
ON THE EXTENSIONS OF LIE ALGEBRAS 

RICHARD E. BLOCK 

1. Introduction. In this paper we give some results on the extensions of 
Lie algebras, with emphasis on the case of prime characteristic, although part 
of the paper is also of interest at characteristic 0. An extension of a Lie algebra 
L is a pair (E, 7r), where £ is a Lie algebra and w is a homomorphism of E 
onto L. The kernel K of the extension is ker ir. The extension is called central 
if K Ç zE (the centre of £ ) , abelian (solvable) if K is abelian (solvable), 
split if there is a homomorphism a of L into E such that wa = lLj and trivial 
if K is a direct summand of E. All the Lie algebras and representations con
sidered in the paper are assumed to be finite-dimensional. 

In § 2 we determine the relationship between Cartan decompositions of L 
and E, partially generalizing and extending to characteristic p some results of 
Chevalley (9, Chapter VI). In particular, over an infinite field we prove that 
H is a Cartan subalgebra of L if and only if H = ir(C) for some Cartan 
subalgebra C of E\ moreover, we prove that such a C is unique up to conju
gation if K is solvable, provided at characteristic p an additional hypothesis 
is satisfied, e.g., that [E, K] is nilpotent of class less than p. This gives the 
conjugacy of Cartan subalgebras of a solvable Lie algebra E at characteristic 
0, a result of Chevalley (9, pp. 221-222), and the same result at characteristic 
p provided, e.g., that E" (the intersection of all terms of the lower central 
series of E) is nilpotent of class less than p. 

In § 3 we use the comparison between the Cartan decompositions of L and 
E to give a quick determination of the central extensions of the simple Lie 
algebras at characteristic p of classical type (in the sense of Mills and Seligman 
(14) ; they are the analogues of the simple algebras over the complex numbers). 
The extensions will be proved to be trivial unless L is of type ^4w-i with p\n, 
i.e., L ~ PSM(w), in which case, all other extensions may be obtained from 
SM (n) (the n X n matrices of trace 0), which itself has only trivial extensions. 
I obtained this result some years ago for application (where its use is crucial) 
in joint work with Zassenhaus (see 7; 5) on the Lie algebras with a non-
degenerate trace form and with a quotient trace form, but gave no proof of it 
there. The result was obtained independently and in another way by 
R. Steinberg, whose proof is sketched in (16). The special case in which L has 
non-degenerate Killing form was obtained by Campbell (8). 

By the classical Levi theorem, all extensions of a semi-simple Lie algebra of 
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characterist ic 0 split, and, in part icular , all central extensions are trivial. 
Section 4 continues the work of § 3 in an a t t e m p t to find sufficient conditions 
for spli t t ing of a solvable extension of a simple algebra of classical type a t 
characterist ic p. By the s tandard reduction, one can obtain such conditions 
by jus t considering abelian extensions, and, indeed, abelian extensions for 
which the induced representat ion ad^L of L in K is irreducible. T w o sufficient 
conditions for the spli t t ing of such extensions will be given, one involving the 
weights of adKL and the other its Casimir operator or trace form. Each 
condition is satisfied in some cases where the other is not , b u t the problem of 
finding best possible condit ions remains open. 

In § 5 we determine the central extensions of another impor tan t class of 
simple Lie algebras of characterist ic p, the Albert-Zassenhaus algebras, and 
use this to answer a question abou t isomorphisms between these algebras. 

2. C a r t a n suba lgebras of e x t e n s i o n s . For a representat ion A of a 
ni lpotent Lie algebra H in M we shall use the terminology primary function, 
primary component, and Fitting null and one components, essentially as given 
in (13, pp. 41-43) . In part icular , a pr imary function of A is a mapping 
a:h —> o-ft(X) of H into monic irreducible polynomials for which there exists an 
x 9^ 0 in M such t h a t for every h in H there is a t with <rh(KAh)tx = 0. If the 
characterist ic roots of every Ah are in the base field F, then one can replace 
the consideration of pr imary functions and pr imary spaces by t h a t of weights 
and weight spaces. We shall say t h a t a pr imary function corresponds to the 
weight 0 if crh(\) = X for all h in H. If H is a subalgebra of a Lie algebra L, 
then the F i t t i ng null component of H for the decomposition of L relative to 
adH is the zero-algebra of H in L, and H is a Car t an subalgebra of L if and 
only if H equals its own zero-algebra in L. 

L E M M A 2.1 . Let ai, . . . , ak be a set of primary functions belonging to a 
representation A of a nilpotent Lie algebra H over an infinite field F, and suppose 
that no o-i corresponds to the weight 0. Then there exists an h in H such that, for 
i = 1, . . . , k, (Tih(X) 9e X. 

Proof. Suppose first t h a t F is algebraically closed, and let a\, . . . , ak be the 
weights corresponding to ci, . . . , ak. T h e hypothesis s ta tes t h a t no at is 0. If 
the characterist ic is 0, then a\, . . . , ak are linear functionals on H so t h a t 
there is an h m H such t h a t no a*(A) is 0, and the conclusion holds. If the 
characteristic is a prime p, weights are not necessarily linear. However, if m is 
the smallest power of p which is equal to or greater than the nilpotency class 
of H, then (17, p . 96) aim, . . . , ak

m are polynomial functions on H, so t h a t 
there is an h in i ^ s u c h t h a t no [at(h)]m is 0, and again the conclusion holds. 

Now suppose t h a t F is an a rb i t ra ry infinite field and t h a t 0 is i ts algebraic 
closure. Under scalar extension to 12, for each i, the pr imary component corre
sponding to o-i decomposes into a direct sum of weight spaces of the repre
sentat ion Afi of HQ. Le t the corresponding weights be aa, . . . , au (I = lt). 
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Then X — a^(fe) divides (xih(\) for all h in H. For some m, the functions 
<*um (i = 1» • • • » &;i = !>•••> ^) are polynomial functions on i7a. Since F is 
infinite, there exists an h in i J such that II *,,«*/* (A) 9e 0. For such an A, no 
crih(X) is X, and the lemma is proved. 

COROLLARY 2.1. Oz/er <m infinite field, any Car tan subalgebra H of a Lie 
algebra L is the zero-algebra of (the space spanned by) some element of H. 

Proof. Let ai, . . . , <rk be the primary functions of adLH which do not 
correspond to the weight 0, and let h be one of the elements whose existence 
Lemma 2.1 asserts. Then it is easy to see that H is the zero-algebra of (h). 

Another immediate consequence of Lemma 2.1 is the following result. This 
generalizes the key lemma of (2), which Barnes proved by a different approach. 

COROLLARY 2.2. Suppose that H is a Car tan subalgebra of a Lie algebra L 
over an infinite field, and that H acts diagonally in some scalar extension L^. 
Then there is an h in H such that the minimal polynomial of ad h factors in £2 into 
the product of distinct linear polynomials and such that H is the zero-algebra of h 
(h is regular if H has minimal dimension). 

Proof. The element h of the proof of Corollary 2.1 works again. 

LEMMA 2.2. Let L0 be the zero-algebra of some element x of a Lie algebra L 
over an infinite field. Then L0 contains a Cartan subalgebra of L. 

Proof. The classical proof that the zero-algebra of a regular element of L is 
a Cartan subalgebra (see, for example, 13, p. 59) actually shows that if L0 is 
not nilpotent, then there is an element y in L0 such that the zero-algebra of y 
is properly contained in L0. The lemma follows by induction on the dimension 
of L0. 

THEOREM 2.1. Let (E, T) be an extension of a Lie algebra L over afield F. If 
C is a Cartan subalgebra of E, then TT(C) is a Cartan subalgebra of L. Conversely, 
if H is a Cartan subalgebra of L and F is infinite, then there exists a Cartan 
subalgebra C of L such that ir(C) = H. 

Proof. First, suppose that C is a Cartan subalgebra of E, and let K denote 
the kernel of T. If F is infinite, by Corollary 2.1 there is an x in C of which C 
is the zero-algebra. Suppose such an x is chosen and that y in E is such that 
(ad 7T(x))m7r(y) = 0 for some m. Then (ad x)my £ K. Write (ad x)my = z0 + 
Zi, where Zo and Z\ belong to the Fitting null and one components K0 and K\, 
respectively, of the restriction of ad x to K. Since ad x is non-singular on K\, 
there is a z± in Ki such that Z\ = (ad x)mZ\ . Writing y' = y — z±, we have 
that (ad x)myf = z0 Ç C. Hence, for some n, (ad x)nyf = 0, y' € C, and 
ir(y) = ir(y') Ç 7r(C). Therefore, TT(C) contains the zero-algebra of TT(X). 

Also, 7r(C) is nilpotent since C is, and, therefore, r(C) is Cartan subalgebra of 
L. If F is finite, let 12 be an infinite extension field. Then W(C)Q = irçi(Cn) is a 
Cartan subalgebra of Ln. The normalizer NLir(C) Q TT(C)Q C\ L = T(C), SO 

that again ir(C) is a Cartan subalgebra of L. 
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Conversely, suppose that H is a Cartan subalgebra of L, and that F is 
infinite. Take an h in L of which H is the zero-algebra, take an x in E such that 
7r(x) = h, and let £ 0 be the zero-algebra of x in E. By Lemma 2.2, there is a 
Cartan subalgebra C of E contained in E0. Hence, for every y in C there is an 
m such that (ad x)my = 0, and (ad h)mir{y) = 0, so that TT(C) C iJ. But by 
the first part of the theorem, T(C) is a Cartan subalgebra of L. I t follows that 
7r(C) = H, and the theorem is proved.f 

LEMMA 2.3. If L is of characteristic p and N is a nilpotent ideal of class less 
than p, then exp(ad z) is an automorphism of L for every z in N. 

Proof. Write D = ad z. Then Dv = 0, and if i + j ^ p and x, y G L, then 
{xDl){yDj) = 0, so that 

Thus, in this case, we do better than the general result that exp (ad x) is an 
automorphism if (ad x) [ ( p + 1 ) / 2 ] = 0. 

For any Lie algebra L, Lœ denotes the intersection of all terms of the lower 
central series of L. 

THEOREM 2.2. Suppose that (E, it) is an extension of L with solvable kernel 
K, over an infinite field. Let H be a Cartan subalgebra of L, and write N = 
(w-1^))03. In case the characteristic is p > 0 suppose, in addition, either that 
N is contained in a nilpotent ideal of class less than p or that (ad n) ^+1) /2J = 0 
for all n in N. Then a Cartan subalgebra C of E such that it(C) = H is unique 
up to a conjugation of E of the form 111*1 o exp (ad n^, where nt G N(i) and d is 
the derived length of N. 

Proof. Let C\ be another Cartan subalgebra of E such that ir(Ci) = H. 
Since C and C\ are also Cartan subalgebras of -K~~1(H), we see that, without 
loss of generality, we can assume that L = H (at characteristic 0, ad nt is 
nilpotent since N Ç" [E, K] is nilpotent). The proof is by induction on d. If 
N = 0, then 7r_1(i7) is nilpotent and thus, C = C± = TT~1{H). Now suppose 
that d > 0 and that the result is true for d — 1, and use bars to denote objects 
modulo iV(d_1). Then C and C\ are Cartan subalgebras of Ê which are conjugate 
by an automorphism of the given form for elements nt (i = 0, . . . , d — 2). 
With nt in the coset ni} exp(ad nt) is an automorphism of E. Hence, it suffices 

f Added in proof. There is an overlap between the material of § 2 and results of D. W. Barnes 
(On Cartan subalgebras of Lie algebras. Math. Z. 101 (1967), 350-355). His paper contains 
another proof of Theorem 2.1. His Theorem 4 states that if L is solvable of characteristic p 
and if L' satisfies the (p — l )s t Engel condition, then all Cartan subalgebras of L are con
jugate, but he mistakenly assumes that exp d is an automorphism if d is a derivation with 
dp = 0, instead of t̂(j>+i)/2] = Q. He thus has only proved the result with [(p + l ) /2] — 1 
instead of p — 1, and it is then a special case of Corollary 2.3 below. (The two papers were 
done independently, and Barnes submitted his five weeks earlier.) 
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to assume that Ci = C and to find wd_i. In particular, it suffices to find a 
conjugacy of the form exp(ad k), k € K, assuming that K is abelian, which 
we now do. Since K is abelian, ad^C induces a representation A of H in K. 
Write Ko and K\ for the Fitting null and one components of A. By Lemma 2.1, 
there is an x in H such that K0 is the Fitting null component of Ax. Take y in 
C and yi in C\ such that it (y) = ir(yi) = x. If B is the zero-algebra of y, then 
CQB, w(B) = H, and B C\ K = K0 = C C\ K. Hence, B = C, and, simi
larly, C\ is the zero-algebra of y\. By adding an element of K0 to y, we may 
assume that y\ — y Ç i£i. Since ad 3/ is non-singular on Klf there is a k in i£i 
such that [k, y] = yi — y. Since (ad k)2 = 0, (exp(ad fe))^ = 3; + [&, 3/] = yi. 
Hence, exp(ad k)C = Ci, and the theorem follows. 

COROLLARY 2.3. Suppose that E is a solvable Lie algebra. In case the character
istic is p > 0, suppose, in addition, that the base field is infinite and either that 
E" is nilpotent of class less than p or that (ad x)[(2?+1)/2] = 0 for all x in Eœ. 
Then all Car tan sub algebras of E are conjugate* 

Proof. We can apply the theorem with K = £w. 
We note that when the extension is split, say E = S + K, it is not neces

sarily true that a Cartan subalgebra of S is contained in one of E, even if K 
is solvable, as is shown by the example (x) + (y,z), where [x, y] = \y, z]=z 
and [x,z] = 0. 

We next compare the root space (or more generally, primary space) 
decompositions of L and its extension. 

LEMMA 2.4. Suppose that (E, r ) is an extension of L with kernel K, and that 
C is a Cartan subalgebra of E. If cr is a primary function of adEC with primary 
space Ea, and if>(£,) ^ 0, then az(X) = <rx+y(\) for all x in C and y in C C\ K, 
and the function a'\ ir{C) —>• F[\] defined by setting <r'V(X) (X) = ^(X) is a primary 
function onw(C). Moreover, 7r(Ea) = La>, and every primary function o/adL7r(C) 
is obtained in this way. 

Proof. Let a be a primary function of ad#C and suppose that b G Ea with 
ir(b) 9e 0. If x G C and y € C C\ K, then there is an m such that 

(er,(ad*))»& = ( W a d ( x + y)))mb = 0. 
Hence 

M a d ^ ( x ) ) ) M & ) = (<r*+y(!àdir(x)))mT(b) = 0. 

*After the paper was written, G. Seligman kindly sent me a copy of part of the typescript 
of his forthcoming book on Lie algebras of characteristic p. It contained a proof of the 
conjugacy of the Cartan subalgebras of solvable Lie algebras E for which Eu is abelian, over 
arbitrary fields. The device Seligman uses to reduce the case in which the base field F is finite 
to that in which F is infinite can also be used to show that our Theorem 2.2 and Corollary 2.3 
remain valid when F is finite. Seligman also gives an example of a solvable E, with £ u not 
nilpotent, having non-conjugate Cartan subalgebras. 
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Since ir(b) 9e 0 and ^ ( X ) and <rx+y(\) are irreducible, it follows t h a t <rx(\) = 
<rx+v(\) and t h a t o7 is a pr imary function of adZ/7r(C), with ir (b) in La>. If r is 
another pr imary function of a,dEC and a 7e r, then a' ^ r . T h e fact t h a t 
L = ^c7c(Ea) now implies the remaining s ta tements of the lemma. 

COROLLARY 2.4. Let L be a Lie algebra over an infinite field F, H a Cartan 
subalgebra, and M an L-module. Suppose that ad h and hM have all characteristic 
roots in F for all h in H. Then any 2-dimensional M-cocycle for L differs by a 
coboundary from a cocycle f such that if a and fi are roots, x G La, and y £ L$, 
then fix, y) G Ma+p ( = 0 if a + P is not a weight of M). 

Proof. An element of H2(L, M) corresponds to an abelian extension (E, T) 
of L with kernel M. Let C be a Car t an subalgebra of E such t h a t T(C) = H. 
Any root y for H corresponds to a root, also denoted by 7, for C, and 7r(E7) = 
Ly. Hence, there is a linear mapping r of L into E such t h a t TT = 1L and 
r(Ly) ÇZ Ey for each root 7. W i t h / the corresponding cocycle, 

/ ( * , y) = [ r (*) , r(y)] - r[x, y] £ Ea^ C\ M = Ma+P. 

3. Central extensions of algebras of classical type. 

L E M M A 3.1. Suppose that E is a Lie algebra with no non-trivial central 
extension, and that ir is a homomorphism of E into L. Then for every central 
extension (E±, in) of L there exists a homomorphism a of E into Ex such that 
71 = 71*1(7. 

Proof. Le t Ki be the kernel of (Ely 71-1). T a k e a linear mapping r of L into 
Ei such t h a t 7TI(T(X)) = x, x G L. Then [r(x), r(y)] = r[x, y] + gi(x, y) 
(x, y G L) for a 2-cocycle gi G Z2(L, K\). Define g: E X E —> i£i by set t ing 
g(z, w) = gi(7r(s), ir(w)). Then g G Z 2 ( £ , Ki), where i£i is a trivial module 
for E. Hence, there exists an h in Cl(E, K\) such t h a t g = 5Â, t h a t is, £1(71-(z), 
T(W)) = h[z, w]. Set cr(z) = T(TT(S)) + A(z) (z £ E). Then 0- is linear from E 
into £ 1 , 

[<r(z), <r(w)] = [T(T(Z)) + h(z), T(T(W)) + /z(w)] = 

r[ir(z), T(W)] + gi[ir(z), T(W)] = a[z, w] (z, w G E), 

and 7Tio" = 7T, and the proof is complete. 

T h e Lie algebras of classical type over a field F of characterist ic p > 3 are 
the algebras satisfying the axioms of Mills and Seligman (14). T h e simple 
algebras were shown in (14) to be the analogues of the complex simple Lie 
algebras, Lc, t h a t is, the algebras over F obtained by reducing modulo p the 
s t ruc ture constants of a Chevalley basis of Lc; in addit ion, if Lc is of type 
An-i, where p\n, one mus t divide the resulting algebra (a copy of S M ( ^ , F), 
the n X n matrices of trace 0) by its one-dimensional centre ( the scalar 
matrices) to obtain an algebra isomorphic to PSM(w, F). Algebras isomorphic 
to P S M ( » , F) (p\n) are said to be of type PA. 
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T H E O R E M 3.1. Any central extension (E, w) of L is trivial if L is simple of 
classical type not PA or if L = SM(n, F) (p\n). If L = PSM(w, F), either the 
central extension is trivial, or there is an isomorphism a of S M (n, F) into E such 
that E is a direct sum of cSM(w, F) and an ideal contained in the kernel K, and 
such that TTO is the natural mapping of SM(w, F) onto P S M ( ^ , F). 

Proof. Since w(E2) = ir(E), by throwing away a direct summand of E 
contained in K we may assume tha t E is perfect. In proving an extension to be 
trivial we may also assume tha t F is infinite. If L is simple of classical type 
other than PA, take a Car tan subalgebra H of E such t h a t T (H) is a s tandard 
Car tan subalgebra of L. Then K C H; by Lemma 2.4, the roots of E with 
respect to H correspond to those of L wi th respect to T(H), and for each 
non-zero root a, Ea is 1-dimensional, spanned, say, by ea. Wri te [eae-a] = ha. 
Then H is spanned by K together with all ha, since their images span ir(H). 
For any h in H, 

[[eae-a]h] = [[eah]e-a] + [ea[e-Ji\] = (a(h) - a(h))[ea, e_«] = 0. 

Hence, H is abelian and the elements ha span H. If / 3 i , . . . , fir is a fundamental 
system of roots for L (so t h a t dim H^r because of the type of L) and if a is 
a non-zero root, then a (or —a) is a sum of a sequence of the /3,'s such t h a t 
each partial sum is also a root. Hence 

[eae-a] € F[. . . [ep^e^J . . . e^.]^^ . . . e-.Pij] 6 (ft/^, • • • , hr) 

by the Jacobi identi ty. Therefore, H is r-dimensional, and K = 0. 
Similarly, if L = SM(«, T7), where ^>|w, then we lift the (n — 1)-dimensional 

Car tan subalgebra of diagonal matrices of trace 0 to a Car tan subalgebra H of 
E. As in the preceding case, there are n — 1 roots of L such t h a t the corres
ponding h's span H, so t h a t again K = 0. 

Finally, the result for PSM (n, F) follows from t h a t for SM (n, F) by Lemma 
3.1. 

One could also prove this last case by using a fundamental system with 
respect to the usual Car tan subalgebra of L, and defining, as before, elements 
hi, . . . , hn-i which span H, If these are dependent, then K = 0, and if they 
are independent, then one has an obvious mapping of SM(^, F) onto E which 
is an isomorphism. 

COROLLARY 3.1. Suppose that L is semi-simple of characteristic not 2, 3. If 
L has a representation with non-degenerate trace form, then every central extension 
of L is trivial. 

Proof. Scalar extension preserves non-degeneracy of the trace form as well 
as the property of being centreless or, equivalently (because of the form), 
perfect. Over an algebraically closed field, by (7), the algebra is a direct sum 
of simple algebras of classical type no t PA, and the result follows from the 
theorem. 
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4. Suff ic ient c o n d i t i o n s for e x t e n s i o n s t o sp l i t . In this section we shall 
assume, when discussing roots and weights, t h a t all re levant t ransformations 
representing elements of a Ca r t an subalgebra have their characterist ic roots 
in the base field. Le t ( £ , T) be an extension of L with kernel K. If C is a Ca r t an 
subalgebra of E and if [ C P i K, K] = 0, then a representat ion A = ad i r7r(C) 
of 7r(C) in K is defined by set t ing A(ir(x)) = adKx for all x in C. By L e m m a 
2.4, each root a of L (for ir(C)) has a unique corresponding root of E (for C), 
which we also denote by a, where a(it (c)) = a(c) and ir(Ea) = La. 

T H E O R E M 4 .1 . Suppose that Cis a Cartan subalgebra of E and that 

[Cr\K,K] = 0. 

If no weight of adjR:7r(C) is a root of L (for r(C)), and if [Ea, Ep] = 0 
whenever a and fi are roots of L such that a + 0 is not a root of L, then the 
extension splits. 

Proof. Le t 5 be the sum of the root spaces Ea of E such t h a t ir(Ea) ^ 0. 
For each such a, the corresponding a for ir(C) is no t a weight of adK7r(C), and 
hence Ea Pi K = 0. Therefore, the restriction of T to 5 is a one-to-one mapping 
onto L. T h e final condition of the hypotheses guarantees t h a t 5 is a subalgebra. 
Hence, 5 is the required Levi factor. 

When K is abelian, which we henceforth assume, we obtain an induced 
representat ion ad^L. 

COROLLARY 4 .1 . Suppose that H is a Cartan subalgebra of L and that the 
kernel K of an extension is abelian. If no weight of a.dKH is a sum of two roots 
(including 0) of L (for H), then the extension splits. 

COROLLARY 4.2. Suppose that K is abelian and L is of classical type, oj 
characteristic p. Let S and P be the sets of roots of L and weights of ad^L , 
respectively (for some Cartan subalgebra of L). If (1) 0 $ P and (2) 2 U P con
tains no circular string fi, /3 + a, . . . , / 3 + (p — l)a, where a and 0 are roots, 
then (E, TT) splits. 

Proof. If a Ç S H P , consider the representat ion of the 3-dimensional 
simple algebra generated by La and L_a on Ka + . . . + K(p_1)a. I t follows 
from properties of representat ions of the 3-dimensional algebra t h a t ia G P, 
ï = 1, . . . j p — 1, a contradict ion. Similarly, if /3, a Ç 2 it can be seen t h a t 
/3 + a ^ P. T h e result now follows from Corollary 4 .1 . 

W e now consider the case in which ad^L is irreducible. For L simple of 
classical type, the restricted irreducible representat ions were classified by 
Curt is (10) by their maximal weights. For each such representat ion, the 
irreducible representat ion of the corresponding simple Lie algebra over the 
complex numbers with corresponding maximal weight is called the associated 
representat ion (11). A reduction modulo p of the associated representat ion 
gives a representat ion of L having the given irreducible representat ion as a 
const i tuent . 
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A result like that of Corollary 4.2 may be stated in terms of conditions on 
the associated representations of the irreducible constituents of ad^L (assuming 
that these constituents are all restricted). Indeed, (E, T) will split if for each 
of these associated representations the maximal weight: (1') is not a sum of 
fundamental roots and (2') is not too big (with respect to p) ; e.g., if L is of type 
A2 and the maximal weight is (ax, a2) (written with respect to a given funda
mental system), we may take for (2') the condition a± + a2 < p — 1. Con
dition (2') assures that no weight for L is associated with two distinct weights 
of the associated representation, and then, that conditions (1) and (2) of 
Corollary 4.2 are satisfied, (1) by (1') and a result of Freudenthal (12). 

We next consider what can be salvaged at characteristic p from the charac
teristic 0 proof of the Whitehead-Levi theorem. Suppose that B is a non-
degenerate invariant bilinear form on a Lie algebra L, that {ut} and {ul) are 
bases of L dual with respect to B, and that A is a representation of L. We call 
£*A(w*)A(w*) the Casimir operator of A with respect to B, and denote it by 
Y{B, A). I t is in fact independent of the choice of dual bases, and commutes 
with all A(x). If A is absolutely irreducible, then T(B, A) is a scalar trans
formation which we denote by c{B, A) I. 

THEOREM 4.2. Let (E, r) be an extension of L with abelian kernel K. Suppose, 
for each irreducible constituent A of ad^L, that L has a non-degenerate invariant 
bilinear form B such that T(B, A) 9e 0. Then (E, T) splits. 

Proof. It is enough to consider the case in which ad^L is irreducible. Since 
T(B, A) commutes with all A(x), it is non-singular. The standard character
istic 0 proof (13, p. 90) for the case in which the usual Casimir operator (for 
the Killing form) is non-singular may be seen to remain valid in the present 
case. 

COROLLARY 4.3. If each irreducible constituent A of ad^L has non-degenerate 
trace form, and, at characteristic p, if p X dim L, then (E, w) splits. 

Proof. If we take B to be the trace form of A, then tr T(B, A) = (dim L) l , 
whence the result. 

We remark that if F is algebraically closed, L simple, and A irreducible, 
then BA = t(B, A)B, where BA denotes the trace form of A, B is the given 
form, and t(B, A) Ç F, and 

tr T(B, A) = (degree A)c(B, A) = (dim L)t(B, A). 

Hence, if BA is non-degenerate andp XdimL, then T(B, A) ^ 0 and p X (degree 
A), and conversely. If L is of classical type and A is restricted, then c(B, A) 
may be computed from the maximal weight of A as at characteristic 0 (13, 
p. 247). 

Now suppose that L is the simple 3-dimensional algebra (p > 2), with 
basis e,f, h, where [e, f] = h, [h, e] = 2e, [h, f] = —2f. For the trace form B 
of the representation of degree 2, B (h,h) = 2 and B (e,f) = 1. Hence h, e,f and 
h/2,f, e are dual bases of L for this form, and if an irreducible representation 
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À has maximal weight a with a (h) = m, then T(B, A) = (m (m + 2)/2)I. 
It follows that an abelian extension of L with restricted irreducible ad^L 
splits unless ad^L is the representation with degree p — 1. On the other hand, 
let V be the irreducible L-module of degree p — 1 and let v and w be maximal 
and minimal vectors of V and a and & scalars not both 0. Let E = L -\- V 
(direct sum as vector spaces) and let the multiplication of basis elements be 
that of the split abelian extension except that [h, e] = — [e, h] = 2e + aw 
and [h,f] = —[f,h] = — 2/ + bv. This gives an extension of L which does not 
split since (h) is a Cartan subalgebra but does not act diagonally. 

We have seen that for L simple of type Ai there are irreducible restricted 
representations for which the hypotheses of Corollary 4.1 are not satisfied but 
which do have non-zero Casimir operator. For L simple of type A2 there are 
restricted irreducible A for which T(J3, A) = 0 for all B but which do satisfy 
the hypotheses of Corollary 4.1 (and 4.2), e.g., if A has maximal weight (2, 3) 
and p = 17. 

5. Central extensions of algebras of quasi-classical type. Let F be a 
field of characteristic p} G a finite additive subgroup of F, f a biadditive 
mapping of G X G into F, and L an algebra with a basis {ua\ a Ç G} indexed 
by G and multiplication given by 

[uai Up] = {a — 13 +f(a, P)}ua+p. 

If / = 0, then L is a Lie algebra called a Zassenhaus algebra (17). If / ^ 0, 
then L is a Lie algebra if and only if there exists an additive mapping I oi G 
into F such that 

(5.1) f(a, fi) = al(P) - 01(a) (a, ^ G); 

such a Lie algebra is called an Albert algebra (1). In addition to being the only 
known simple algebras of rank one (over a perfect field) other than Ai, these 
algebras gain importance from their role in the theory of Lie algebras of 
quasi-classical type (a perfect centreless Lie algebra is said to be of quasi-
classical type if for each non-zero root p, the root spaces Lp and L_p generate 
the 3-dimensional simple Lie algebra). We proved in (6) that any Lie algebra 
of quasi-classical type over a perfect field is a direct sum of simple algebras 
which are either of classical type or Zassenhaus or Albert algebras. 

Ree (15) proved the remarkable fact that all Zassenhaus algebras of the 
same dimension over an algebraically closed field F are isomorphic. However, 
the question of isomorphism between Albert and Zassenhaus algebras of the 
same dimension over F has been open. I t is known (3) that they have iso
morphic algebras of outer derivations. We show here that no Albert algebra is 
isomorphic to a Zassenhaus algebra, if p > 3, by examining their central 
extensions. 

THEOREM 5.1. If p > 3 and L is a Zassenhaus algebra over F, then H2(L, F) 
is 1-dimensional, while if L is an Albert algebra over F, then H2(L, F) = 0. 
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Proof. If L is a Zassenhaus or Albert algebra over F, then each Fua is a root 
space for the Cartan subalgebra Fuo. Let g be a 2-cocycle on L with respect to 
the trivial module JF. By Corollary 2.4, we may assume that g(ua, Up) — 0 
unless a = —ft ^ 0. For a £ G, write g(ua, U-a) = ca. Then the condition 
àg(ua, Up, uy) = 0 is automatically satisfied unless a + ft + y = 0, in which 
case, 

(5.2) [a- ft + f(a, ft))ca+p +{-a-2ft - / ( a , /3)}ca 

+ {2a + 0 - / ( a , 0 ) } < * = O. 

If / = 0 and if ca = a3 — a for each a, then (5.2) is satisfied, as is shown by a 
straightforward computation. Hence, in the Zassenhaus case, the 2-cochain k 
with k(ua, U-a) = az — a and k(ua, Up) = 0 if a + ft 9e 0 (a, 0 G G), is a 
cocycle. This cocycle is not a coboundary, since, if 5& = &, then ôh(ua, U-a) 
= 2ah(uo) — az — a for all a, a contradiction. Returning to the original 
cocycle g, for a given non-zero a we may assume that ca = 0 by subtracting 
ÔÂ from g, where h is the 1-cochain with h(uo) = ca/2a, h(up) = 0 ( 0 ^ 0 ) . 
Then by (5.2), (i — l)ac(H_i)a = (i + 2)acia, and by induction, c ïa = 
(1/6) (i + l)i(i- l)cia. 

By multiplying each basis element of L by a~l we may assume that a = 1. 
Then, if/ = 0, we subtract (c2a/6)k from g to obtain a cocycle with c ia = 0 
for all i. I t is sufficient to show that all cp vanish for this cocycle. If /3 is not 
of the form ia, then application of (5.2) to the pairs ft, 2a; ft + a, a; and ft, a 
yields 

_ ft + 4a _ ft + 3a _ (ft + Sa) (ft + 2a) 
<*+'« ~ p - 2a *' Cf*** ~ ft Cf»a - ft(ft-a) *' 

Equating the expressions for Cp+2a and expanding, we obtain 12azcp = 0, and 
cp = 0. This completes the proof for the Zassenhaus case. 

Next, suppose that / 9e 0, and take a, ft such that f(a, ft) 9e 0, where, as 
before, we may suppose that ca = 0. We claim that cp = 0. Applying (5.2) 
successively to the pairs ft + ia, a (i = 0, 1, . . . , p — 2) we obtain 

_ {P + pa+m <»)} • • • {fl + 2a+f(ft, a)} 
Mv~1)a " {ft + (P - S)a+f(ft,a)} ...{ft -a +f(ft,a)} C> 

{ft-2a+f(ft,a)} 
{ft + a+ma)} C" 

iîft + ia +f(ft,a) 9^ 0 (i = - 1 , 0, . . . , p - 3). But if ft + ia +f(ft,a) = 0, 
then (5.2) for ft + (i + l)a, a yields Cp+(i+i)a — 0, and hence Cp+ia = . . . = 
cp = 0. We apply (5.2) for ft, —a and obtain 

{ft + a -f(ft,a)}cp_a = {ft-2a -f(ft,a)}cp. 

Thus, we have two equations for cp-a and Cp. The determinant of the coefficients 
is 6af(ft, a) 9^ 0, and therefore Cp = 0. Suppose that y G G and y 9e 0. If 
1(a) = 0, then, by (5.1), if l(y) 9e 0, then f(a, y) 9e 0, and hence cy = 0, 
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while if l (y) = 0, then/(/3, 7) ^ 0 and again cy = 0. Hence, we may assume 
that 1(a) 9* Oand by symmetry, also that Z(/3) 5* 0. By (5.1), a//3 5* I (a)/1(0); 
if / (a , 7) = 0, then 7 A* = I (y)/1(a) and 7 /^ ^ l(y)/l(P) so that/(/3, 7) ^ 0. 
Hence, in every case, cy = 0, that is, g = 0, and the proof is complete. 

COROLLARY 5.1. No Albert algebra with p > 3 is isomorphic to a Zassenhaus 
algebra. 
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