FORMAL CONTRACTION OF THE N-SIMPLEX

Bruce B. Peterson

(received July 22, 1967)

1. If K is a finite geometric (i.e. admitting a rectilinear triangulation) n-complex and σ^n is an n-simplex of K which is not a face of any n+1 simplex of K, and if σ^{n-1} is an n-1 face of σ^n which is not a face of any other n-simplex in K, then the complex $K - \sigma^n - \sigma^{n-1}$ (the complex whose simplexes are those of K except for σ^n and σ^{n-1}) is called an elementary contraction of K of order n. The correspondence $K \to K - \sigma^n - \sigma^{n-1}$ will also be called an elementary contraction, there being no possibility of confusion. A sequence of elementary contractions is called a formal contraction. Formal contractions were first studied by Whitehead [3]. Many questions concerning this kind of contraction remain outstanding.

It is easy to show that a formal contraction may be arranged so that all its elementary contractions of order $\,q\,$ precede all those of order $\,p\,$ for $\,p\,<\,q\,$. A tree may be formally contracted to a given one of its vertices. If $\,L\,$ is a formal contraction of $\,K\,$ and if $\,|\,K\,|\,$ (the point set occupied by $\,K\,$) is n-connected, then $\,|\,L\,|\,$ is n-connected. Hence if a complex contracts formally to a vertex it contracts formally to a given one of its vertices. The cone over a complex contracts formally to its vertex, and any subdivision of the cone over a complex may be further subdivided so as to contract formally to the vertex. Despite all this, it is not known whether a subdivided n-simplex $\,$ (n > 2) can be contracted formally to a vertex.

2. THEOREM 1. If K is a subdivided n-simplex, there exists a subcomplex K^{\bullet} of the n-1 skeleton of K such that K contracts formally to K^{\bullet} .

Canad. Math. Bull. vol. 10, no. 5, 1967

<u>Proof.</u> Each (n-1)-simplex of K lies on at most two n-simplexes of K, and in fact lies on exactly two unless it is on the boundary of K. We enumerate the n-simplexes of K; $\sigma_1^n, \sigma_2^n, \ldots, \sigma_q^n$ and we let b_1, b_2, \ldots, b_q be their respective barycenters. If σ_i^n and σ_j^n intersect in an (n-1)-simplex, we denote their intersection by σ_{ij}^{n-1} and the barycenter of σ_{ij}^{n-1} by b_{ij}^n .

For each pair of n-simplexes intersecting in an (n-1)-simplex we construct a path from b to b consisting of the straight line segments b b and b b. The union of all such paths is a linear graph containing all the barycenters of n-simplexes, and all the barycenters of (n-1)-simplexes which are not on the boundary of K. Moreover, each b is an endpoint of exactly two segments in the graph. We denote this graph by G, and pick, in G, a tree T which contains all the b is and b is. This can always be done [2].

If b is an endpoint of T', the removal of b b leaves b an endpoint, so that the segment b b may be removed by elementary contraction. Such a sequence of two elementary contractions (i.e., removing the two segments containing a particular b will be called a modified contraction.

T' contracts to an arbitrary vertex, which we will assume to be a b. Hence, there is a sequence T'_1, T'_2, \ldots, T'_2 of elementary contractions which contract T' to b_k .

Each endpoint of T' is a b_i , so that T'_1 must be $T' - b_i b_{ij} - b_i$ for some i and j. Since b_{ij} and $b_{ij} b_j$ play no further role in the contraction until they are removed, we can arrange the sequence so that $T'_2 = T'_1 - b_{ij} b_j - b_{ij}$. Hence the sequence $T'_1, T'_2, \ldots, T'_{2(q-1)}$ may be chosen so that T'_k, T'_{k+1} , for k odd, is a modified contraction. We now consider the sequence of modified contractions $T'_2, T'_4, \ldots, T'_{2(q-1)}$ in which $T'_{2(q-1)} = b_q$, which we will now assume to be the barycenter of an n-simplex having an (n-1)-face on the boundary of K. Note that each T'_2 has only b_i 's for endpoints.

To further simplify matters we renumber the n-simplexes of K so that $T'_{2i} = T'_{2i-2} - b_i b_i - b_i - b_i b_j - b_i$, where T'_{0} will denote T'. In particular the first barycenter removed is b_1 , the second b_2 , etc. It is, of course, during this renumbering process that we justify the subscript 2(q-1) on the last modified contraction.

Now σ_q^n , the n-simplex having b as barycenter, has an (n-1)-face σ_q^{n-1} on the boundary of K, and the complex $K_1 = K - \sigma_q^n - \sigma_q^{n-1}$ is an elementary contraction of order n. The path from b 1 to b 1 in T' contains b 1 the barycenter of $\sigma_{q-1}^{n-1} \cap \sigma_q^n$. We let $\sigma_{q-1}^{n-1} = \sigma_{q-1}^{n-1} \cap \sigma_q^n$. Since σ_q^n is not in K_1 , σ_{q-1}^n is the only simplex of K_1 containing σ_{q-1}^{n-1} . Hence $K_2 = K_1 - \sigma_{q-1}^n - \sigma_{q-1}^{n-1}$ is an elementary contraction of K_4 and a formal contraction of K_5 .

 $|K_2|$ contains b_i for $i=1,2,\ldots,q-2$. If $K_{j-1}=K_{j-2}-\sigma_{q-j+2}$ of q-j+2 on q-j+2 has been defined and $|K_{j-1}|$ contains b_i for $i=1,2,\ldots,q-j+1$, and K_{j-1} is a formal contraction of K, we consider the modified contraction $T'_{2(q-j+1)}$. This removes p_{q-j+1} and a vertex p_{q-j+1} , where p_{q-j+1} . Since p_{q-j+1} is the only simplex in p_{q-j+1} which contains p_{q-j+1} . Hence p_{q-j+1} or p_{q-j+1} or p_{q-j+1} is an elementary contraction of p_{q-j+1} and a formal contraction of p_{q-j+1} . This process removes each p_{q-j+1} and a formal contraction of p_{q-j+1} or p_{q-j+1} and a formal contraction of p_{q-j+1} . The resulting complex is p_{q-j+1} is p_{q-j+1} and p_{q-j+1} or p_{q-j+1} is an elementary contraction of p_{q-j+1} and a formal contraction of p_{q-j+1} or p_{q-j+1} is p_{q-j+1} or p_{q-j+1} or p_{q-j+1} or p_{q-j+1} is p_{q-j+1} or p_{q-j+

3. The preceding proof depends upon the fact that each (n-1)-simplex in K is on at most two n-simplexes in K. Since a similar statement is not necessarily the case in K', we cannot finish the contraction of the simplex except in the case of the 2-simplex, where K' is a tree. We can, however, say something more about the character of the complex K'.

THEOREM 2. If σ^{n-1} is an (n-1)-simplex of K' (the complex found in theorem 1), then σ^{n-1} has at most one (n-2)-face which is not on some other (n-1)-simplex in K'.

<u>Proof.</u> If σ^{n-1} is on the boundary of K, it has at most one (n-2)-face in common with a given (n-1)-simplex on the boundary of K. Since only one (n-1)-simplex on the boundary of K was removed in forming K', at most one (n-2)-face of any such (n-1)-simplex could have been freed in forming K'.

If σ^{n-1} is not on the boundary of K, it is on exactly two n-simplexes of K. We call them σ_i^n and σ_j^n ; $\sigma^{n-1} = \sigma_i^n + \sigma_j^n.$ Suppose σ_1^{n-2} and σ_2^{n-2} are (n-2)-faces of σ^{n-1} , each of which is on no other (n-1)-simplex in K'. If σ_1^{n-2} were on Bd(K), it would be on σ^{n-1} and an

(n-1)-simplex on Bd(K): K'. Hence we may assume that neither σ_1^{n-2} nor σ_2^{n-2} is on Bd(K).

There is, in addition to σ^{n-1} , exactly one (n-1)-face of σ_i^n containing σ_1^{n-2} ; we call it σ_{11}^{n-1} . There is, in addition to σ_i^n , exactly one n-simplex of K containing σ_{11}^{n-1} ; we call it σ_{11}^n . There is, in addition to σ_{11}^{n-1} , exactly one (n-1)-face of σ_{11}^n containing σ_1^{n-2} ; we call it σ_{12}^{n-1} .

If σ_{1k}^{n-1} and σ_{1k}^{n} have been chosen so that $\sigma_{1}^{n-2}\subset \sigma_{1k}^{n-1}\subset \sigma_{1k}^{n}$, there is, in addition to σ_{1k}^{n-1} , exactly one (n-1)-face of σ_{1k}^{n} containing σ_{1}^{n-2} ; we call it $\sigma_{1,k+1}^{n-1}$. There is, in addition to σ_{1k}^{n} , exactly one n-simplex of K containing $\sigma_{1,k+1}^{n-1}$; we call it $\sigma_{1,k+1}^{n}$. In this fashion we order all the n and (n-1)-simplexes containing σ_{1}^{n-2} .

Since σ^{n-1} is in K', and its face σ_1^{n-2} is in no other (n-1)-simplex in K', σ_{1k}^{n-1} is not in K' for $k=1,2,\ldots,m$, where m is number of (n-1)-simplexes in K, which are different from σ^{n-1} and contain σ_1^{n-2} . The contraction of K removed only those (n-1)-simplexes of K whose barycenters were in the tree T'. Hence the barycenter of σ_{1k}^{n-1} is in T' for $k=1,2,\ldots,m$. We will now denote this barycenter by $b(\sigma_{1k}^{n-1})$.

If $b(\sigma_{1k}^{n-1})$ is in T', the path made up of the segments

 $b(\sigma_{1,\,k-1}^{n})b(\sigma_{1k}^{n-1}) \text{ and } b(\sigma_{1k}^{n-1})b(\sigma_{1k}^{n}) \text{ is also in T'}.$ Similarly the paths $b(\sigma_{i}^{n})b(\sigma_{11}^{n-1}), \ b(\sigma_{11}^{n-1}), \ b(\sigma_{11}^{n-1}), \ b(\sigma_{11}^{n}),$ $b(\sigma_{1,\,m-1}^{n})b(\sigma_{1m}^{n-1}), \ \text{and} \ b(\sigma_{1m}^{n-1})b(\sigma_{j}^{n}) \text{ are in T'}. \text{ The union of all these segments is the path in T' from } b(\sigma_{i}^{n}) \text{ to } b(\sigma_{j}^{n}).$

In a similar fashion, we may define σ_{2k}^{n-1} and σ_{2k}^{n} so that $\sigma_{2}^{n-2}\subset\sigma_{2k}^{n-1}\subset\sigma_{2k}^{n}$ and $\sigma_{2,k+1}^{n-1}\subset 2k^{n}$ and get a path in T' from $b(\sigma_{i}^{n})$ to $b(\sigma_{j}^{n})$. Since T' is a tree these paths are identical. In particular $b(\sigma_{11}^{n-1})=b(\sigma_{21}^{n-1})$ and $\sigma_{11}^{n-1}=\sigma_{21}^{n-1}$. Since $\sigma_{11}^{n-1}=\sigma_{11}^{n-1}=\sigma_{11}^{n-2}$ and $\sigma_{21}^{n-1}=\sigma_{21}^{n-2}$, $\sigma_{2}^{n-2}=\sigma_{11}^{n-2}$. This completes the proof.

REFERENCES

- 1. R.H. Bing, Notes on combinatorial topology, National Science Foundation Summer Institute for Graduate Students in Topology, 1961.
- 2. D. Konig, Theorie der endlichen und unendlichen graphen, Akademische Verlagsgesellschaft M.B.H., Leipzig, Germany, 1936.
- 3. J.H.C. Whitehead, Simplicial spaces, nuclei and m-groups, Proceedings of the London Mathematical Society, Series 2, Volume 45, 1939, pp. 243-327.

Middlebury College