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Queuing and the provision of

service facilities

Peter D. Finch

Results are obtained which enable one to assess the extent to

which the waiting times of queuing customers depend on the

number of servers which provide them with service.

1. Introduction

In many practical queueing situations one is interested in the extent

to which the waiting times of customers depend on the number of servers

used to provide them with service. Except for some very special cases,

queuing theory does not answer such questions. Our purpose here is to

pose these questions in a way which gives insight into practical problems

rather than the mathematical problems associated with the many server queue

of queuing theory.

Our method is based on the use of certain "standard" queuing

situations as yardsticks against which one can compare actual queuing

situations. Of course the usefulness of such a method involves the

propriety of the yardstick in question and so it involves judgement of the

extent to which propriety is achieved. Such judgements can seldom be made

out of context and are relative to the practical situation under study.

The standard queuing systems introduced below are judged to be appropriate

in some practical situations but we do not claim they have universal

propriety.
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2. Standard queuing systems

Let C , C , ..., C be a finite number of customers each of whom is

to be provided with service. For each m = 1, 2, ..., n let C have
m

service time S independently of which one of several available servers

provides him with service. For the time being we make no assumptions about

the stochastic nature of service times, we simply regard [s , s , , s )

as some given sequence of positive real numbers.

Our immediate purpose is the introduction of a standard queuing

system for providing service to the customers C , C , ..., C by means of

k servers. The system in question is essentially one in which the servers

do not become idle but to permit ease of comparison for different values of

k it is convenient to arrange things so that corresponding initial

situations are similar. For that purpose we introduce a sequence of

fictitious customers C', C', C', ... with respective service times

s', s', s', .... We impose no stochastic structure on these fictitious

service times, for the time being we simply regard them as another given

sequence of positive real numbers.

(k) (If) CU)
For each k = 1, 2, ... define Q: ' £ Q: ' 5 ... £ Q\ i to be the

1,1 -LjC- 1}K

numbers s', ei, ..., s! arranged in non-decreasing order and for each

(If) (If) (If)
m = 2, 3, .... n define 01*' < Ql ' £ ... £ Q\K> to be the numbers

Q(k) (k) (k)
Vi,i Vi' Vi,2' •••' Vi.fc '

(V)

arranged in non-decreasing order. The quantities Q . can be interpreted

in the following way. Suppose that all the customers

C', C,', C!, C , C , ..., C are present at time 0 and are to be given
-L t K. J_ c. Yt

service by k servers. At time 0 the customers C', C', ..., Cl start

service simultaneously, one to each of the k servers, and thereafter

customers are served in the order C., Cn C none of the servers

remaining idle whilst one of these customers has yet to start service.
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IV)

Then Q ' is the time of the mth departure from the system, in other

words it is the time at which C starts service.
m

Suppose now, in contrast to the situation just considered, that only

the customers C', C', ..., Cl are present at time 0 and that they then
A. ed K.

start service simultaneously, one to each of the k servers; thereafter

the customers C , C , ..., C arrive, in that order, at the times

A<) < A W < < A(k) ^ I t i s s u p p o s e d t h a t t h e c u stomers
l d n

C, C , ..., C are to be served in the order of their arrival and that no

server is idle whilst a customer who has already arrived is waiting to

start service. We say that the sequence of arrival times

(k) (k) (k)]
^ , Ay , ..., A generates a standard fc-server queue relative to

the sequence of service times (s', s', ..., si, s , s , ..., s ) when

(1) V m - 1 , 2, ...,n:A{m
k) 5 ^ J .

In a standard fe-server queue no server is idle until n + 1 customers

have received service and the waiting time of customer C is

<*> • i " - « i - < i " - * »•*•••
For each m = 1, 2, ..., n one has

( (•!<) (i.) (if))

It follows that if Ui » A\ > • • • •> A \ i s a sequence of arrival times

for C , C , ..., C which generates a standard fe-server queue relative

to the sequence (s' s', ..., s!, s., s_, ..., s ) then it also generates

a standard Z—server queue relative to the sequence

(s^, s'2, ..., sj, sx, s2, ..., sn) for each I = 1, 2, ..., k-1 .

Moreover in such an Z--server queue the waiting time of customer C would

be
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m m l " m '

so that

would not depend on the arrival times 4 ' o ' •••> ̂  • It is to be

emphasised that in (2), (3) and (h) the waiting times refer to the same

customers with the same respective service times and the same respective

arrival times but for two different service arrangements, namely, k and

I servers respectively with similar though slightly different initial

conditions.

3. Practical motivation

The practical usefulness of (h) comes about in the following way. We

often wish to reduce customer waiting times in an existing queuing

situation where the servers are not idle over some period under

consideration. In such cases one is dealing with a standard ^-server

queue and one wants to determine k > I so that the use of k servers

will reduce waiting times to some specified level. One cannot apply (h)

directly to determine the improvement in waiting times obtained by using k

rather than I servers because arrival times which generate a standard

Z—server queue relative to some sequence of service times may not generate

a standard /c-server queue relative to those service times when k > I .

However one can apply (h) indirectly in the following way.

Suppose that W , W , ..., W is a sequence of desired upper bounds

for the waiting times of the customers C , C , ..., C and suppose

further that for some k > I one did have a standard fe-server queue for

which

(5) w ^ ~ Wm ' m = -1' 2 ' ••••> n •

Then from (h) one would have

' ' Wm

whatever the actual arrival times in the ^-server queue provided only that
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they did generate a standard queue in respect of the service times in

question. If, however, it should happen that observations on the existing

l-server queue indicated that for some m , 1 5 m £ n , the inequality in

(6) did not hold then it would seem that the k in question is not large

enough to achieve the desired reduction in waiting times. In other words

we want to find the smallest k > I such that (6) holds when the

(Ik)
W ' are replaced by actual observed waiting times.

The preceding argument is admittedly heuristic but it corresponds to

the following practical situation. Suppose that one is confronted by an

i-server system in which waiting times are judged to be too long. As a

result of a detailed analysis one recommends that the use of k > I

servers will meet prescribed standards bounding the waiting times of

customers. However to justify this recommendation one is called upon to

"explain" why fewer than k servers will not meet the standards in

question. Such an explanation could take the following heuristic form.

Consider the operation of the fe-server queue over a period of time in

which the waiting times of customers are small and do meet the prescribed

standards but the servers do not become idle. Consider a particular

history of this fe-server process and suppose that one had in fact used k'

servers; where I - k' < k , during the period in question. Then the use

of k servers rather than k' would be "justified" if one could show that

for such histories one would not meet the prescribed standard of service

for any k' < k . It is this sort of justification which is attempted by

the argument based on (h).

In practice, however, the situation is not quite as simple as that

just envisaged. In the first place one is usually dealing with a

relatively large number of customers and one is interested in the waiting

times of the later arriving customers; in other words n is large and one

(k)
is interested in the asymptotic value of w when m 5 n is also large.

In the second place one is usually studying a queuing situation with its

future operation in mind and the arrival times and service times under

consideration will be hypothetical ones which are thought to typify the

sort of variability to be expected in the situation at hand. One has then

to consider not just one history but a set of histories which are taken to
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typify the joint variability in arrival times and service times to be

expected in the situation under study. In other words one has to formulate

a stochastic model of the variability in question. However when one is

dealing with standard queues one cannot characterise the variability in

arrival times independently of the variability in service times because one

has to preserve the inequalities in (l).

In the next section we formulate a general stochastic model for

standard queues and show how a particular case of that model can be used to

investigate the problem of reducing waitvig time by providing additional

servers.

4. Stochastic assumptions

At the most general level our stochastic model for the standard

fe-server queue consists in the assumption that the 2n + k quantities

(k) (k) (k)
A^ , AK2 ', . . . , A

K
n , s^, s'2, ... , s^, s1, s2, ..., sn have a joint

distribution such that with probability one the inequalities in (l) hold

simultaneously for each m = 1, 2, ..., n . This model will be called the

(.k)
general standard fc-server queue and denoted by GSQ . However this

model is so general that without further specification of the joint

distribution in question it does not lead to informative results.

A particular case of the general model which does lead to informative

results is the one in which the marginal distribution of

s.!, s', ... , s!, s , s , ..., s is such that these n + k quantities are
1 2 K 1 ci Yl

independently and identically distributed with common distribution F{x)

2
having a finite mean u and a finite variance a . We call this case the

general standard fc-server queue with common independent service times and

(k)
we denote it by GSQ CI . The interest of this model comes from the fact

that there are many practical situations where it does not seem too

unreasonable to suppose that service times are independently and

(k)
identically distributed. In such cases GSQ CI provides a suitable

framework for discussing various arrival patterns which ensure that the

servers do not become idle.
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(k) (k)
In GSQK 'CI the quantity Q> ' is just the mth renewal point in

777 j X

the superposition of the k independent renewal process generated by the

k servers. It is well-known from renewal theory that, for large m ,

k 2k\i

5. Reducing mean waiting times

Suppose now that k S 2 and consider a particular realisation of

'<]IC , say

R(k) = u A A s' s' s' s )
X 2 W 1 2 r C J . 2 M

with assoc ia ted wai t ing t imes W [R J , I S m S n . I f 1 S J < 1;

then

i s a corresponding r e a l i s a t i o n for a GS<2 JC with wa i t ing t imes

w {
m

l ' k ) [ R { l ' k ) ) , l < m < n . B y ( U ) ,
{
m
l'k)[R{l'k)

(8) ^L*)^*.*)) .„(*)(«<*)) -«»> 0 W ,

m v m v m,l m,l

where the 6^ . are determined ty (s', s', ..., 6^, 8 , 8 , ..., s ) i

the way described in Section 2 and the Q are determined, in like
Ttl j X

manner, by (s1, s', ..., s«, s , s , ..., s J . If we take expectations
J. £1 t- J. tl. Yl

(.k) (k)
over all realisations R of the GSQ CI in question then equation
(8) gives

()

(fe)
On the left-hand side of (9), £ denotes expectation over the

{k)
realisations R whereas on the right-hand side of (9)» E denotes

corresponding marginal expectations over service time distributions.
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Making use of (7) we obtain

(10) E{1

From expression (10) one can derive a crude rule of thumb to determine

the number of servers required to achieve a desired reduction in mean

customer waiting time. Thus suppose that the operation of an ^-server

queue has led to a situation where servers are not idle and the later

arriving customers suffer excessively long delays. To shorten these delays

one wants to replace the current system by one with more than I servers.

How large should k > I be to ensure that asymptotically E\w

For example suppose that a queuing system with h servers is causing

excessive delays. It is observed that during periods immediately after

starting up, when about 100 customers are served, none of the servers is

idle and the later arriving customers are waiting on average from 8 to

10 mean service times. It is desired to reduce the waiting time of such

customers to achieve an expected value of no more than 2 mean service

I iooj -times. Consider first a GSQ^'IC system in which £ w ' M „' 5 2y and

2
suppose that a /u is small compared to 100U . From (10) we have

Thus if the arrival pattern in a standard 5-server queue was such that the

mean waiting time of the 100th customer was no more than 2 mean service

times we would expect that h servers used with the same arrival pattern

would result in a mean waiting time for the 100th customer of no more

than 7 mean service times. But in the observed 1* server queue the mean

waiting time in question does exceed 7 mean service times. This suggests

that the use of 5 servers in the practical situation under study would

not achieve the desired asymptotic mean waiting time of no more than 2

mean service times. On the other hand consider a GSQ IC system in

which E w -Q 5 2y and suppose again that a /u is small compared to

10 0 M • From (10),
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and since the observed mean waiting time does not exceed lOu we conclude

that the use of 6 servers in the practical situation under study will

achieve the desired reduction in mean waiting time.

The general form of this argument is easily presented. Consider a

(k) ik) f ik)\
GSQ IC system in which asymptotically E \w 5 W . If I < k and

(11) \> \ r
then (10) shows that asymptotically

Thus (11) must be false if W 5 E^ ' / ' , in other words k must

satisfy

In practice, of course, ff \w ' in (12) might well be replaced by an

estimate derived from observations of the current Z-server situation.

Moreover since m is assumed to be large there is often little to be lost

by replacing (12) by

(13)

where W* is the estimate of E \W '

Suppose then that in a GSQ IC system customer C has mean

waiting time W* . The rule of thumb for finding the number of servers

required to ensure that customer C has an expected waiting time of no

more than W < W* is to take k > I to be the smallest integer satisfying

(13). It should be noted that this rule of thumb depends on the nature of

the arrival process only to the extent that we are dealing with standard

queues.

There are two aspects of the preceding discussion which need further

investigation. In the first place we have used (7) to derive the
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asymptotic result (10) but we have given no indication of how large m

must be before the asymptotic relation (7) is applicable in practice. We

discuss this question in Section 9. Secondly there are practical queuing

situations where the rule of thumb derived above cannot be applied simply

because there is no current ^-server queuing in operation, in other words

W* and I in (13) are not available. In such cases one needs to be able

to calculate the E\w directly. We proceed now to discuss a class of

standard queues for which such calculations can be carried out.

6. Simple standard queues

Consider the standard ?c-server queue instroducted in Section 2.

Write A^ = 0 and Q^ for « ^ | . Since

(k) (k)
there exists a , 0 £ or ' < 1 , 1 £ m 5 n , such that

m m

(15) A(
m

k) = a^AJ^l + [l-oifc)]<ifc) , 1 s m « n ,

namely

ot = \Q —A I \Q —A T , ~L ~ TYI "S YI .

171 \ Wt Ttl ) J y Ttl 7 7 ? — 1 J

Write

J ( f e ) = Q^k) _ Q{k) l < m < n
77? 777 7 7 7 — 1

and Q). = 0 . From (2) and (15) we obtain

where w1 ' = 0 and I;' = Q: ' . It follows that

(fc) (fe) (k)
The numbers a. , a , ..., a play the role of n parameters
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which characterise the relationship between arrival times and service times

in a standard fc-server queue. If one had such a sequence of numbers one

could define d! , IC , ..., fi ' recurrently from equations (15). The

conditions 0 £ or ^ < 1 , m = 1, 2, ..., n would ensure that (l) held

and so one would obtain a sequence of arrival times which generated a

standard fe-server queue relative to the service times in question.

(k)Thus the stochastic model GSQ could be specified by starting with

the quantities a| , a^ , ..., o£ ', s^, s^, ...,8^,8^8^ ..., s^

(k)
and supposing that these have a joint distribution such that 0 £ a < 1 ,

(k) (k) (k)
1 £ m £ n , with probability one. When the ct̂  , a^ , ..., or are

Jointly distributed independently of the n + k quantities

s', s', ..., s^, s , s , ..., s we refer to the stochastic model as the

(k)
simple standard fe-server queue and we denote it by SSQ

(k)
Some general results can be written down at once. Thus in SSQ

equation (l8) yields

for the expected waiting time of customer C . In particular, writing

8 = 8 , we obtain

(k)
In like manner one can write down an expression for the variance of w

m

in terms of the variances and covariances of the quantities

(k) (k) (k) IP\
av V ' ... av ' and those of the quantities VK' .
m m-1 r m

7. Asymptotic results in SSQK 'ci

From (7) the independence and common distribution of service times
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gives

(2i) *ki*M-£.

Thus, provided

£ [ m m-1 r

converges as m •*• °° , we obtain the following asymptotic expression for
Ik)mean waiting time in SSQ CI :

(22) * \ * \ ~ $ I B L a . . .

Since the expectations on the right of (22) do not exceed unity E\w

i s aymptotically bounded above by mu/fc . When k = 1 the expressions

(7) , (21) and (22) are exact, in par t icular

(23)

(.k)
An interesting special case of SSQ CI occurs when

(k) (k) (k)
a| , a^ , ..., a are mutually independent. It is then possible to

achieve any permitted sequence of asymptotic mean waiting times by an

appropriate choice of E a '\, £ oc ' , ..., E cr '\ . For suppose that

F is a function defined on the non-negative integers with F(0) = 0 and

(2l*) 0 < F(m) < 1 + F(m-l) , m > 1 .

(k)
Suppose that we wish to consider the model SSQ CI when

(25) £*(„<*>]«,*(») .

Write X = fffct^M , m > 1 . Then (22) gives
m [ m )

Thus we could achieve (25) by choosing X , X , ..., X successively so
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that

m

r=l

In other words we have (25) when

(27) \ = F(m)[l+F(m-1)]

• • • * , - * < » > •

-1
1 5

The inequalities (2U) ensure that 0 < X < 1 . It should be noted that a

m

function F which does not satisfy the inequalities {2k), at least

asymptotically, cannot lead to a permissible sequence of asymptotic mean

waiting times. To see this observe that (IT) gives

< 1 , we must haveThus i f (25) holds and 0 <

F(m) Xm[l+F(m-l)] < 1 + F(m-l) .

It is convenient to have a symbol for the simple standard fc-server

queue with common independently distributed service times. When the

or , al , ..., a are mutually independent and have a common

2 (k)

distribution with mean X and variance T we denote it by SCISQ CI .

For this queuing system one obtains especially simple formulae. Thus (22)

gives

(28) E\w,(*>
X-X'

m+l-i

1-X

this formula being exact when k = 1 . When X

to be lost by replacing (28) by

is small there is little

(29)

,(*),It follows from (28) that for SCISQ 'CI the asymptotic mean waiting

times are approximately constant, being small when X is small and large

when X is close to 1 . This is plausible because X close to 0 means

(k) (k)
that the arrival time /I is expected to be close to Q whereas X

m m
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(.k)near to unity means that the arrival time A is expected to be near to

(k)
A^ . On the other hand if m , though large, is fixed and we let \ -*• 1

we have

lim E\i) = my

and

- -jf , k > 1 .

Of course, as noted above, E w is asymptotically bounded above by

For SCISQ^ CI it is possible to derive a simple expression for the

asymptotic variance of waiting times. Thus using (17) one finds that if

X is small then

For example, if a: > ao » •••»<* a r e uniformly and independently

distributed on (0, 1) , then asymptotically w has mean \i and

variance (y +a ) /2 .

The variance of waiting times in the case of more than one server can

be very crudely estimated by observing that the process resulting from the

superposition of a large number of independent renewal processes is

approximately a Poisson process. Thus if k is large one could treat

(k) Ik) (k)
I. , I- , .. ., J as independent exponentially distributed random

variables with common mean \x/k . Then (30) would apply with both JJ and

(k)
O replaced by \i/k ; we have then in SCISQ^ 'CI when k is large

- 1
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8. The number of service facilities

We now show how the results of the last section can be used in a rough

estimation of the number of servers required to achieve asymptotic mean

times which do not exceed some preassigned upper bound. The problem in

question is related to that of reducing mean waiting time as considered in

Section 5, the difference being that we do not now have an existing multi-

server queue to provide W* and I in (13).

Suppose it is desired to set up a multi-server queuing system which

will be able to deal with about n customers without the servers becoming

idle and yet ensure that the asymptotic mean waiting times of the later

arriving customers do not exceed W = Ay , where u is the mean service

time and it is assumed that the service times are independently and

identically distributed. How many servers should we use?

Within the context of classical queuing theory this question is posed

very imprecisely. There are no specific assumptions about the nature of

the arrival process of the customers in question. Indeed even within the

context of the standard queues of the last section it would seem that the

arrival process should be taken into account because, for a fixed k ,

(k)
there are SCISQ CI systems in which the asymptotic mean waiting times

behave in a preassigned but arbitrary way.

Nonetheless the question as posed can be answered in a meaningful way

by the use of standard queues as appropriate yardsticks. Thus consider a

SQ CI system in which the asymptotic mean waiting times are so small

that they are negligible. Such systems exist, for instance by (28) an

SCISGT 'CI system with very small X is such a queuing system. If the

arrival process to the SQ CI system were used with only k servers

the asymptotic mean waiting time E \w could be obtained from

the expression (10), namely

Moreover if (u -a ) /2p is small compared to m\s (and for simplicity in

exposition we will suppose that this is so) we have
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(33, *"tfl

Now for some values of k the expected waiting time in (32) would be

bounded by W = Ay whereas for other values of k it would not. There

is, in fact, a smallest k for which the right-hand side of the expression

(33) does not exceed W = Ay , namely the smallest positive integer k

such that

(3l») k(k+l) > m/A .

We obtain therefore the following rule of thumb: to ensure that the

asymptotic mean waiting time of customer C does not exceed Ay use k

servers where k is the smallest positive integer satisfying (31*) or, more

roughly,

(35) * 5 [m/A] % .

For example suppose we are dealing with 100 customers and wish the

expected waiting time of ^1 0 0 to be no more than 2 mean service times.

Then (31*) with m = 100 and A = 2 gives k = 7 , a result close to that

of Section 5 where it was found that six servers would reduce the

asymptotic mean waiting time to a similar level.

The logic behind this rule of thumb seems foreign to the type of

argument used in applications of queuing theory because there is no

explicit reference to the process whereby customers arrive. It might be

argued, for instance, that the rule is misleading because there are single

server queues in which the limiting distribution of waiting time has an

expectation which does not exceed 2 mean service times whereas the rule

in question would prescribe the use of 7 servers, surely a gross over-

estimate of the required number of servers. On the other hand it follows

from (29), with A > lU/15 and k = 7 , that there are SCISQ^'CI

systems in which the asymptotic mean waiting time does exceed 2 mean

service times. It would seem that in such situations the suggested rule

would underestimate the required number of servers.

The resolution of these objections lies in the recognition of the sort

of practical problem to which the rule is applicable. In other words the

propriety of considering a standard (fe+l)-server queue with negligible
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waiting times comes, if at all, from the practical context of the practical

situation under study and not from the mathematics per se. This is because

many, though not all, practical queuing situations operate with customers

leaving before service if their anticipated waiting times are too long.

The effect of this is to produce an arrival process in the desired

situation in which the addition of another Server would substantially

reduce customer waiting times. However in the derivation of a rule of

thumb it is not necessary to suppose that the standard (fe+l)-server queue

does have negligible waiting times. Indeed if we assume that asymptotic

mean waiting times in the (fc+l)-server queue are bounded above by 6y ,

with 6 < A , then (35) is replaced by

(36) k > [m/(A-6)]% .

In some practical queuing problems where one wants to provide service

to customers one has not only some idea of the number of customers in

question but also some idea of the length of the period during which they

must be provided with that service. Suppose, for instance, that we require

customer C to start service at an expected time no later than T . Then

we have the additional constraint

•!̂ I1

Thus from (7) we have the approximate constraint

k > |[
2u J '

and if we continue to assume that (p -a )/2y is small compared to np

this inequality can be replaced by

(37) k > «y/r .

For instance if we not only wished to achieve a mean waiting time for ^-.nn

of no more than 2 mean service times but also to ensure that £-inn

started service at an expected time no later then T = lOu we would

require k = 10 rather than k = 7 as given by (3k). On the other hand

if T = 20u then k = 5 would meet the constraint on the expected

starting time of ^ but the use of only 5 servers^ is suspect because
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they could not meet the constraint on expected waiting time for an arrival

process which generated a standard queue with 6 servers and negligible

waiting times. In general then the rule of thumb can be modified to meet

a constraint on the expected starting time of C by replacing (35) by

(38) k > max £ , £

where T = N\i is the prescribed expected starting time of customer C

The use of a constraint on the expected starting time of customer C

is a rough and indirect way of taking the arrival process into account, it

being implicitly assumed that the n customers arrive during a period

whose expected length does not exceed (iV-A)y .

9. The asymptotic approximation

The preceding results have been based on the asymptotic formula (7)

and so their usefulness depends on how large an m is required to make (7)

an approximation which is useful in practice. We examine this question in

detail for the case of an Erlang service time distribution; however it is

convenient to start with some general results which hold for a general

service time distribution.

(k)
Let Q . , j = 1, 2, ... , k , m = 1, 2, ..., n be defined as in

Section 2 and suppose that s', s', ..., sJ, s , s , ..., s are
1. c. K. X c. Yt

independently and identically distributed non-negative random variables

with common distribution function F(x) having finite mean v> and finite
2

variance a . Write

x) = ]T {l-F(u)}du , x > 0 .
J0

(39) G(

We recall that G(x) is the limiting distribution function of forward

recurrence time in a renewal process with renewal distribution F(x) .

Since

; •
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we have

(Uo)

where

I QW. = S^k) , m > 1
m.n m

+ Sfc + Sl + S2 + ••• + V l '

and we interpret s as 0 . Rearrangement of (Uo) gives

fc) - I y Jo<*) 0(fc)\

Consider the pooled process formed by the k independent renewal

processes generated by each of the k servers. The quantities

(k) (k)
o = 2, 3, ..., k are, in order of magnitude, just the

forward recurrence times measured from the mth renewal point of the

pooled process to the next renewals on the other k - 1 component renewal

processes. Since the component renewal processes are independent one would

conjecture that the unordered forward recurrence times would be

asymptotically independent and that each would have the asymptotic

distribution function G(x) . If this conjecture is true then

(.k) Ak)

7 = 2 >• »" 'J=2

is asymptotically the sum of k - 1 independent random variables each of

which has the distribution G . Thus from (Ul) we would have

(U2) , x > 0 ,

where G ; is the (fe-l)-fold convolution of G with itself.

Moreover, since the mean of the distribution G is {\l +0 )/2p , we obtain

(7) by formally taking means on each side of the asymptotic, expression

Both the conjecture formulated above and the asymptotic result (1*2)

are true but we will not establish them here. What we do is to examine the

rate of convergence to the asymptotic distribution in (U2) for the special
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case of Erlang service times. In the process of doing this we do, in fact,

establish the truth of the conjecture in the special case of Erlang service

times. However before specializing to the Erlang distribution we obtain a

few general results.

Write

PQ(t, x) = F(t+x) - F(x) , t > 0 , x > 0

and, for m = 1, 2 t > 0 and x > 0 ,

t, x) = \ [F(t+x-u)-F(t-u)]F{m) (du)

where F is the m-fold convolution of F with itself. Then for any-

one of the component renewal processes under consideration P (t, x) is

the joint probability that exactly m of its renewal points occur in

(0, t) and that its (m+l)th renewal point occurs before t + x .

Consider again the pooled process from the k servers and for

t > 0 , x > 0, ..., x. > 0 denote the quantity

(U3) k^l F{n-m\dt) I TJPmU)(t, x.)
m=0 m(2)+...+m(k)=m j=2 m(J' °

by Q [dt; x , ..., xv) . The quantity in (1*3) is just the joint

probability that the nth renewal point of the pooled process occurs in

(t, t+dt) and that of the forward recurrence times to the next renewals on

the other k - 1 component processes one does not exceed x , another x

and so on. Thus

= | Qj

is just the joint distribution function of the unordered quantities whose
(k) (k)arrangement , in o rder of magnitude, i s Q . - Q , j = 2 , 3 , • • • , k •

Note t h a t Q [x , x , . . . , x , ) i s a symmetric funct ion of x o , x , . . . , x

and t h a t i f we formal ly put x = x . = . . . = x, = <*> we obta in
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^ l ~ *} = I Qn{dt' ""' °°) •••' °°) •(1*5)

Specialising now to Erlang service times we introduce the following

notation: r > 0 is a positive integer, X > 0 is a positive real number,

/ \ X x -Xx _ „

E
r

fX

\(x) = e« Au)du , x > 0 .
,A j r,A

We recall that

For the remainder of this paper we assume that F = E , , that is
r ,A

service times have an Erlang distribution. When F = E , one has

I>,A

o p
y = r/X , a = r/X and G in (39) is given by

(J»6) G . (x) = r"x [ E (x) , x > 0 ,
r > A j=l r'A

with corresponding mean (r+l)/2A . One finds that

Equation (1*7) follows at once from the formula defining P (t, x) with

F = E . but it may also be derived by the following probability argument.
V , A

The renewal interval is the sum of r independent phases with identical

exponential distributions. The points at which phases terminate form a

Poisson process with parameter X . Exactly m renewal points occur in

(0, t) if and only if mr + j phase points occur in that interval for

some 3 = 0, 1, ..., 2"-l . If exactly mr + j phase points do occur there

remain v - j phase points until the next renewal point; thus the time to

the next renewal point has an E . , distribution. This gives (1(7). In
F—J , A

like manner when F = E . one has
V , A
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(U8)

Then substitution from (1*7) and (1*8) into (1*3) and integration with

respect to t yields, from (kk), the following expression for

:

k-{nr+3(2)+...+j(k)-l)

where

and

(nr-mr-i)\[(nr + j

is

n-1 k

1 I Tl
m=0 m(2)+..,+m(k)=m 1=2

Writing u = exp(2Tri/r) for an rth root of unity one finds that

k-lB
r n,j(2) JV" 1 S

(50) y w ' 2 " •

where the summation is over all integers s, , Z = 2, . . . , k with

Write

where the maximum is taken over all integral s , s , ..., s, with
c. 3 K.

1 5 s, S r and s + ... + s, < (k-l)r . It is not difficult to see that
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this maximum occurs when s = s = ... = s, = 1 so that
<- 3 K-

(51)

and 0 < 6 , < 1 . Since the term on the right of (50) corresponding to
v ,K

s2 = s3 = ... = sk = r is just

(52)

w e o t t a i n

fc-l

Now write

and for any miiltivariate distribution function H and integrable a ,

Using (52) in (1*9) we obtain

(53) |E(a|g - E(a|GrjM)| 5 (^-iK

for any non-negative a . In particular, taking

f l , y 2 < * 2 , ...

.., yk) = •

0 otherwise,

we obtain

verifying, in the case of Erlang service times, that the forward recurrence

(.k)
times measured from Q are asymptotically independent with common

71,1

distribution function G . In like manner taking
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1 , if yz* ...

otherwise,

we obtain

t slkWj] <- x] = G^hkz)

verifying, for Erlang service times, the asymptotic result given in Ct2).

The inequality (53) gives insight into the rate of convergence to the

asymptotic formulae. For instance E(a|<2 ) is approximated by its

asymptotic value E (a | <? . •,) with an absolute error not exceeding 100b%

of the approximating quantity provided

To indicate how this approximation works in practice we give, in the

table below, for each r, k = 2, 3, . . . , 1 0 , first the value of 6 , and

then the smallest integer n which ensures that

(r'v~1-l)e"^1 < 0.01, 0.05

respectively. Thus the smaller of the two integer entries refers to the

5? level of approximation.

The table on the opposite page indicates that for small r and k ,

the approximation by the asymptotic distribution of forward recurrence

times is quite close after a relatively small number of departures. For

instance when r = h and k = 5 one attains 1% accuracy after the

fourteenth departure from the system, that is after about 3 departures

per server. Even in the extreme case of the table, namely r = k = 10 ,

one attains 1% accuracy after about 15 departures per server. The

table shows that there are many practical circumstances in which the

asymptotic approximation will be good enough for practical purposes.

However (53) does not apply directly to the asymptotic expression for

E\Q , . To consider this quantity we return to (1*5) which, in the case
I n'±)

of Erlang service times, yields Pr\Q < x to be
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1% and approximation

2

3

1*

L/N

6

7

8

9

10

2

0.000
0
0

0.500
3
3

0.707
5
1*

0.809
7
5

0.866
8
6

0.901
10
7

0.923
11
8

0.91*0
13
10

0.951
15
11

3

0.333
1*
3

0.577
5
1*

0.71*5
7
6

O.83I*
9
7

0.882
12
9

0.913
lit
11

0.933
16
13

0.91*7
19
16

0.957
21
18

It

0.500
6
It

0.661
7
6

0.791
10
8

0.861
13
11

0.901
17
ll*

0.927
20
17

0.91*3
21*
20

0.955
28
21*

-a-
voONO

 
CM

 C
O

OO
 

CM

5

0.600

8

7

0.721
10
8

0.825
ll*
12

0.883
18
16

0.912
23
20

ro
 r

o
V

Jl
 

C
O

 
O Co O
O CO

0.952
33
29

0.962
39
31*

0.969
1*1*
38

6

O.667
11
9

0.761*
13
11

0.850
18
16

0.899
21*
21

0.927
31
27

0.91*6
38
33

0.958
1*1*
1*0

0.967
52
1*7

0.973
60
51*

7

0.711*
lit
12

0.795
17
15

0.869
21*
21

l/NONO
 

OO
 

O
N

0O
 CM

0.937
1*0
36

0.952
U8
1*3

V
Jl

 
V

Jl

ro
 —

1 
0 Co C
JN

O
O

0.971
68
61

0.976
77
71

8

0.750
17
15

0.820
21
19

0.881*
30
26

0.921
38
35

0.91*1*
50
1*6

OOL/N
O

N

O
 

CM
 V

O
VO

 
l/N

0.967
72
66

0.97I*
86
78

0.979
97
90

9

0.778
21
18

0.839
26
23

O.896
36
33

0.929
1*8
1*1*

O.9l*9
61
56

0.962
76
73

0.971
91
83

0.977
105
97

O.981
121
112

10

0.800
25
22

O.85I*
31
28

0.906
1*1*
1*0

0.936
58
51*

0.951*
71*
68

O.966
93
85

0.973
107
99

0.979
128
118

00
COONO

 
l/N

V
O

J- 
O

O
H

 
rH

(51*)
r-1

* Erw+j(2)+...+j(k),k\ix)

Thus
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(55) E\

We find then that (7) takes the form

" kX 2kX

and, using (52), that

(57)
Jo(k)) _ nr _ (r-l)U-l) ^ , k-1 1^(,nr-l[nr . (r-l)(fe-l)"|
|>,lj kX 2kX - ̂  ~1)tir,k [kX 2kX \ '

Thus the above table again enables one to assess the percentage accuracy in

using the asymptotic expression (7). However it should be noted that for

all n > 1 ,

(58)
n,i

nr (r-lHfe-1)
k\ k\kX kX

these inequalities are often good enough for practical purposes. Note that

(56) always gives a value mid-way between the bounds in (58). The differ-

ence between the upper and lower bounds in (58) does not exceed the mean

service time and, for small r and k , the difference is even smaller. For

example with k = 3 and r = 5 one finds that the expected time of the 9th

departure lies between 3 and 3.53 mean service times, whereas the expected

time of the 99th departure lies 'between- 33 and 33.53 mean service times.

Note that the asymptotic expression yields 3-26 mean service times as the

expected time of the 9th departure; from the table we are locating the

expectation in question to within 1% of the approximation, thus (57)

locates the expected time of the 9th departure between 3.227^ and 3.2926

mean service times.

To establish (58) we return to (5k) and observe that for any

3(2), ..., d{k) , 0 < i ( l ) < r , one has

Enr+(k-l)(r-l),kX{x) ~

Thus

and (58) follows at once.

Monash University.
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