dw[z] the Dirichlet integral of z over
any region W, viz.

ArM = jjw (Vz)*dxdy.

Suppose that (i) for all such Sr

(2.1) DSr[z]£Lf, «^2,

where the constants L, a are independent of Sr, and (ii) z (= z(x, y)) is in
class Cx. Let P, Q be any two points of R such that (iii) an isosceles triangle
PQS with base PQ and base angles /S, 0 < /9 ̂  jr/4, lies wholly within R.
Denote the mid-point of PQ by T, and let X be any point on TS, then

(2.2) |*(*>)-*(0)l ^ \z(P)-z(X)\ + \z(X)-z(Q)\.

Let (r, 0) be polar coordinates with origin at P, then, if rx = PX,

\z(P)-z(X)\^jr
o'\zr\dr,

with \z(X)—z(Q)\ being given by a similar expression.
Now the left hand side of (2.2) is independent of B, so that on integration

with respect to 8, (2.2) becomes

p\z(P)-z(Q)\^jjpTs\zr\drdd-

where a similar term involving an integral over triangle QTS is not written
at length. Writing the integral over PTS as
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(= Ilt say),

where y > 0, Schwarz' inequality then gives

(2.3) lx ^ {PS2* • /?/(2y)}* (JJ s (Vz)2 r~2r rdrdd}*

In (2.3), the region of integration in each integral on the right hand side
has been extended to the sector Sp (p = PS) where Sr denotes S(P, r, /?)
for r ^ p—Sp is in the triangle PSQ since /? 5S TI/4.

Writing I(r) = Z>sr[z], the integral on the right hand side of (2.3)
becomes

[Iip)r-*vdl < f7"" (LII)*ri'dI, by (2.1),
(2 4) J o ~ J o

provided 2y < a. Now I(p) ^ £>P,SQ[Z], (= / , say) and since /? ̂  TI/4,

P 5 ^ P ^ we have finally the

THEOREM. / / the function z(x, y) satisfies conditions (i) and (ii), then
for any two points P, Q of the region R satisfying (Hi), and for 0 < y < a/2,

(2.5) \z[p)-

where
Lt = Ly>*[2xl{y(x-2y)}]l and / = DPSQ[z].

We recover Morrey's form of the theorem by setting /? = TT/4,
y = a/4, / ^ L • PQ* in (2.5).

3. Application of the theorem

Let C (supposed a closed, rectifiable, Jordan curve) be given by
x = f(t), y — g(t), txt=kt fg t2, where f(t) and g(t) are continuous functions
of bounded variation. In [5], [6] it is shown that for such a function f(t),
the set of values of X, such that f(t) = X has infinitely many solutions
for t in the range tt ^ t ;£ t2, has measure zero. Enclose C in a square
a ^x ;S b, a f£ y ^ 6. It follows that for any arbitrarily chosen d(> 0)
we can find a set of lines x = xt, i = 0, • • •, N, with

xi+\~xi ~ &> xo ^ a ^ xi> XN-I ^b ^xN, N =

such that each line has a finite number of intersections with C. Likewise
we may construct a similar set of lines y = yit i = 0, • • •, N' — the precise
values of N, N' are immaterial to the rest of the argument. Thus C can be
covered by a chain of squares such that each square contains at least one
point of C in its interior or on its boundary.
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Let G be the set of sides (taken to include their end points) of these
squares which lie in the exterior of C and which do not contain any points
of C, then G consists of (i) a simple closed polygon G1 which contains C
and the remainder of G in its interior, and possibly (ii) simple closed polygons
G2, G3, • • • in the interior of Glt and (iii) segments not forming a polygon.

Let (5X be the side of the largest square of any orientation that can fit
into a sector of radius r0 and angle /50, and set d = SJ2. At any point X
of C, the sector S(X, r0, /30) that lies within R, irrespective of its orientation
and position relative to the grid covering C, contains in its interior one of
the grid squares of side SJ2. By the construction of G, this square is either
(i) in the closure of the exterior of G1 or (ii) in the closure of the interior
of one of G2, G3, • • •. In either case the sector intersects the (non-simple)
polygon G1,G2, • • •, and thus any point X on C can be connected to this
polygon by (the base of) an isosceles triangle of angle /30/2 lying in R. This
argument also shows that possibility (iii) of the last paragraph is essentially
trivial.

Let Q be a point on G2 and, since R is connected, join Q to Gx by a
curve p in R which does not intersect G2. Now the distance of p from C
must be greater than some number d (say), for otherwise p and C, being
compact, would have a point in common. Since there are at most NN'
squares of side d, there is only a finite number of G2, G3, • • •, and so there is
a number ^mln such that d S: im l n for all polygons G2, G3, • • -. By the
argument used above, p can be covered by a finite chain of squares of side
dmij2 lying wholly in R, obtained by taking a grid with the same orientation
as that of side d. Keeping only a simply connected set of these squares,
we can join G2 to Gx in such a way that the polygon formed by Gt, G2 and the
boundary of this new chain of squares is simple. The exterior of this polygon
is the union of the exterior of Gx, the interior of G2 and the 'channel' resulting
from the covering p. The argument of the last paragraph regarding the
connection of any point on C to this polygon by means of an isosceles triangle
is still applicable. As there is only a finite number of G2, G3, • • •, it follows
that we can enclose C in a simple polygon with JJ, sides (call it G^) such that
the sector S(X, r0, /?„) at each point X of C intersects GM.

Let E be the intersection of the exterior of C and the interior of GfL,
and let Y be any point in E. Call dx the distance of Y from C, then a circle
of radius d1 lies in R, and we can then connect Y to a point X on C by (the
base of) an isosceles triangle of base angle p, /30/2 ^ /? < TT/4, lying in R.
As in the last paragraph we can connect X to GA by an isosceles triangle,
and any point in the exterior of G^ can be joined to GA by an isosceles
triangle of base angle (i, /30/2 ^ fi < TT/4, lying in R. If we erect on each
side of GA an isosceles triangle of base angle /3, /?0/2 ^ fi < TT/4, lying in the
exterior of G^, then any two points in R, P and Q say, can be joined by a
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chain of not more than (/*+3) non-overlapping isosceles triangles of angles
/?, /?0/2 jS /? < jr/4, each of which lies wholly within R. Moreover, since n
depends only upon the geometrical properties of C, it is independent of P

Now let P and Q be any two points in a bounded sub-region of R, and
call the segments of the polygonal arc formed by the bases of the chain of
triangles that connects them Pj^P^ i = 1, • • •, M, Po = P, PM = Q,
M ;S ^ + 3 . Application of the Theorem of § 2 together with Holder's
inequality then gives

\z{P)-z(Q)\ £ VX-xMi-'dr&Ityifi, v = £-y/«,
I

after putting /? ^ /S0/2 and Pi_1Pi ^ d where d is the diameter of the sub-
region being considered. But J i ^ t *s ^ess than DR\z] so that

(3-1) \z(P)-z(Q)\^K1{DR[z]Y,

where the constant K± is independent of P and Q.

4. Conclusions

Let <(>„ be a Rayleigh-Ritz approximation to the function <f> defined in
§ 1, then, as in [2],

(4-1) DR[<f>m+n-<t>n\ < e,

for m > M(s). If we put z = <f>m+n—<f>n in (3.1), we deduce that if {<j>n}
converges at any point Q, then {</>n} converges uniformly in any bounded
sub-domain of R. The assumption that {<(>„} should converge at any point
Q is essentially vacuous since <f>n is determined only to an additive constant
which we may select so that <f>n(Q) = 0. Finally, as in [2], (1.1) implies that

(4-2)

where K2 is a constant independent of m, n, and (3.1) then becomes

on letting m -> oo. Here if is a constant independent of P, n, and 0 < v < \.
The assumption that |V^B| ^ c* implies Ds ^ Lr2, and Morrey's

theorem then gives

for PQ ^ R* where R* is the distance of P from C. The constant L2 is
independent of n, and the Holder continuity of <f> then follows by taking
the limit n ->• oo.
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Finally, the argument presented in §§2—4 does not depend on the
particular form of the integrand of J[<f>], in particular, (4.1) and (4.2) depend
essentially upon the elliptic character of the stationary value of J[<f>].
Thus the results obtained above apply to any proper elliptic boundary value
problem.
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