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REPRESENTATION FORMULAS FOR 
INTEGRABLE AND ENTIRE FUNCTIONS OF 

EXPONENTIAL TYPE II 

CLÉMENT FRAPPIER 

1. Introduction. We adopt the terminology and notations of [5]. Iff G BT is an 
entire function of exponential type r bounded on the real axis then we have the comple­
mentary interpolation formulas [1, p. 142-143] 

00 sin2 7 ( kix + 7 \ 
(1) s in7/ ' (0 + TCOS7/(0 = r £ ( - 1 ) * — _ _ / l+t) 

and 

oo sin2 (k7T+1 ) f kir +y 
(2) s i n 7 / ( 0 - c o s 7 / , ( 0 - 2 r E (~D* n

 V iJ f[ +> 
^ .oo (kir+1)2 V r 

where f, 7 are reals and 

(3) f(t) := -^L= /T sign(w)^"V(") dw 
. 2TT 

is the conjugate function associated to / , which has always a representation of the form 
[l,p. 138]: 

(4) f(t) = /(0) + -7^= T ^ V 00 ^ 
V2?r • / - T 

with -0 G L2(—r,r). If, in addition, fy" (f ) < 0, where 

hf(ey.= ^^fA 
r—xx) y 

is the indicator function of/, then 

(3') / ( 0 = - ^ L f eiutx/j(u) du, teR 
/ 2 T T 

where 0 G L2(<9, r ) , with (see the second part of the proof of Lemma 1) 

(4') f(t) = /(0) + ^7=[ ^ 00 d«. 
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REPRESENTATION FORMULAS 35 

The assumption hf ( | J < 0 appears naturally in our context since it is realized in 
particular for those functions/ G Bn of the form/(z) = P(elz)y where P is any algebraic 
polynomial of degree < n. It follows from (3'), (4') that 

(5) f(t) = i(f(t)-f(0)) i fA / (^ ) < 0 . 

In that case formula (2) may be written in the form 

(6) <Pfit) = 2ir £ (-1)' 
* = - o o (K 

i n 2 ( ^ ) / fa r+7 

( fc7r+7) 2 / l r J ' 

Except for 7 = § (mod 7r), r/ie example f(z) = e lTZ shows that formula (6) is not 
true in general without the restriction hf ( | ) < 0. 

REMARK. It follows from (6) that the inequality (take 7 = — tr) 

(7) 1/(01 < r sup If ( - 1 
kez I V T J 

te 

holds whenever f G BT satisfies hf ( | ) < 0. This is a refinement of the famous Bern­
stein's inequality, namely \f(t)\ < r sup_00<M<00 \f(u)\ , / G R . The inequality (7) does 
not hold for arbitrary/ G BT (take/(z) = sinrz); however we have [7], for all / G BT, 

(8) 
I ( lor 

\r2f(t)+f'(t)\ <A(r)supk — 
kez\ W 

f G 

with an explicit constant A(r). 
It is also known [10, p. 50] that if/ G BT satisfies the condition hf ( | ) = 0 then: 

f \ 2 ^ + 1 )
+ t (9) TAt) + tf«)-«P>At) = T £ 7 ^ 2 

fc=-oo V̂ 7» + U 

(A factor r is missing in formula (2.2) of the aforementioned paper.) 
Applying (9) to the function g G B^T, g(z) := elTZf(z), where/ G # r , we readily 

obtain (1). 

2. Statement of Results. We adopt the following convention: T.a<v<bAv:— 0 
whenever a> b, a, b G R. The formula (9) is a corollary of the following 

THEOREM 1. Letf G # r such thatf(x) = 0(|x|_ £), £ > 0, x —•» ±oo. For all reals 
7 ^ 0 (mod 7r) and a > 0 w e Ziave 
(10) 

lia fit) 2(a - 2)r/(0 , 4r/(f) 
+ T ( 1 - ^ 7 ) (1-^2/7) ( 1 - ^ 7 ) 2 ^ 

oo ^-ar(^+7)i / (jfcTT+7) ^ 

^ e " 2 ^ roo 

E / /(<**+o* 
[^-a)/rx _ T + 2 ( a _ J,)/™] 

dx. 
\<v<ct 
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36 CLEMENT FRAPPIER 

If in addition, hf f | ) < 0 then the summation, in the righthand member of (10) is re­
stricted over the integers v such that 1 < v < ^. 

See 5.1.5 for the limiting case 7 = 0 (mod 7r). 
The summation over v, in (10), is interpreted as being equal to zero if a < 1; we 

obtain (1) with a = 1. I f / i / ( | ) < 0 then the corresponding summation is zero for 
0 < a < 2 and we can also see that (9) is a consequence of the particular case a — 2. 
The distance between two interpolation points, in the summation of the lefthand member 
of (10), is equal to — ; it can be made arbitrarily large but, in order to compensate, we 
need a lot of integrals in the righthand member. A similar circumstance happens in a 
paper of Olivier and Rahman [9] where it is proved that the quadrature formula 

fi even 

holds, in particular, for entire functions of order 1, type r , belonging to L1 (—oo, oo). Here 
m > 1 is an odd integer and /x ! aM,m_i = t/;(/i)(0) where 

^u)= n (i+4 

In (11) the distance between two interpolation points is (m+1)7r ; it can be made arbi­
trarily large but, in order to compensate, we need a lot of summations in the righthand 
member. 

We observe also that the integrand, in (10), is equal to 

/7 / 0-2(u-a)iTx __ i 

fiax+OeV-"**- l 

dx 

integrating by parts we see immediately that the righthand member of formula (10) is 
equal to 

Y] / (af'(ax + t) + (2v - a)irf(ax + t)) dx. 
\<v<oc 7T J-oo \ X J 

Multiplying both members of formula (10) by (1 — e2n )2 and letting 7 —> 0 give only 
a trivial result. A related result is given in that case by the 

THEOREM 2. Letf e BT. For all real t we have 

7T ./-oo \T J V X J 6 Tl 2lTz i/ = -oo V1 

The formula (12) is an extension to entire functions of exponential type of a 
trigonometric formula (see Lemma 3, below) involving the Fejer's means, crn(s',Q) := 
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EjL-H U — ^ ) fye^, associated to a trigonometric polynomial £(0) := Y!j=-nbjéje. 
Like Theorem 1 it will be proved with the method of approximation described in [5] (see 
also sections 5.1.5 and 5.2). In order to do that we shall need a particular case of a result 
given in [4], namely 

(13) K E -2f(~)=r2f(0) + 6irf'(0)-6f"(0), f € BT,hf ( J ) < 0. 

We take the opportunity to present here a generalisation of the result in question. It is 
readily seen that (13) is the case a — r , r = 2 of the 

THEOREM 3. Letf E BT such that hf (f ) < 0. Suppose that a <r and 0 < x < 
1 — - . Wehave,forr=2,3,4,..., 

We have also the 

THEOREM 3'. Letf e BT. Suppose that a > 2r and 0 < x < 1 — ^ . We have, for 
r= 2,3,4,. . . 

In (14), (15) we have Bk(z) := E-=0 (*) 5 ; ^~ j w h e r e Bj i s t h e / Bernoulli number 

defined by the generating function -^ — EjS0 li^- Of course (14) and (15) are valid 

under a less restrictive hypothesis of the form/(;c) = 0(|jc|r~1-e). 

3. Some Lemmas. In order to prove the second statement of Theorem 1 we need 
the 

LEMMA 1. If F G BT is integrable then for every b $ (—T,T) we have 

(16) f°° F(x)ei6x dx = 0. 
J—oo 

If in addition hf ( | ) < 0 then (16) holds for 8 £ (—r, 0). 

PROOF. The first part of Lemma 1 is known: the Fourier transform of an integrable 
and entire function of exponential type r is a continuous function equal to zero outside 
[-T,T] (see [8, p. 109, Theorem 3.1.3]). 

The second part is also essentially known but an adaptation of a standard proof of the 
classical Paley-Wiener theorem (e.g. the first proof in [3, p. 105]) is necessary. We need 
to observe that if, in addition, hf ( | ) < 0 then [3, Theorem 6.2.4] 

\F(x + iy)\ < sup |F(w)|, -oo < x < oo, y > 0 
— OO<M<0O 
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(instead of |F(JC + iy)\ < eT^ sup_00<M<00|F(w)|). The result follows since BT n 
L^-oo , oo) Ç BT H L2(-oo, oo) (see [8, p. 126, Theorem 3.3.5]). 

The next two lemmas contain the appropriate formulas on trigonometric polynomials 
that we shall need for the proofs of Theorems 1 and 2. 

LEMMA 2. Let t{9) := E L _ n c / ^ be a trigonometric polynomial of degree < 
n, n > 2. For all reals 6 and 7 ^ 0 (mod 2TT) we have 

(s+l)m—sn—\ 

cne
M + Y, e~(S+m £ ((s+l)m-sn-l-j)cjeije 

(U) ' y ( g ) (m-\)t{6) (n-m)f(fl) 
(1-e ' ' 7 ) ( 1 - e ' 7 ) (1-e 'T) 2 

Mfl-m) h s i n 2 ( ^ - } ) A + n - m J ' 

where m < n is an integer. 

PROOF. Let us consider the integral 

I(0).= ± l tj-ilnQdt  
p ' 2rri J\Ç\=P « - ei9)2Cm~l (Cn~m - e1^'^0^1)' 

We have 

lim /p(0) = c„. 
p—>oo 

On the other hand, using the residue theorem (with p > 1), 

/p(0) = Res(C = ^ ) + x f R e s (& = ^ + ^ > ) + Res(C = 0) 
k=\ V ' 

e-'mQtlifi ) (m - l)e-in01(6 ) (n - m)e~in01(6 ) 
( 1 - ^ ) ( l - ^ / 7 ) (\-e^)2 

e-in6-a n-m e ç ^ / 2À:7T + 7 

,? — ^ ^ . 2 / 2^+ 7 N M e + + R e s « = o). 
4 ( n - m ) £ 1 s i n 2 ( | ^ ) V n - m ; 

To compute the residue at £ = 0 we observe that, in a neighborhood of the origin, 

n Y °° f(n—m)s 

/•n-m _ pi{n-nï)Q+'Ci ^—' .,i(s+l)((n-m)0+7) ' 

and 

^ „i0 (C ~ ^ ) 2 Pl^'(r+1)0 ' 
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whence 

f(-/lnÇ)  
(/" _ ei9\2Sm-lïfn-m _ ei(n-m)9+il\ 

n oo oo r„sj+r-m+(n-m)s 

A A ^(^1+(^1) (« -W))^(5+1) 
j=—n r=0s=0 c c 

1 0+l)m—sn—1 

i £ e-w-m*n ^ ( ( , + 1 ) m _,„_ 1 _ y ) c / y« 

+ .. . , m < n. 

Thus, 

(s+l)m—sn— 1 

Res(C = 0) = - £ e-fr'-ttfe+D J2 ((s + l)m - sn - 1 - y ) c ^ 

and we readily obtain (17). • 
The formula (12) will be obtained by comparing two representations of the Fejer's 

means associated to a trigonometric polynomial t(0) := Y!-=_n qeije. One of them is the 
classical representation of De la Vallée-Poussin: 

(18) M^V~' ( - + *ÏÏ—) 2 ^ 
7T J-oo y n J V x J 

The other is stated in the 

LEMMA 3. [4, Theorem 2]. Ift(9):= EL_n Cjeije is a trigonometric polynomial of 
degree < n then, for all real 6, 

1 ( \ \ 1 1 n~x t(0 + — ) 

(19) aa(fifl)_ 5̂ + _J^)__^)=_gA_^,II>2. 
4. Proofs of the Theorems. Given/ e BT, the functions fh(x): — Ej£_oo <p(hx + 

&)/ (x + | ) , /z > 0, where <̂ (JC) = ( ^ p ) , are trigonometric polynomials with period 

1 / h and degree <N:= 1 + [ ^ 1. These functions have Fourier coefficients 

(20) Cj(h) = h f°° ip(hx)f(x)e~27Tijhx dx 

so that 

(21) fh(x) = £ Cj(h)e2^h\ 
j=-N 

We may assume that sup_00<Koo \f(t)\ < 1; we have then 

(22) \fh(x)\ < 1, -oo < x < oo. 
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Also, 

(23) \fh(x) -f(x)\ < 2(1 - <p(hx)), - o o < x < oo, 

from which the uniform convergence on every bounded set of the real axis follows. These 
observations are proved in [6] with some obvious modifications. 

PROOF OF THEOREM 1. We apply ( 17) to the trigonometric polynomial / ^ j . W e 
take 6 = 0 (the general case in (10) is obtained after an obvious translation), n — N 
and m — ^N where p and q are integers such that ^ < 1 and h = 2-n(s-\) > ^ = 0 
(mod 2q), S —> oo. This readily gives us the formula 

(24) Tx(h) = T2{h\ 

where 

( 1 - e ' 7 ) ( 1 - e 1 7 ) 1 - ^ 7 2 

(25) 

and 

4(l-f) ^ ^ S i n 2 ( w ) U^(n-m)J 

(i/+l)m—i/N— 1 

(26) r2(/0: = -2TT/I £ e~(l/+l)il J2 i(v + l)m - i/# - 1 -j)cj(h). 
Q<v<n±m^ j=-N 

Proceeding as in [5], we obtain 

r r ™ ^°> + "T/(0)
 + MH^ 

(27) V1 e ^ 
p/q(2*7r+7)i 

+ 1 1 - ^ 1 re"" 
too (2^TT+7)2/ 1 ( 1 - P / ^ ) T J 

It has been assumed here that 0 < 7 < 27r, an unnecessary condition since T\(h) is a 
periodic function of 7 with period 2ir. In the following we shall also assume that/ is 
integrable. If it is not the case but/ satisfies a condition of the form 

(28) f(x) = 0( |* |~£) , e > 0, x -> ±00, 

then the functions #,$(£): = ^ ^ / ( z ) are elements of BT+&(8 > 0) belonging to 
L*(—00,00). An appropriate limiting process (not difficult to justify) then gives us the 
result under the less restrictive hypothesis (28). 

Let us change now j to(i/ + l)m — i/N—l—jin (26). Using (20) and the basic formula 
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we see that 

(30) 

where 

(31) 

T2(h) = -2TT/I2 £ e-^X)il r <p(hx)f{x)h*(x) dx, 
0<i/<3±*=I 

t,/,W: 
((i/ + l)m - (y - 1)7V - i)^'M^v+2) 

((*/ + l ) w — (l / — \)]\f)e
27rihx(N+V + e2TTihx(i/N-(i/+l)m+2) 

^e2irihx _ ^ 

Since /i21 c/? (/ucy(jc)fĉ  ̂  (JC) | < c(r )|/(JC)| , —oo < x < oo, we may invoke the dominated 
convergence theorem to obtain 

(32) 

where 

(33) 

lim 72(A) 
h—0 0 < ! / < W 

— — q-p 

-(i/+l)i7 

2TT /
oo 

f(x)k1/(x)dx, 
-oo 

^ ( x ) : : 
((i/ + I)2 - i/ 4- 1)*WT* - e/r* + ̂  ,irx(v-(v+\)p/q) 

Using (24), (27) and (32) we obtain a formula which is, up to a few changes of vari­
ables, equivalent to formula (10) whenever a is a positive rational number. The result is 
extended to real and positive values of a with an argument similar to that used in [5]. 

It remains to examine formula (10) whenever the additional hypothesis hf ( | ) < 0 is 
imposed. The integrand, in (10), namely 

(34) F(z): =/(<**+0 
[e(2v-a)irz _ eairz + ( 2 a - 2l/)lT^afrz] 

is an entire function of exponential type. If hf ( | ) < 0 then we shall have also hf ( | ) < 0 
whenever the second factor in (34) satisfies the same condition. But that is of course 
realized if si/ — a > 0 i.e. v > ̂ . For these values of v the Lemma 1 (with 6 = 0) 
shows that the integral is zero in (10). This completes the proof of Theorem 1 since 
formula (10) is seen to be equivalent to a known identity in the case a — 0. • 

PROOF OF THEOREM 2. It suffices to prove (12) for t = 0. We apply (19), with 
6 = 0, to the trigonometric polynomial th(0) = fh{^) where N is chosen such that 
N = 0 (mod 2). This gives us 

05) *„«,; 0, - i (5 + ^ ) / , (0 , - ^ ? < 0 , . ^ | l ^ j . 
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Using the representation (18) we obtain 

(36) 

with 

I roo f 2x \ fs'mx\2 , 

\fh [irrfiN )A7)\<M^Mv)\Mv)Av) 
Since 

V,. i^)-4vh\tAW" < 

< 

2x 2x 

T 

2x 

T 

lirhN 

2x 

2x 

T 

2x 

T 2irhN 

2x 

T 

2x 

T 

max \f'h(u)\ 
0<u<\/h 

• 2irhN, 

by Berstein's inequality for trigonometric polynomials, and 

m<vM>-*m 
by (23), we see that \imh^fh ( ^ ) =f (%). 
Thus, 

(37) 

1 r(x) . ( 2x \ (smxY , 
hmaN(th\G) = - / hmfh — — dx 
h-^0 7T J-ooh-^O \2lXhNJ V X J 

On the other hand, 

1 N-l f ( 2*k \ T - l f ( 2lK.\ - 1 f / 2irk \ 
1 v ^ ^ \2TxhN) _ y ^ ^ \2nhNJ y ^ ^ \2ixhN) 

N2 h sin2 (£) _ à Â  sin2 (£) ^ ^ sin2 (*» ) ' 

with 

Here again 

so that 

(38) 

^ V 2-nhN ) £ ^ - 0 < W < f . 
A^sin 2 ^) 

A-»0 \27ThNJ \ T J 

,. 1 y / * ( ^ ) _ 1 f> /TO 
»™A^t1sin2(f) ^ ^ *2 • 

The result follows from (35), (37) and (38). 
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The Theorem 3 may be proved by applying the residue theorem to the integral 

JcNJi (^ - l ) C r 

where C^,R is the boundary of the rectangle 

{z = x + iy: \x\ <R, \y\ < {IN + 1)TT} . 

Since it is known to be true for a —r we shall give here a simpler proof. 

PROOF OF THEOREM 3. The following formula is proved in [4, Theorem 1]: let F G 
Ba such that hF ( | ) < 0; for all integers r > 2 we have 

(39) r\(P\ £ - A ^ = -Z(l)Bk(icT)kF<r-k\Ol 
V27T / u^-oo v k=o \ks 

Now, 

± ([) Bk(x)(ia)kfr-k\0) = ± E ([) (k) Bj^dafy^iO). 

We rearrange the order of summation, changey toy+k and use the relation ( ' ) (7+* ) = 

( [ ) ( - < ) to obtain 

£ ([) Bk(x)(ia)kfr-k\0) = £ (r,)Bk(iv/i: (r~.k) {iaxif-"-»®) 
k=0 KK/ k=0 V / C / 7=0 V J J 

= £ ( [) B^f {eiaxwf(^)f~k) (w = 0), 

by Leibnitz's formula. The function F(w) := eiaxwf(w) is, for x > 0, an element of BT+ax 

and hF (§) = hf (§) - ax < OAf r + ax < a, i.e. JC < 1 - r-, then Fbelongs to Ba\ 
thus, applying (39), we obtain 

i/^0 

which is the desired result. • 

PROOF OF THEOREM 3'. Let us apply (14) to the function g e B2T,g(z) := eiTZf(z), 
which satisfies ^ (§) = ^ / ( f ) — r < 0. We obtain, with the help of Leibnitz's formula, 

i/^0 
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We rearrange the order of summation (E£=O £/=O
 aik = E/=o £*=o ajt) anc* u s e m e re~ 

l a t i o n ( : ) ( ? ) = ( ; ) ( 7 ) to obtain 

where the last step uses the addition formula (see for example [2, p. 275]): Bn(x + y) — 

£*=o ( l ) ^ t o / 1 " * • T h i s i s equivalent to formula (15). • 

5. Other Observations and Results. 

5.1. Some consequences of Theorem 1. 

5.1.1. There is a result, similar to Theorem 1, valid for negative values of a . In order 
to obtain it we need only to change, in formula (10), k to —k, 7 to —7 and a to —a. 

5.1.2. It is possible to evaluate in closed form the summation over v in formu­
la (10) (the summation under the integral sign is essentially a geometric progression) 
but the resulting formula does not take an elegant form. However, in the case 7 = \ 
we have e~2un = (—1)^; if we suppose furthermore that [a] is an even number then 
Ei<u<[<*](—lY = 0- In that case other simplifications occur and we are led to the 

COROLLARY 1. Letf e BT such thatf(x) — O ( |* |~ e), e > 0,x —• ±oo. For all 
a > 0 such that [a] = 0 (mod 2) we have 

-(2k+\)nia 

(40) 

aif'(t) + («-l)Tf(t)+-2 g ^ _ ^ / ( r ( 2 ^ 7 r a + r > ) 
7T2

fc=_00(2fc+l)2 V 2T ; 

1 roo \e(2-a)irx (eihxw _ i) _ [a]irxeaiTX (e2iTX + l)l 
= - / f(ax + ty ^ / r ^ ^ dx. 

7T J-oo x2 ^e2irx + ^ 

5.1.3 A special case of particular interest is obtained by letting a = r in Theorem 1. 
5.1.4 Under suitable conditions we can derive, with respect to a , both members of 

formula (10). In order to apply the dominated convergence theorem we restrict ourselves 
to an interval (ra— 1, ra) where m is a positive integer such that m— 1 < a < m. Deriving 
two times lead us (taking t — 0 and using Lemma 1) to the integral 

j™Jf"(ax) - lirfXax) - r2f(ax))e(2l/-a)iTX dx. 

Integrating by parts, we obtain a result which is seen to be valid, by continuity, at the 
extremities of the interval (ra — 1, ra). Precisely, we have the 
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COROLLARY2. Letf e BT such thatf{x) = 0(\x\~è\ 6 > 1, x —• ±00. Fora// 
a > 0 w /zav^ 

—akiri « ! IJ' , ' (T)-4T)- ' - (T)) 

Ki/<[a] ^ J-°° 

(41) 
4r 

Suppose that a > 1 so that the function/ G £T can be seen as an element of Bra. We 
can therefore change r to r a in (41). Using Lemma 1 we see that the integrals are zero 
whenever \2i/ — a\ > 1 ; if ^y^ is not an integer we remain with only one value of v, 
namely v — [ ^ ]. Replacing a by (2a — 1) we obtain the 

COROLLARY 2'. Under the same hypothesis as in Corollary 2, except that a > 1, 
we have 

Ej-tfe-*"" [r\2a - l ) 2 / ( ^ ) +2ir(2a - 1)/' ( ^ ) - / " ( £ ) ) 

= ^ [ a ] 2 / - ° ° / ( x ) e < l - 2 { a } ) - ^ 
7T •/— oo 

where {a} : = a — [a] is the fractional part of a. 

We need to observe here that formula (41') is also valid whenever a is an integer. In 
that case, the integral is zero by Lemma 1 and that the series are also zero is a consequence 
of the quadrature formula (11) (with m = 1). 

Suppose, in addition, that hf ( | ) < 0. The formula (see [5, Corollary 1]) 

2TT 

7" k—— oo 
£ *-*"'• sin2 l~)f(y) = Fj(*)e-aiTX dx,0<a<l, 

in conjunction with (41'), gives us the following result: if hf (f ) < 0 and \ < { a } < 
I, a >l, then 

(41") *=-°° 

g ( _ 1 ) V ^ [r\2a - D2f[y) + 2/r(2a - 1)/' (*fj - / " ( ^ ) ) 

= %r\aft ( - l ) V 2 ^ ' s i n 2 ( Ç ) / ( ^ ) • 

5.1.5 Let us put in evidence the term corresponding to k — 0 in formula (10). Evalu­
ating the limit as 7 —> 0 we see that the expression beside the series becomes 

1 
~2r 

[l-to.a'ym-VraU-arm-aYvi 
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The resulting formula, namely 

•-2 oo „—ockn 
a2f"(t) + 2ira(l-a)f'(t)-i^-2a+a2)JT2f(t)+

2^ g f ^ / ^ + r j 

= — J2 f(ax+t)eanx dfc, 

is known for a = 1. The case a = 2 leads us to Theorem 2; however some work, 
including the use of formula (12) of [5], is necessary. 

5.2. A third proof of Theorem 2. A strong result (see [3, Theorem 6.8.11]) says that an 
entire function/(z) is of exponential type r and belongs L1 (—oo, oo) if and only if 

(42) f(z)= f_re
izu<f>{u)du, 

where </> (r ) = <j> (—r) = 0 and the function obtained by extending <j> (u) to be 0 outside 
(—r,r) has an absolutely convergent Fourier series on the interval (—r—£,r+£ ), e > 0. 
Assuming that/ is integrable we see, in view of (42), that it is sufficient to establish (12) 
for functions of the form/(z) = elzu, —r <u<r. Formula (12) is, for these functions, 
equivalent to the identity 

, . ^ ! f°° ^x , fsinxA2 5 « 1 ~ COS(2TTÎ/A) ^ 
(43) - / cos(2Ax) dx--+\2=—-, V ^ -, 0 < A < 1 , 

IT J-oo y X J 6 27TZ z/^=oo V 

which follows from 

(44) J _ g c o s ( 2 r A ) ^ l _ A + ^ 0 £ A £ 1 > 

and 

(45) 
1 roo /̂ sinjcA 
- / COS(2AJC) J x = l - A , 0 < A < 1 . 
7T . / -oo V JC 7 

If/ is not integrable but satisfies a condition of the form/(jt) = 0 ( | J C | 1 e ) , e > 0, x—» 

±oo, then we may apply the result to F^ (z): = (^y^) f(z), 6 —> 0. • 

5.3. A second proof of Theorem 3'. While proving the Theorem 3 (section 4) we observe 
that hF U ) < T - ax. But r - <JJC < 0 if x > T- and T- < 1 - T- for <r > 2r. Thus, for 
G > 2r, the restriction /*/(§) < 0 is not necessary i f ^ < x < l — ̂ . The relation (15) 
follows if we change x to x + -. 
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