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Abstract

The classic Banach Contraction Principle assumes that the self-map is a contraction. Rather than requiring
that a single operator be a contraction, we weaken this hypothesis by considering a minimum involving a
set of iterates of that operator. This idea is a central motif for many of the results of this paper, in which
we also study how this weakened hypothesis may be applied in Caristi's theorem, and how combinatorial
arguments may be used in proving fixed-point theorems.
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1. Introduction

Since arbitrary self-maps do not, in general, have fixed points, in order to ensure
the existence of fixed points it is necessary to place additional hypotheses on the
maps. A productive class of hypotheses involves specifying how the map behaves
on certain pairs of points. For example, the Banach Contraction Principle requires
that d(Tx, Ty) < Md(x, y) for some positive constant M < 1. Caristi's Fixed-point
Theorem requires that there exists a lower semi-continuous map a : X i->- R+ such
that, for each x e X,d{x, Tx) < a(x) — a{Tx). In the Banach Contraction Principle,
the restriction is applied to all pairs (x,y); in Caristi's Theorem, the restriction is
applied to pairs of the form (x, Tx).

Suppose that & is a set of self-maps of a set X. Instead of requiring that a single
operator T satisfy a restriction for certain pairs belonging to X x X, we might instead
require that, for each pair in a given collection of pairs, there exists an operator
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T € & (dependent on the pair) satisfying that restriction. To illustrate, we consider
the following conjectured generalization of the Banach Contraction Principle. Rather
than requiring that a single operator be a contraction, we consider a minimum involving
a set of iterates of that operator. This idea is a central motif for many of the results of
this paper.

GENERALIZED BANACH CONTRACTION CONJECTURE (GBCC). Let (X, d) be a
complete metric space, 0 < M < 1, and T a self-map of X. Let J be a finite set of
positive integers. Assume that T satisfies the following condition:

(1) min{d(Tkx, Tky) : k e J) < Md(x, y).

Then T has a fixed point.

This conjecture has been proved when J = {1} (by Banach), and for the cases
J = {1,2}, J = {1,3}, and J = {2,3} (in Jachymski-Schroder-Stein [8]); it is
then shown that if p is a positive integer, these results imply GBCC for the cases
J = {p, 2p], J = {p, 3p], and J = {2p, 3p}. An alternative way of phrasing the
above conjecture (see Stein [9] for a more thorough discussion, where an example
is also given that GBCC is, in general, false for infinite sets &) is to assume that,
for each x, y € X, there is an operator Q = Q^,y) e [Tj : j € J} such that
d(Qx, Qy) <Md(x,y).

An example is given in Jachymski-Schroder-Stein [8] of a discontinuous operator
T on a complete metric space X which satisfies (1) for / = {1, 2, 3}. Obviously, the
larger the set J, the less restrictive the hypothesis. Even in the case J = {1,2}, it
is possible to construct continuous maps which are far from contractive; we give an
example to illustrate.

The example is somewhat on the computational side, but can be described fairly
easily. X consists of the countable union of planar sets, each of which contains the
origin as the fixed point and consists of isolated points on two parallel lines (the
x-axis and a line far away). The distances of the points on each side of each line are
geometrically increasing, but all the points on the right side of each line are extremely
close to each other when compared to the points on the left side of each line.

On one line, the map T essentially flips the points from one side to the other,
such that T2 brings each point closer to the origin. This has the effect of making
d(T2x, T2y)/d(x,y) small, but drastically increases d(T2k~lx, T2k~ly) for* and y
both on the closely-spaced side of the line. On the second line, the map T takes the
points into the first line in such a way that d(Tx, Ty)/d(x, y) is small, but drastically
increases d(T2kx, T2ky) for points on the closely-spaced side of the second line.

Each of these 'two-line' sets is finite, and Tk is eventually constant on each of
them. It is therefore necessary to paste together countably many such 'two-line' sets.
The basic metric used is also known as the 'river metric' in Engelking [6].
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EXAMPLE 1. Let 0 < M < 1. We construct a complete metric space (X, d) and a
continuous map T : X i->- X such that:

(2) min{d(Tx, Ty), d(T2x, T2y)) < Md(x, y);

(3) no Tk is a contraction for any k.

X will consist of a countable union of spaces Wn whose intersection consists of a
single point, which will be the fixed point of the map T.

We start by assuming that a > 0 and R > 1 are arbitrary, and that N is a positive
integer. We shall construct a subset XN = XN(a, R) of the plane R2 which consists
of isolated points on two parallel lines.

Assume that r > R (we shall later specify how to choose r), and that p is an integer,
also to be specified later. Define

AN = AN(a, r ) = {(0, 0)} U {(ark, 0):0<k<N}U {(-ark, 0 ) : N < k < 2N}\

AN is a subset of the x-axis of cardinality 2N + 3. Let

BN = BN(a, r)

= {(ark, ar2N+p) :\<k<N}U {(-ark, ar2N+p) : N + 1 < Jfc < 2N} ;

BN is a subset of the line y = ar2N+p consisting of 2iV points. Let

XN =XN(a,r) =ANL)BN.

Define a metric d on XN as follows: ifx, y € AN orx,y e BN,\etd(x, y) — ||x — ;y||,
the straight-line distance between the two points. If x = ( i h 0 ) € AN and y =
(>>,, ar2N+p), define d(x, y) = |JC,| + |y,| + ar2N+p.

In any case, d(x, y) can be thought of as the 'walking distance' between the two
points if one is restricted to walking along the y-axis or the lines y = 0 and y = ar2N+p.
Note that for any x, y e XN, d(x, y) > a.

Define T = TN on XN as follows:

r ( (0 , 0)) = T((a, 0)) = (0, 0);

T((ark, 0)) = (-arN+k~l, 0) for 1 < jfe < N;

T((-arN+k, 0)) = (ark, 0) for 0 < k < N;

T((ark, ar2N+p)) = (ark~l,0) for \ <k<N;

T((-arN+k, ar2N+p)) = (-arN+k-\0) for 1 < Jfc < N.

We make the following observations.
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1°. If x, y 6 BN, d(Tx, Ty) < (l/r)d(x, y).
2°. Let p be the smallest integer such that rp~x > 2. If x € AN, y e BN,

then d(x, y) > ar2N+" and d(Tx, Ty) < d(Tx, (0, 0)) + d((0, 0), Ty) < 2ar2N, so
d(Tx, Ty)/d(x, y) < 2ar2N/ar2N+p = 2/rp < l/r, since rp~l > 2.

3°. If x, y € AN, we examine d(T2x, T2y) by looking at separate cases.

(a) if the abscissa of x is non-positive and the abscissa of y is non-negative, the
same can be said of both T2x and T2y. Since d{T2x, (0, 0)) < (l/r)d(x, (0, 0)), and
d(T2y, (0, 0)) < (l/r)d(y, (0, 0)), we see that d(T2x, T2y) < (l/r)d(x, y).
(b) if the abscissas of both x and y are non-positive and both T2x and T2y lie to

the left of the origin, then d(T2x, T2y) < (l/r)d(x, y). Suppose we assume that
T2x = 0. If x = (0, 0), then d(T2x, T2y) < (l/r)d(x, y). If* = {-arN, 0), then if
y = (-arN+k, 0) for k > 1, then

d{T2x, T2y)/d(x, y) = arN+k~x/{arN+k - arN) = rk'l/(rk - 1).

As r -*• co, this fraction converges to 0, and so, by making r large we can guarantee
that d{T2x, T2y)/d(x, y) < \/R for all such x and y. It helps here that XN is a finite
set.
(c) A similar argument to that presented in (b) can be given to show that, for large r,

the ratio d{T2x, T2y)/d(x,y) < 1//? if the abscissas ofbothx andy are non-negative.

Combining 1°, 2°, and 3°, we see that if x, y 6 XN then

min{d(7jc, Ty),d(T2x, T2y)} <

4°. Letx = (arN-\0),y = (arN,0). Then

min{d(Tx, Ty), d(T*x, T3y),... , d(.T2N~xx, T2N~ly)} > d(x, y).

5°. Let* = (arN-\ar2N+p),y = (arN,ar2N+p). Then

, T2y), d(T4x, T4y),... , d{T2N~2x, T2N-2y)} > d(x, y).

4° and 5° show that none of the maps Tk are contractions for 1 < k < 2N — 1.
6°. Note that for any x e XN, since (0, 0) is a fixed point of T,

min{d(Tx, (0, 0)), d(T2x, (0, 0))} < (l/R)d(x, (0, 0)).

We now use these spaces to construct X and T. Assume that M > 0 is given. First,
choose R such that R > I/A/; then RM — 1 > 0. We now inductively construct
{o,}~, and {,-„}£,.

Let a\ = 1, and choose n appropriately (in line with 3° above). Let Y\ = X\ {ax, r\).
Assume that Yk = Xk(ak, rk) have been defined for 1 < k < n. Let sk be the diameter
of Yk for 1 < k < n, and let 5 = maxf.^,... , sn}. Since RM — 1 > 0, let

aB+i = max{2s, sR(l + M)/(RM - 1)}.
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Now choose rn+\ to correspond to an+l as in 3°. Let Yn+X = Xn+i(an+1, rn+\).
Assume that Tn is the map of Yn defined earlier. Let H be separable Hilbert space,

and {en : n e N} a countable orthonormal basis for H. Let Sn be the 2-dimensional
subspace of H generated by e2n-i and e2n. The map (x, y) i->- xe2n-\ + ye2n maps the
plane R2 isometrically onto Sn; let Wn be the image of Yn under this map. Notice that
the origin O in H is the intersection of all the Wn; we let X denote the union of the
Wn.

We can extend the idea of 'walking' in X as follows: given two points x, y e X,
assume x e Wk and y e Wn. Walk from x to O in the shortest fashion along the
images of the y-axis and the two lines defining Yk; then walk from O to y in the same
manner in Wn. D(x, y), the distance from x to y, is the length of this walk.

Because of the requirement that an+i > 2s, we see that X is complete; as it is the
union of finite sets Wn such that each point (except O) belonging to Wn is at distance
> ax from any point in any other Wk. T is defined in the obvious fashion; T( O) = O,
and if x e Wn, then x is the image of some point u in Yn under the canonical map, and
Tx is the image of Tnu.

We now show T satisfies (2) and (3), and the example will be complete. Since
Tk is not a contraction on Wn for 1 < k < 2n — 1, we see that no power of T is a
contraction.

Let x, y e X. If x and y belong to the same Wn, by construction and by choice of

min{D(r;t, Ty), D(T2x, T2y)} < (l/R)D(x, y) < MD(x, y).

Without loss of generality, assume that x e Wn+i, and y e Wk for some k < n. We
can also assume that neither of these points is O.

We have observed that we can choosey equal to either 1 or 2 such that D(Tjx, O)
< (l/R)D(x, O). Since x e Wn+l andy e Wk for some k < n,

D(x, O) < D(x, y) + D(y, O) < D(x, y) + s.

Therefore D{x, y) > D(x, O) - s. We also have

D(Tjx, TJy) < D(Px, O) + D(O, Vy) < (l/R)D(x, O) + s.

Therefore D(Px, Py)/D(x, y) < ((l/R)D(x, O) + s)/(D(x, O) - s). Since

D(x, O) > an+l > sR(l + M)/(RM - 1),

we see that RMD(x, O) - D(x, O) > sR + sRM, and so D(x, O) + sR <
RMD(x, O) -sRM, Hence we get that ((l/R)D(x, O) + s)/(D(x, O) - s) < M.
Consequently, D(Px, Py)/D{x, y) < M, establishing (2).
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2. The Generalized Banach Contraction Conjecture

The standard proof of the Banach Contraction Principle (GBCC for J = {1})
involves showing that a sequence of iterates is Cauchy. Then, since contractions are
continuous, it is easy to show that the limit of the sequence of iterates is a fixed point.

Of course, it is not in general true that the limit of a convergent sequence of
iterates is a fixed point; a simple counterexample on [0,1] can be obtained by defining
Tx = x/2 for x > 0, TO = 1. We mentioned in the Introduction that the hypothesis
(1) in GBCC does not imply that the map satisfying (1) is continuous.

THEOREM 1. Let (X, d) be a complete metric space, 0 < M < 1, and let p be an
integer. Let T be a self-map ofX. Assume that, given p pairs (x\, yi),..., (xp, yp)
of points from X, for some k, 1 < k < 1p, we have

d(TkXj, Tkyj) < Md(xj ,yj), for \<j <p.

Then T has a fixed point.

PROOF. Let x0 € X, and let [z] denote the greatest integer less than or equal to z.
The proof consists of two steps. The first of these steps is to show that the hypothesis
guarantees that {rnx0}^= 0 is Cauchy. The second step will be to show that the limit of
this Cauchy sequence is a fixed point of T. However, because we can prove a more
general result than the second step which has implications for GBCC, we shall instead
prove that more general result. Let

Ci = max{d(T2kxQ, T2k+lx0) : k = 0, 1 , . . . , p - 1},

C2 = m<ix[d(T2kx0, T2k+2x0) : k = 0,1,... , p - \).

By applying the hypothesis to the p pairs (*o, Tx0), (T2x0, T3x0),... , (T2p~2x0,
T2p~lx0), we obtain an integer J"I with 1 < iy < 2p and such that

d(Th+2kx0, Til+2k+lx0) <MCy, for 0 < k < p - 1.

Continuing, we can find a sequence {/„} such that in + 1 < iB+i < in + 2p, and

d(r-+2kx0, r-+2k+xx0) <M"Q, for 0 < k < p - 1.

By apply ing the hypothes i s to the p pa i r s (x0, T2x0), (T2x0, T4x0), ••• , (T2p~2x0,
T2px0), we obtain an integer 7[ with 1 < j \ <2p and such that

d ( P ' + 2 k x 0 , T u + 2 k + 2 x 0 ) < M C 2 , f o r 0 < k < p - l .
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Continuing, we can find a sequence [/„} such thatyn + 1 < j n + \ < jn + 2p, and

d(Tj"+2kx0, V"+2MxQ) <M"C2, for 0 < k < p - 1.

Now let q be a positive integer. Since in+i < in + 2p, for some integer r, ir < q <
ir + 2p. The spacing of the integers in {/„} guarantees that r > [q/2p]. Similarly, for
some integer s, j s < q < j s + 2p, and the spacing of the integers in (/„} guarantees
that s > [q/2p]. In order to obtain a bound for d(Tqx0, r9+1jc0), we examine three
separate cases.

Case I. The integer q has the form q = ir + 2k for some it with 0 < k < p — 1. In
this case,

d(T"x0, Tg+[xo) < ATC, < Mlq/2p]Q.

Case II. The integer q has the form q — ir + 2k + 1 for some k with 0 < k < p — 1,
and q also has the form j s + 2m + 1 with 0 < m < p — 1. In this case,

d{Tqx0, r+'xo) < d(Tqx0, Tq'xx0) + diT^Xo, Tq+[x0)

< MrQ + MSC2 < Mlq/2p](Q + C2).

Case III. The integer q has the form q = ir + 2k + 1 for some k with 0 < Jfc < p — 1,
and q also has the form;"j + 2m with 0 < m < p — 1. If k < p - 1, then

d(Tqx0, Tq+lx0) < d(T"x0, Tq+2x0) + d(Tq+2x0, Tq+Ixn)

< MSC2 + MrQ < M[q/2p](Q + C2).

Ifk = p — 1, theneither^ + 1 = ir+l or ir+1 < q + 1 < ir+x +2p - 1. If q + 1 = i'r+1,
then

d(Tqx0, Tq+lx0) < d{Tqx0, Tq+2x0) + d(Tq+2x0, Tq+ix0)

< MVC2 + Mr + 1C, < M["/2pl(MC, + C2) < A f ^ ' ^ C , + C2).

If ir+\ < q + 1 < / r +i + 2p — 1, then either q — ir+l + 2m with 0 < w < p — l o r
q = ir+i + 2m + 1 with 0<m<p— 2. lfq = ir+i + 2m with 0 < m < p — 1, then

^ ( 7 % , Tq+lx0) < Mr+lC{ <MrQ < Mlq/2p]C{.

lfq = ir+l + 2m + 1 with 0 < m < p - 2, then

d{T"x0, Tq+lx0) < d ( r " j c 0 , r ' + ^ o ) + d(Tq+2x0, Tq+lx0)

< M S C 2 + Mr+lQ < M [ " / 2 p l ( M C , + C2) < Mlq/2p\Q + C2).
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In any of these cases, since [q/2p] > (q/2p) — 1, we see that

o, Tq+lx0) < M[q/2p\Ci + C2) < CK\

where K = Ml/2p and C = (Ci + C2)/M. Since 0 < K < 1, we conclude that the
sequence {T";^}^, forms a Cauchy sequence.

If T were assumed to be continuous, a standard argument would show that the limit
of the Cauchy sequence {F'JCO}^, is a fixed point. However, as we shall show, the
hypothesis of GBCC is all that is needed to show that the limit is a fixed point, provided
that for some integer q, [T^xo]^ is Cauchy, and the integer q is independent of the
choice of the starting point x0.

In the proofs in Jachymski-Schroder-Stein [8] of GBCC for J = {1, 2}, {1, 3}, and
{2, 3}, it is shown that there is a power of T, say Tq, such that for any point x0, the
sequence of iterates {7'*<?*o}£li IS Cauchy.

Assume now that (1) holds for some finite set J, and suppose that we can demon-
strate the existence of a Cauchy sequence of iterates of some power of T. Moreover,
assume that this power of T depends only on the set J that appears in (1), and not
the point used to start the iteration. We now show that T has a fixed point. This will
eliminate the necessity of assuming that T is continuous.

For the purpose of this argument, assume that N is an integer such that {T^x}^
is Cauchy for any x e X. Now pick a specific x0 e X. For any j > 0, since X is com-
plete, assume that the sequence {TkN+ixo}^ converges to Zj. Since {T*A'+-'+/VA;O}£L1

is a subsequence of [T^+'xo}^, we see that ZJ+N = Zj. In other words, there are at
most N distinct limits among {zj : j = 0, 1, 2 , . . . } . Let z — Zo-

Apply (1) to the sequence of pairs (TkNx, z). Since J is finite, for some j{ e J,
d(TkN+'<x, P'z) < Md(TkNx,z), for infinitely many k. Since TkNx -* z, this
implies there exists a subsequence [k(

n
l)] such that Tkn N+j'x —>• P'z. Now apply (1)

to the sequence of pairs (Tk''')N+i'x, P'z). Arguing as above, we can find an integer
j 2 6 J and a subsequence {^2)} of {^:)} such that

Now apply (1) to the sequence of pairs (Tk" N+jl+J2x, P'+hz), and continue.
Re-labeling terms appropriately, we thus arrive at the matrix [xk<n : n e N , t e N )

with the following properties:

each xk,„ has the form TjNx0;

{xkJT=\ i s a subsequence of [xk-ltn}™=l for k > 1;

(4) Th+-+Jkxk,n - • Tii+-+lkz as n - • oo.

However, as we observed two paragraphs ago, the expression on the left side of (4)
depends only on the residue class mod N of j i + •• • +jk. Sooner or later, we will find
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integers q > p such thaty! + • • • +jq andy'i + • • • +jp belong to the same residue
class mod N. Therefore, if a =_/, + . . . + j q and /3 = j \ - \ \-jp, then Taz = Tpz,
and so Ta-fi(T^z) = Tpz. So T has aperiodic point.

The same type of argument can be used to show that the periodic point is actually a
fixed point. Suppose that T has a periodic point u of order M. Apply (1) repetitively to
the pair (Tu, u). We obtain a sequence of pairs (Tkn+Xu, Tk"u), where the exponents
kn are taken from ZM, the integers mod M. These pairs have the following property:

d{Tk^+xu, Tk"+iu) < Md(Tk-+lu, Tk-u).

Since ZM is finite, there must be integers p > n such that kp = kn, and for these
integers we have

d(Tk"+lu, Tk"u) < Mp-nd(Tk"+lu, Tk"u).

Since Mp~n < 1, TK+lu = Tk-u. If 0 < kn < M - 2, then the previous equality
shows that Tk-u is a fixed point of T. If kn = M - 1, then u = TMu = TM~lu, and
so TM~xu is a fixed point of 7. •

We remark that the above theorem holds if, given p + 1 pairs (xt,y\),... ,(xp+l,
yp+\) of points from X, for some k, 1 < jfc < 2p + 1, we have d(TkXj, T*v;)
< Md(xj, yj) for 1 < _/ < p + 1. This assumption would imply that for some &,
1 < * < 2p + 2, we have d(Tkxj, Tkyj) < Md(x}, v;) for 1 <j < p + 1, and we
could then apply Theorem 1.

In the second part of the proof of Theorem 1 we have proved in fact the following
result.

PROPOSITION 1. Let {X,d)be a complete metric space, 0 < M < 1, and let N be
a positive integer. Let T be a self-map ofX such that T satisfies (l)for some finite set
J. If for any x e X the sequence \TkN xY^Lx is Cauchy, then T has a fixed point.

The next theorem demonstrates that there are hypotheses related to (1) which result
in fixed points for any finite set J.

THEOREM 2. Let (X, d) be a complete metric space, and assume that T : X i-> X
is uniformly continuous. Let u be an upper semi-continuous function defined on the
non-negative reals such that u(t) < t for all t > 0, and lim^oo inf(f - u(t)) > 0.
Let N be a positive integer. Assume that for all x, y € X

(5) mm{d(Tx, Ty), d(T2x, T2y),... , d(TNx, TN y)\ < u(d(x, y)).

Then T has a unique fixed point.
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PROOF. Choose a positive integer p such that lim^oo inf(t — u(t)) > 2/p. For
each n € N, let

n

An = f][x 6 X : d(x, Vx) < l/(n+p)}.

Let F{T) denote the set of all fixed points of T; it is clear that F(T) = ^=iAn.
In order to prove that T has a unique fixed point we must show that F(T) is a
singleton. To do so, we show that the {An : n = 1,2,...} form a decreasing
sequence of non-empty closed sets whose diameters converge to 0; the result then
follows by the Cantor Intersection Theorem. The sets form a decreasing sequence
since {l/(n + p)}^L{ is a decreasing sequence of real numbers, and each An is closed
because it is the intersection of the inverse images of the closed interval [0, l/(n + p)]
under the continuous maps* \-± d(x, Vx).

It remains to show that the An are non-empty, and that their diameters converge
to 0. Let a = mi{d(x, Tx) : x e X}. Choose a sequence {*„}£!, such that
d(xn, Txn) -> a+. Letting x = xn and y = Txn in (5), we see that, for all positive
integers n,

a < min{d(Txn, T(Txn)), d(T2xn, T(T2xn)),... , d(TNxn, T(TNxn))}

< u(d(xn, Txn)).

Letting n -> oo, we see that

a < lim sup u(d(xn, Txn)) < lim supM(r) < u(a)

since u is upper semi-continuous. By assumption, u(t) < t for t > 0, so a = 0.
Since T is uniformly continuous, all the maps T' are uniformly continuous, and

so given e > 0, there is 8f > 0 such that d(x,y) < 8( implies d(T'x, T'y) < €
for 1 < i < N — 1; and we may assume without loss of generality that Sf < e/N.
Now let e > 0. Since inf{d(x, Tx) : x € X] = 0, there exists anxf e X such that
d(x(, Tx() < 8f. Then, for 1 < j <N,

j-\ N-\
, Pxt) < J2d(T'xt> Tl+Xxt) < ^2d(T%, Ti+1xe) < Se + (N - l)c/N < e.

i=0 i=0

Letting e = \/{n + p), we see that xf e An, and so A„ is non-empty.
To complete the proof we show that the diameters of the An converge to 0. Let

an = diam(An); an is possibly infinite. Let x, y € An, and choose an integer j < N
such that d(Px, T'y) < u(d(x, y)). Then

d(x, y) < d(x, Vx) + d(Vx, Vy) + d(Py, y) < u(d(x,y)) + 2/(n + p).
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We therefore see that d{x,y) — u(d(x,y)) < 2/(n + p) for any x,y belonging to An.

Suppose that an is infinite for some n. Then we can find sequences {*„}£!, and

[yn}^Li in An such that tk = d(xk, yk) -*• oo. But then tk — u(tk) < 2/(n + p), and
so lim,_,.oo inf(f — u(t)) < 2/(n + p) < 2/p, which contradicts the definition of p.
Therefore each An is bounded.

Since the function t \-+ t — u(t) is lower semi-continuous, d(x, y) — u(d(x, y)) <
2/(n + p) for any x, y belonging to An implies that an — u(an) <2/(n+p). Since
the sequence [An}™=l is decreasing, ax > a2 > • • • > 0; so let a — l im,, .^ an. Again
using the lower semi-continuity of 11-> t — u(t), letting n —> oo, we see that

a - u(a) < lim inf(/ - «(/)) < lim inf(an - u{an)) < 0.
/-»oo

Therefore a < u(a), and so a = 0. Hence diam(AJ ->• 0, and Cantor's Intersection
Theorem shows that F(T) is a singleton. •

Hypothesis (5) in Theorem 1 is a hybrid of two ideas: the hypothesis (1) of GBCC
and a theorem of Browder [1].

We recall the following definition introduced by Browder and Petryshyn [2].

DEFINITION 1. A ma.pT is asymptotically regular if for each x e X,limn^0Od(T"x,
Tn+lx) = 0.

The next theorem makes use of the following result of Dugundji ([5, pp. 13-14] or

[4]).

THEOREM 3 (Dugundji). Let (X, d) be a complete metric space, a : X (-> R+ an
arbitrary function. Assume that if a > 0,

y(a) = inf{a(x) + a(y) : d(x, y) > a] > 0.

Then any sequence {xn)for which a(xn) —> 0, converges to the same point.

THEOREM 4. Let (X, d) be complete, and assume that T : X \-+ X. Let u satisfy
conditions of Theorem 2, and assume that T satisfies condition (5). Then T has a
contractive fixed point (a fixed point to which every sequence of iterates T"x converges)
if and only if T is asymptotically regular.

PROOF. Note that T is not assumed to be continuous. The 'only i f part of the
theorem is trivial, so assume that T is asymptotically regular. Define a : X H-> R+ by

a{x) = max{d(x, Vx) :l<j<N}.
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Assume that a does not satisfy the conditions of Dugundji's Theorem. Then there
exists an c0 > 0 and sequences {xn} and {yn} such that a(xn) + a(yn) < \/n and
tn =d(xn,yn) > e0.

Observe that, for any k e {1, 2 , . . . , N],

d{xn, yn) < d(xn, Tkxn) + d(Tkxn, Tkyn) + d(Tkyn, ya),

so choosing k in accordance with condition (5) we have

d(xn, yn) < a(xn) + a(yn) + u(d(xn, v j ) < \/n + u(d(xn, yn)),

and so tn — u(tn) < \/n. If [tn] is not bounded, then lim,.^ inf(t — u(t)) =
0, a contradiction. So we can assume without loss of generality, by passing to a
subsequence if necessary, that tn —*• t0. Combining the inequality tn — u(tn) < \/n
with the semi-continuity of u, and letting n -> oo shows that t0 < u(t0). Therefore
to = 0, contradicting the fact that tn > €0, and so a satisfies the hypotheses of
Dugundji's Theorem.

Note that, for some k e {1, 2 , . . . , N},

t - l N-l

a(Tnx) = d(Tnx, Tn+kx) < Y^d(Tn+ix, Tn+i+lx) < Y^d(Tn+ix, Tn+i+ix),
i=0 i=0

and this last expression approaches 0 as n -*• oo by asymptotic regularity. So by
Dugundji's Theorem, T"x —> z, where z does not depend on x. By an earlier
argument involving a condition similar to (5) and the existence of a limit independent
of the start of the sequence, z = Tz. •

COROLLARY 1. Assume the hypotheses of Theorem 4 are satisfied with N = 2.
Then T has a contractive fixed point.

PROOF. From Theorem 4, it is enough to show that d(Tnx, Tn+1x) -+ Ofor* e X.
Assume additionally that u is non-decreasing. We repeat the argument for J = {1,2}
in Jachymski-Schroder-Stein [8]. By the monotonicity of u, we can conclude as in
Jachymski-Schroder-Stein [8] that

d(Tqx, T"+Xx) < u{(q-X)m{d(x, Tx)) + ul{i-l)/2](d(x, T2x)).

Browder [1] has shown that un(t) -> 0, so d(T"x, Tn+lx) -+ 0.
To complete the proof, we show that if u is not non-decreasing, then there is a

continuous, non-decreasing function w defined on R+ such that

u{t) < w{t) < t for t > 0, lim inf(f — w(t)) > 0.
/-»oo
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Then (5) is satisfied with w substituted for u, and we may repeat the argument used
in the first part of the proof.

By hypothesis, for t > 0, l i m ^ , sup u(s) < u(t) < t. Hence by Jachymski [7,
Theorem 2], there exists a continuous increasing function v such that u(t) < v(t) < t
for all t > 0. Moreover, by hypothesis there exist positive reals t0 and a such that
«(0 < t — a for t > t0. If v(t0) > t0 — a, then it suffices to set w(t) = v(t) for
0 < t < t0, w(t) = v(t0) foTt0<t<a + v(t0), and w(t) = t - a for t > a + v(t0).

So assume that v(t0) < t0 - a. The set S = {t € [0, t0] : t - v(t) = a] is closed
and non-empty since v is continuous, — v(0) < a and t0 — v(t0) > a. If s0 = max S,
then 0 < s0 < t0 and u(f) < t — a for s0 < t < t0. So it suffices to set w(t) = v(t) for
0 < / < So and u;(r) = t — a for f > s0. It is easily seen that w has all the required
properties. •

REMARK 1. A result similar to Theorems 2 and 4 was obtained by Wong [10,
Proposition 5]: if T is a nonexpansive {d{Tx, Ty) < d(x, y) for x, y € X) self-map
of a metric space (X, d) and 7 has a fixed point, then T has a contractive fixed point if
and only if there exists a function u : R+ t-> R+ such that u is upper semi-continuous
from the right, u{t) < t for t > 0 and

inf{rf(rnx, r n y ) : « e N ) < M(^(JC, y)), for all x j e X .

Hypothesis (1) of GBCC also can be transferred into a fixed-point theorem of
Caristi [3]. Part of the utility of Caristi's Theorem is that the self-map T need not be
continuous. However, the proof in the case where T is continuous is much simpler, and
since the purpose of this paper is to investigate variations of (1) in different settings,
we shall assume that T is continuous. As usual, (X, d) is a complete metric space.

THEOREM 5. Suppose that a : X h+ R+ is such that, for each x € X and k= 1,2;
either

(6) d(x, Tkx) < a(x) - a(Tkx)

or

(7) d(Tx, Tk+lx) < ot(Tx) - a(Tk+1x).

Then T has a fixed point.

PROOF. Pick x0 € X, and note that the repeated application of (6) or (7) with k — 1
leads to an increasing sequence {/„} such that in+\ < in + 2, and

d(P"x0, Tl"+lxo)
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Similarly, repeated application of (6) or (7) with k = 2 leads to an increasing sequence
\jn) such that jn+i < j n + 2, and also

d(P'x0, Tj-+2x0) < a(TJ"xQ) - a(P"+2x0).

For simplicity, letan = a(T"x0) -a(Tn+1x0) and bn = a{TnxQ)-a{TnJr2x0). Notice
thaibn =an + an+i.

We estimate d(Tqx0, Tq+lx0). If q = /„ for some n, then d(Tqx0, Tq+Xxo) < aq.
If q & {in : n e N}, then both q — 1 and q + 1 belong to {/„ : n € N}, in which case
bothrfCr'-'jto, T"x0) < aq..x andd(Tq+1x0, T«+2x0) < o,+I.

Either q or q — I e {jn : n e N}. If q e {jn • n € N}, then

d(r"x0, r+ 1xo) < di^xo, Tq+2x0) + d(T"+2x0, Tq+ix0)

< bq + ag+i = aq + 2aq+l.

Ifq-le {jn -n eN) , then

d(T"x0, Tq+lx0) < d{T"-xx0, Tq+lx0) + diT^xo, Tqx0)

Therefore we always have

d(Tqx0, Tq+lx0) < 2a,_, + aq + 2aq+l.

Since at + • • • + an = ct(Tx) — a(Tn+lx) < a(Tx), we observe as usual that the
sequence of partial sums of the series Yl7=o d( T"x0, Tn+lx0) form a bounded monotone
sequence. So the sequence [Tnx0] converges, and continuity insures that the limit of
this sequence is a fixed point of T. •

3. Combinatorial aspects of a summation hypothesis

The observation is made in Jachymski-Schroder-Stein [8] that there is a relation
between GBCC and certain tiling problems in combinatorics. This relation is exploited
in proving GBCC in the cases J = {1,2}, J = {1,3}, and J = {2, 3} by replacing
the tedious and highly computational process of constructing bounds for iterates with
a set of rules for manipulation of tiles.

In this section we show that other combinatorial arguments can also be useful in
fixed-point theory.

Let {X, d) denote a complete metric space.
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DEFINITION 2. Let & = {Tu ... , TN] be a collection of self-maps of X. We say
that ^ has property ^2p if, for every set of p pairs of points (xuyi), • • • , (xp, yp),
there is a g e & such that

_ . . . _ . . . . : oo f° r 1 < k < p.

The summation hypothesis in the above definition is not as easily verified, from an
a priori standpoint, as a hypothesis of contractive type, and of course this limits its
applicability. However, the types of theorems obtained in this section, as well as the
combinatorial aspects of the proofs, should justify investigation of this hypothesis, as
the ideas may play a role in fixed-point theorems for more easily-verified hypotheses.

The idea of assuming that simultaneous (that is, for several pairs of points, rather
than just one) boundedness hypotheses are satisfied has already been seen in Theorem
1. It is prompted by the fact that, in Jachymski-Schroder-Stein [8], the proof of GBCC
for the case J = {1, 2, 3} is tantalizingly incomplete. The remark following Theorem
1 shows that if, given any two pairs of points (x, y) and (w, v), there is an operator
Q e {T, T2, T3} such that both d(Qx, Qy) < Md{x,y)xn&d{Qu, Qv) < Md(u, v),
then T has a fixed point.

We let C(n, k) = n\/{k\{n — k)\) denote the binomial coefficient. Recall that,
from combinatorics, C(n, k) also represents the number of subsets of k items from a
collection of n items.

If T : [0, 1] M- [0, 1] is defined by TO = 1, Tx = x/2 for* > 0, then J = {T}
satisfies J2n for any n, but T has no fixed point. T is not continuous; to avoid this
difficulty we will usually be forced to assume in this section that maps are continuous.

THEOREM 6. Let q be a positive integer. Then there is a positive integer N0(q) with
the following property: ifN > No(q) and & = {T\,... , 7#} consists of continuous
maps and has property ^2N_ , then some Q € & has a fixed point.

PROOF. Suppose that & = { 7 \ , . . . , TN] has property ^,N . Let x0 e X, and
let / be a subset of {1, 2 , . . . , N) of cardinality N — q. By assumption, there is a
Q e ^ such that YlT=i d(Q"xo, Q"Tkx0) < oo for fc e / . If Q = 7} for some; e / ,
then the usual argument shows that {TJ'xo}^ is a Cauchy sequence whose limit is
a fixed point, so we can assume without loss of generality that Q g f 7]; : ;' e / } .
Therefore, each subset I of {1, 2 , . . . , N] which has cardinality N — q determines
an operator Qi = Tj\ we say that 7} has been determined. As I runs through all
subsets of {1, 2 , . . . , N) with cardinality N — q, the number of times the operator 7]
is determined will be denoted by Sj. Observe that <S; < C(N — 1, q — 1), because
the 'without loss of generality' assumption made earlier in this paragraph requires
that each time a specific operator Q is determined, it is one element of a subset of
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q = N — (N — q) members of &', and the other q — 1 members of this subset are
taken from the N — 1 members of & \ {Q).

Note that, since each subset / of {1, 2 , . . . , N] with cardinality N — q determines
a member of &, the sum 5, H h 8N = C(N, N - q) = C(N, q), the number of
such subsets.

We assert that, if Q € J2" is determined C(N - 2, AT - g) + 1 times, then
Jl^Li d(Q"x0, Q"Tkx0) < oo for Tk ^ Q. It is possible that, in choosing sub-
sets of cardinality N — q of the N — 1 members of & \ [Q], after having chosen
a total of C(N — 2, N — q) such subsets the union of these subsets may have con-
sisted of only N — 2 members of & \ {Q}, but the next such subset must contain
the remaining member of & \ {Q}. Let y denote the number of operators 7} for
which 8j > C(N — 2,N — q) + l, and let p denote the largest even integer < y. For
notational convenience, re-index the operators so that <5; > CCN — 2, iV — q) + 1 for
1 <j < p. After this re-indexing, we see that Si + • • • + Sp < pC(N — 1, q — 1).

It is possible that y is odd, in which case there is a single operator 7} with j > p +1
such that Sj > C(N — 2, N — q) + 1, but in any case we have

8p+l + • • • + 8N < C(N - l , q - l ) + (N -p - l)C(N - 2, N - q).

Combining this with the inequality at the end of the last paragraph, we have

8i + • • • + 8N < (p + l)C(N - 1, q - 1) + (N - p - l)C(N - 2, N - q).

We now use the above inequality to show that there is an integer NQ{q) such that
N > N0(q) implies p > 2q. To do so, we show that, for large N,

(p + l)C(N - 1 , q-l) + (N -p -\)C(N -2, N -q) < C(N, q) = <$,+• • -+8N

for p = 0, 2, 4 , . . . , 2q - 2. Note that both (N - p - l)C(N - 2, N - q) =
(N - p - l)C(N -2,q-2) and (p + l)C(N -l,q-l)are polynomials of degree

q — I in N, and so their sum is also a polynomial of degree q — 1 in N. But C(N, q)
is a polynomial of degree q in Af. Choose an integer N0(q) such that, for N > N0(q),

l)C(N -l,q-l) + (N -p -l)C(N -2, N -q) < C(N, q) =Sl + ---+SN

for p = 0, 2, 4 , . . . ,2q — 2. This would be a contradiction unless p > 2q.
Since p > 2q, the set of pairs (Tix0, T2x0),... , (Tp_ix0, Tpx0), (x0, Tp+ix0),... ,

(x0, TNx0) has cardinality not greater than N —q, and we can now use the assumption
that & has property YLN-Q- ^ e c a n therefore find an operator Tk with 1 < k < N
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such that both

oo

(8) ^d(7?TjX0, Tk"TJ+lx0) < oo for j = 1, 3 , . . . , p - 1,
n—l

oo

( 9 ) ^ d ( T k
n x 0 , Tk

nTjX0) < o o f o r j = p + l , p + 2 , . . . ,N.
n=l

If k > p + 1, by (9) we have Y^=\ d(Tk
nx0, Tk

n+lx0) < oo, and the usual arguments
show that the sequence [Tk"x0}™=l is Cauchy, and the continuity of Tk insures that the
limit is a fixed point.

If k < p, let i = k + 1 if k is odd and i = k — 1 if k is even. By (8),
Er=i d(Tk"

+lx0, Tk
nTiXo) < oo. Since 8k > C(iV - 2, N - (?) + 1, we also have

TT£xo, TkTjXo) < oo. Combining these two inequalities,

o, T?T,x0) + J2d(T
k"

+lx<>' Tk"TiX0) < oo,
n=l n=\ n=l

and as before this implies that Tk has a fixed point. •

The proof of the next theorem uses some of the same ideas.

THEOREM 7. Let & = { 7 j , . . . ,TN) consist of continuous maps and have property
a fixed point.

PROOF. Let x0 e X. If 1 < it < N, let /* = 0' : 1 < j < N and; ^ k}.

Since «̂ " has property ^2N_X, for each k < N we can choose Qt 6 ^ such that
£ ~ , d(e;jco, QJTJJCO) < oo for ; € / t . If Qk £ Tk, then Qk has a fixed point via
the usual argument by letting 7} = Qk in the summation at the end of the previous
sentence, so as in the preceding theorem we can assume without loss of generality
that Qk = Tk. So

k
n x 0 , TkTjx0) < o o f o r j ^ k , \ < k < N .

n=\

Now choose Q 6 & such that X^Li d(QnTjX0, QnTj+iX0) < ooforl <j < N-l.
Assume Q = Tk. If k < N - 1, let i = k + 1; if k = N, let i = N - 1. Then
Er=i d(Tk

n+lx0, Tk
nTiXo) < oo. Since i ^ k we also have £ ~ , d ( r ;x 0 , Tk

nTiXo) <
oo. As in the preceding theorem, we see that

OO OO

o, Tk
n+lx0) < 53rf(7T*0, Tk

nTiXo) + J^diT^Xo, Tk
nTiXo) < oo,

n=\ n~l n=\

and as usual this implies that Tk has a fixed point. D
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COROLLARY 2. Let S and T be continuous self-maps ofX, and let p be a positive
integer. Assume that & = [S, S2,... , Sp, T, T2,... , Tp], and that for eachx, y e
X, there is an operator Q 6 & such that £^L, d(Q"x, Q"y) < oo. Then if p = 1,
either S or T has a fixed point. If p > 1 then S or T has a periodic point, and if
p > 1 and S and T commute, either S or T has a fixed point.

PROOF. Observe first that if p = 1 (and so & consists of two operators), the
conclusion is simply the preceding theorem with N = 2. The hypothesis implies
that, if q = p\, then for every x,y e X, either Y%L\ d(Snqx, Snqy) < oo or
YlT=i d(Tnqx, Tnqy) < oo. The preceding remark enables us to conclude that ei-
ther S or T has a periodic point (of order q). It only remains to show that either 5 or
T has a fixed point if S and T commute.

We can assume without loss of generality that Tqx — x for some x e X. Then
either Y^^d{Tnq(Tx), Tnq(x)) < oo or £ ~ , d(Snq(Tx), Snq(x)) < oo. If the
former, since Tqx = x,v/e see that Y1T=\ d(Tx,x) < oo, in which case we must have
d(Tx,x) = 0 and so Tx = x. We therefore assume the convergence of the latter
series. We now either have

T"q(Sqx)) < oo or ^ ^ ( 5 " 9 ( r x ) , Snq(Sqx)) < oo

If the first of these inequalities holds, then since Tqx = x and ST = TS, we have
TZid(Tnq(Tx), T"q(Sqx)) = Y,Zid(Tx,Sqx) < oo. So Tx = Sqx. Substitut-
ing, we obtain £ ~ , d(Snq(S"x), Snq(x)) < oo. But this is just Y,T=i d(Tn+ix, T"x)
< oo, and so Tx = x as usual.

Finally, assume that both £ * , d(S"q(Tx), Snq(Sqx)) < oo and £ * , d(Snq(Tx),
S"Hx)) < oo. Then Y,Zi d(Snq(x), Snq(Sqx)) < oo, which implies that {S^x}^ is
Cauchy. It therefore converges to a limit u, which satisfies Squ = u. But then

Tqu = Tq(lim Snqx) = lim(TqSnqx) = lim(SnqTqx) = lim Snqx = Su.
n—»-oo n—•oo n—>oo n—*-oo

So either J^=ld(Tnq(Su),Tnq(u)) < oo or £ ~ , d(Snq(Su), Snq(u)) < oo.
Either of these implies Yl7=i d(Su, u) < oo, and so d(Su, u) = 0. Therefore
Su = u. D

We conclude with an example to demonstrate the necessity of assuming that the set
of operators is finite.

EXAMPLE 2. We construct a complete metric space (X, d) and a continuous map
T : X i-> X such that, for each x, y € X, there is an integer n = n(x, y) such that
YX=i d((Tn)kx, (Tn)ky) < oo, but T has no fixed point.
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X will be an increasing sequence yi < y2 < ••• of real numbers, d the absolute
value metric, and T the shift operator Tyk = yk+i. X will be the union of sets Ak,
each of which is a finite subset of [Jt, A; + 1). X will therefore be a discrete metric
space with no limit points, so X will be complete, T will be continuous and, as defined
above, have no fixed points.

Let A i = {1}, A2 = {2}; so y\ = \,y2 = 2. The sets Ak will be defined inductively
to satisfy: Ak = [k = x[k) < < x^)\

(10)

for * > 3 , if yj=x[k) and yH=x£, then yn - v,•= (>>,_, - > y _ 2 ) / 2 ;

(11) if y}, yJ+i, yJ+2 € Ak, then yJ+2 - yj+1 = {yj+l - y, ) /2 .

If A\,... , At_i have been defined, (10) and (11) can be realized simply by specifying
pk. Let/?* = {p\ + • • • + pk_i)l. Without loss of generality, assume x =yn,y = yp,

and n < p. Assume that y 6 Ak, and let r = {px + • • • + pk + 1) — n. Note that
= * r \ ^ = * r +

+ A , and that
and n

But since r is a factor of pk+\, for some value of j we have

and since p — n < r, repeating this argument shows that, for any j , there is an integer
k such that both (Tr)Jx and (Tr)Jy belong to Ak. By construction,

"x, TJry) < 2^2-;J(x,>') < oo,

establishing the example.
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