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Abstract

We give a very general reformulation of multi-actor Markov decision processes and
show that there is a tendency for the actors to take the same action whenever possible.
This considerably reduces the complexity of the problem, either facilitating numerical
computation of the optimal policy or providing a basis for a heuristic.

Keywords: Markov decision process; multiarmed bandit; flexible server

2000 Mathematics Subject Classification: Primary 90C40
Secondary 90B22

1. Introduction

There have been many nice results establishing the optimality of index rules for classes of
Markov decision processes with single actors. These include the traditional multiarmed bandit
[3], and scheduling in networks of queues with a single server [4], [6], [7]. When there are
multiple actors (players or servers), the problems become much more complicated, and simple
index rules are generally no longer optimal. We give a very general reformulation of multi-
actor Markov decision processes and give conditions under which there will be a tendency for
the actors to take the same action, whenever possible, and for priority to be given to faster
actors. This considerably reduces the complexity of the problem, either facilitating numerical
computation of the optimal policy or providing a basis for a heuristic.

Our framework is very general. Since a simple index rule is no longer optimal, we can relax
many of the assumptions required to obtain such a rule in previous work for single actors. We
permit general, exogenous, random effects on the system, actors with different speeds, arbitrary
constraints on which actors can take which actions, and all of these may be state dependent. Our
model includes quite general queues with multiple servers, multiarmed bandits with multiple
players, and data-flow models in which tokens (actors) can enable certain firings (state changes).
We are also able to show that our structural results hold for stochastic optimality as long as such
optimality is achievable. (By stochastic optimality we mean maximization of the net benefit
in the stochastic sense, rather than just maximization of the mean net benefit.) We also give
conditions under which the optimal policy can be implemented with distributed control. That
is, each actor can choose its own action to maximize its own marginal return.

Many results in the literature follow from ours. Ahn et al. [1] considered a two-station
queueing model with two flexible workers, Poisson arrivals, exponential service times, holding
costs, and preemption permitted. Thus, there are two actors and two actions. They showed that,
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in states where both workers can be assigned to either station, assigning both to the same station
is always optimal, which follows from Corollary 3.1(i), below. They also showed that, when
servers can collaborate, they always work at the same station, which follows from Corollary
3.3. Kaufman et al. [5] considered a two-station collaborative-service tandem queueing model
in which workers may come (i.e. are hired) and go (i.e. quit or are fired), meaning that the rate of
service changes over time. They showed that, if all servers are identical, it is optimal to allocate
all available servers to one queue, and characterized the condition under which the allocation
of servers to the chosen queue is optimal. These results can be shown to be a consequence
of Corollary 3.3. Weiss and Pinedo [13] considered preemptive scheduling of jobs on parallel
processors such that the processing time of a job on a processor is exponential, with a rate that
is the product of the job and processor rates. They showed that processing the fastest job on the
fastest processor, etc., minimizes the mean flowtime (the total time jobs spend in the system),
while processing the slowest job on the fastest processor, etc., minimizes the mean makespan
(the time taken to process all the jobs). This follows from our Corollary 3.2.

Our model also includes scheduling of project activities with arbitrary precedences, a finite
number of resources, and technological constraints on which particular resources can be used
for which activities — see Vairaktarakis [12] for a recent deterministic example.

2. Formulation

We consider a general Markov decision process on a countable state space 4, where state
transitions occur after exponentially distributed times. To make things concrete, we relate the
general framework to a multiplayer, multiarmed bandit. For the multiarmed bandit, the state
mightinclude the individual states of all arms present (let us call them ‘arm states’, to distinguish
them from the overall state of the system), as well as environmental states and actor states. Let
us fix an arbitrary state s € 4. While the state is s, a cost at rate g(s) is incurred. There are a
finite number, N, of actors (players) and a countable set, J, of possible actions (arms to play).
For each actor i, there is a set A;(s) € K of admissible actions, which permits us to model
multiple skill sets. For each action k € K, there is a permissible number of actors, M (s) < N,
that can be assigned to that action. For example, if the state space of the multiarmed bandit is
such that it includes the number of arms in a particular arm state, then the number of players
of those arms can be no more than the number of arms.

The rate at which the process changes state depends on the assignment of actors to actions in
the following way. Actor i has a ‘firing rate’ u; (s), bounded by a finite ;, so that u;(s) < u;
for all s € 4, and action k € K has a firing rate vi(s) < v for some finite v. If actor i is
assigned to (admissible) action k, then the action will cause a state change with rate w; (s)vi(s).
Another interpretation of the firing rates is that w;(s) is the speed of actor i in state s, and
1/vr(s) is the nominal mean time between transitions caused by action k in state s, i.e. the
mean transition time when the actor has speed 1. It will be convenient to use the following
equivalent interpretation. We will say that actor i fires in state s at rate pu; (s)v: if action k is
chosen, this firing will cause a state transition with probability v (s)/v, while, otherwise, there
is no transition. Later, we will generalize our model to permit more general firing rates.

If actor i is assigned to action k in state s, and this causes a state change, then a random
reward Rj(s) is earned (where Ri(s) < R for some finite R, and may be negative) and the
corresponding new state will be Sk (s), chosen according to transition probabilities that depend
only on s and k and not on the actions assigned to the other actors. Later, when we permit more
general firing rates, the rate of the state change may depend on the actions of other actors. Our
results also hold if the reward depends on the new state, or on both the original and the new
state, Ry (s, Sk(s)), but we suppress this extra notation.

https://doi.org/10.1239/jap/1110381367 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1110381367

Multi-actor Markov decision processes 17

There may also be a state change to some state S(s), when the current state is s, due to
exogenous factors that are independent of the actions chosen. These occur at rate y (s), with
y(s) < y forall s € 4, and with transition probabilities that depend only on the current state.
Note that the state may include information about the actors, the actions, and environmental
factors, as well as about the internal configuration of the system. For example, actor i may be
unavailable in state s, in which case A;(s) = @ or, equivalently, w;(s) = 0. In the multiarmed
bandit, arms may arrive or leave, arms that are not played may also change state, players may
take a break, the speeds and skill sets of players may otherwise change, etc.

The traditional single-player multiarmed bandit is assumed to progress in discrete time but,
with our uniformization, the continuous-time and discrete-time formulations are equivalent for
one player. Also, in the traditional bandit problem, in showing the optimality of an index policy,
exogenous state transitions are not permitted. Our results permit a much more general model
but only provide a partial characterization of the optimal policy.

Our Markov decision process formulation includes very general queueing networks, with
general routings (possibly with forks and joins), with servers of different speeds and availabil-
ities that are trained to serve particular subsets of queues, with multiple types of customer, etc.
The restriction on the number of actors that can perform an action can be used in a queueing
network to ensure that servers cannot serve more customers than are present in a given queue.

We now summarize our notation (much of which will be introduced later). For actor i and
state s,

e A;(s) are the admissible actions;
e ;i (s) is the firing rate;

e a;(s) is the action chosen; and

e [;(s) = 1{actor i fires},

where 1{-} is the indicator function of the event {-}.
For action k and state s,

e M (s) is the maximal number of actors that can be assigned to action k;

e Vi (s) is the firing rate if action k is chosen;

e Ry (s) is the reward if action k is chosen, fires, and causes the state to change;

e Si(s) is the new state if action k is chosen, fires, and causes the state to change;
e Ji(s) = 1{action k fires and causes the state to change | k is chosen};

° m}( (s) = Jk()[Rx (s) + Vi (Sk(s)) — Vi (s)] is the marginal value of choosing action k in
state s at time ¢; and

e ci(s) is the number of available actors that can be assigned to action k.
For exogenous factors, for state s,

e y(s) is the rate of state change due to exogenous factors;

e S(s) is the new state, given a state change due to an exogenous factor; and

e I(s) = 1{the state changes due to an exogenous factor}.
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Other definitions for state s are as follows:
e g(s) is the cost rate;
o G (s) is the total cost between transitions;
e A(s) is the set of admissible actions;

. th (s) is the total net benefit under policy f for the next ¢ decision epochs, starting in
state s;

e Vi(s) is the total net benefit under the optimal policy for the next ¢ decision epochs,
starting in state s;

o Hi(s) = I(s)Vi(S(s) + 1 = I()]Vi(s) — G(s);
e N(s) is the number of available actors; and

e K (s) is number of admissible actions.

3. Results

We use uniformization and assume, without loss of generality, that the total rate out of any
state is Z,N— 1 #iv +y = 1. Thus, we have dummy transitions from state s at rate S(s) =
1-— Zl_l wi(s)v + y(s); these transitions cause the state to remain in state s. Note that we
have already modeled a subset of the dummy transitions, at rate 21—1 Wi ($)(v — vr(s)), with
our reinterpretation of firing rates. We assume that there is a finite horizon, ¢, for the number of
remaining decision epochs, where decision epochs occur at state transitions (including dummy
transitions) and, thus, at rate 1. We define the current time, i.e. the time of the first decision
epoch, to be time 0. Let G (s) be the total (random) cost incurred between transitions when the
state is s. Thus G(s) = g(s)X, where X is exponentially distributed with rate 1, i.e. G(s) is
exponentially distributed with rate 1/g(s).

For a fixed time ¢, let a; (s) € K be the action assigned to actor i in state s, and let A(s) be
the admissible set of actor—action combinations in state s. That is,

A(s) = {(al(s),ag(s), ...,an(s)):ai(s) € Ai(s),i=1,...,N;

N
> “Hai(s) =k} < My(s) forall k € J{}
i=1

3.1. Stochastically optimal policies

Let Vf (s) be the total net benefit (i.e. rewards minus cost) starting in state s under some pohcy
f for the next ¢ decision epochs, assuming that the problem will stop at ¢+ = 0. Note that V (s)
is a random Varlable For some problems, there may exist a stochastically optimal policy f*,
i.e. such that V (s) >t V (s) forall # and s. For example, consider the standard single-armed
bandit problem with deteriorating bandits, in which arms that are pulled move to states with
lower immediate returns. If the returns for arms in different states can be stochastically ordered,
then it can easily be shown that the myopic policy of pulling the arm with the stochastically
largest return is a stochastically optimal policy. Even if a stochastically optimal policy does
not exist for a particular problem, there may be situations in which a certain class of policies
can be shown to be stochastically better than others — for example, in preemptive scheduling

https://doi.org/10.1239/jap/1110381367 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1110381367

Multi-actor Markov decision processes 19

problems, this is often the case for the class of nonidling policies. We first develop our method
assuming the existence of stochastically optimal policies, so we work with random variables
instead of means, e.g. we use indicators of events rather than the probabilities of those events.
This methodology easily extends to optimization of expected values; we discuss this further in
Section 3.4. .

Let Vi(s) = th (s) be the total net benefit for the stochastically optimal policy. For fixed
t, let I;(s) be an indicator for the event that actor i fires; then P(/;(s) = 1) = u;(s)v =
1 — P(I;(s) = 0) and at most one actor can fire at a time. Also, let J;(s) indicate whether
such a firing causes a state transition (i.e. whether the action also fires); then P(Ji(s) = 1) =
Vi(s)/v =1 —P(Jir(s) = 0) and Ji(s) is independent of ;(s) for all i. Finally, let f(s) be an
indicator for a state transition due to an exogenous factor, in which case P(I~ =1 =y(@)=
1-— P(i(s) =0) and P(i(s) = I;(s) = 1) = 0 forall i. Then we have V(s) = 0 and

N
Vipt(s) = max {_Gm +2_ LUk OIR (5) + ViSi (D] + (1 = Ty (D Vi (9))
(k1,....kn)EA(s) i=1

N
+1()Vi(S(s)) + [1 = Ii(s) - i(s)] Vi (s)}
i=1

N
—G(s) + Z 1i(s) Ji; )[Ry, (5) + Vi (Sk; (5)) — Vi(s)]

i=1

+ I()Vi(S(s)) +[1 — i(s)]%(s)}

max {
(ky,....,kn)EA(S)

N
= max L (s)mt (s) + H,(s),
(K1, kn ) EA(S) ; ' ki !

where
my(s) == J()[Ri(s) + Vi(Sk(s)) — Vi(s)]

is the marginal value of choosing action k in state s at time 7, and
Hi(s) = 1)V, (5()) +[1 = 1)V (s) = G(s)

is independent of the actions chosen. Note that our assumption of the existence of a stochasti-
cally optimal policy implies that the random variables m/ (s) can be ordered, in the stochastic
sense, for all actions k € K. In general, the values of mf{(s) will be difficult to obtain but, with
the structural results given below, we can reduce the complexity of the problem significantly.

Also note that m};(s) does not depend on the actor, so we will prefer to assign as many actors
as possible to action a rather than action to b when m! (s) > m;)(s). Moreover, from the
lemma below, we will also prefer to assign faster actors to action a rather than to action b.
Theorem 3.1 then follows.

Lemma 3.1. Suppose that X and Y are (not necessarily independent) random variables such
that X >4 Y, that I and J are Bernoulli random variables such that I >y J and P(I = J =

1) =0, and that (X, Y) is independent of (I, J). Then IX +JY >4 JX + 1Y.

Proof. Let U be uniformly distributed on [0, 1]andlet p = P(I = 1)andg =P(J =1) <
p. Also,let J'=1{U < q}, A=1{g < U < p},and J” = 1{p < U < p + q}. Finally, let
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(X', Y") =g (X, Y) be independent of (X, Y) and let both (X, Y) and (X', Y’) be independent
of U. Then

IX4+JY = JX+J'Y+AX >4 X+ J'Y+AY = JX + 1Y,

as required.

A consequence of Lemma 3.1 is that, if wu;(s) > u;(s) and mfl (8) >t mZ(s), then
Li(s)my (s) + 1 (s)my,(s) =g Li (s)my,(s) + 1;(s)my,(s).

Theorem 3.1. Suppose that there is a stochastically optimal policy. Let the actors be arbitrarily
ordered, let t be the number of remaining decision epochs, and let s be the initial state.

(i) Suppose that a, b, and k», . .., ky are such that (a, ka, ..., kn) € A(s), (b, ko, ..., ky) €
A(s), and my(s) =g mp(s). Let f and g be the policies that choose actions (a, ka, ..., ky)
and (b, ky, ..., kn), respectively, at time 0, and which then follow the optimal policy. Then
V,f () >t V,g (s) and g cannot be optimal.

(ii) Suppose that a, b, and k3, . .., kn are such that (a, b, k3, ..., ky) € A(s), (b,a, k3, ...,
kn) € A(s), mg(s) =g mp(s), and p1(s) > wa(s). Let f and g be the policies that choose
actions (a, b, ks, ..., ky) ar;d (b, a, ks, ..., kn), respectively, at time 0, and which then follow
the optimal policy. Then V/ (s) =g V2(s) and g cannot be optimal.

We say that an actor i is available in state s if A;(s) # @ and u;(s) > 0. Let N(s) be the
number of available actors in state s, and let ¢ (s) be the number of available actors for which
action k is admissible in state s, i.e. cx(s) = Zf\;l 1{k € A;(s)}. Similarly, we call an action
permissible in state s if My (s) > 0, and let K (s) < oo be the number of permissible actions in

S.

Corollary 3.1. Suppose that there is a stochastically optimal policy. For a given state s and
time t, order the permissible actions in decreasing (stochastic) order of m,’((s).

1) If ck(s) < My(s) for all k < K (s), then the optimal policy in state s is ‘greedy’, that is, it
assigns each available actor to the lowest-indexed action it is permitted to.

(ii) Suppose that actors have the same set of admissible actions and that, for all s € S,
M (s) > N(s). Then the optimal policy is to assign all actors to action 1 in all states (though
the particular action that is referred to as action 1 will depend on the state). In this case, the
actors effectively act as a single actor, or team, so any results for single-actor models will also
be true for this multi-actor model.

If there are few actors and many actions k with My (s) large, and if the actors have similar
admissible actions, then the state space can be considerably reduced using Theorem 3.1 and
Corollary 3.1. For example, when there are two actors and they have the same sets of admissible
actions, it will not be optimal, for all actions k and [ with My (s), M;(s) > 2, to assign one actor
to action k and the other to action /. If My (s) > 2 for all k, then both actors should be assigned
to the same action, and the number of possibilities for the optimal-action pair decreases from
K (s)2to K (s).

An application is to an extension of Klimov’s model [6], [7] for a single server serving
jobs in a queueing network; namely, to allow N fully flexible and failure-prone servers, where
all service times, interarrival times, and failure and repair times are exponential and possibly
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dependent on an exogenous state variable. If the state is such that all queues have either O or at
least N jobs, then all servers should be assigned to the same queue. More generally, if there are
M nonempty queues, if x; is the number of jobs in the i th queue, and if, without loss of generality,
we label the queues — starting with the nonempty ones — so that x; < xp < --- < x), then the
N servers will be assigned to at most m queues, where either m = Zlﬁi (X if Y xi <N,
or /i is the smallest m such that Y ;" | x; > N.

It is not hard to prove the following corollary to Theorem 3.1. Note that a special case of
the ordering relation for admissible actions is that they are the same for all actors.

Corollary 3.2. Suppose that there is a stochastically optimal policy. For state s, order the
available actors in decreasing order of i (s) and order the permissible actions in decreasing
stochastic order ofmf{ (). If A1(s) € Ax(s) S -+ € An(5)(s) then the optimal policy is to
assign the ith actor to the best (lowest-indexed) remaining action after the first i — 1 actors
have been assigned.

A consequence of this result is that, when the conditions of the theorem are satisfied, the
optimal policy can be implemented in a distributed fashion, letting each actor choose the best
action it can (in terms of my(s)), subject to the constraint that faster actors have higher priority
in choosing.

3.2. Collaborative processing

Corollary 3.1 holds for the special case in which there is no constraint on the number of
actors that can be assigned to an action, i.e. where My(s) > N(s) forallk € K ands € S.
Such a model is stochastically equivalent to a collaborative model, in which multiple actors can
work together on the same action, and where firing rates and rewards for the actors working
together are added. Indeed, similar reasoning gives us our next corollary.

Corollary 3.3. Suppose that there is a stochastically optimal policy. For a given state s and
time t, order the permissible actions in decreasing stochastic order of mf{ (s).

(1) When actors can collaborate, the optimal policy in state s is to assign each available actor
to the lowest-indexed action permitted.

(ii) Suppose that a subset of actors have the same set of admissible actions and can collaborate.
Then, it is optimal to assign all of the actors in this subset to the same action.

Note that in case (ii) of Corollary 3.3, under the optimal policy the given subset of actors
works as a single (fast) actor, so we can combine the actors into one. In particular, if all of
the actors have the same set of admissible actions, the optimal policy is the one that is optimal
for a single actor. This permits a slight generalization of the applicability of the Gittins index
for optimizing the single-armed bandit problem. That is, for the standard single-armed bandit
problem in continuous time, it is optimal always to devote all effort to the arm with the largest
Gittins index, even when that effort can be divided among several arms. More generally,
case (ii) of Corollary 3.3 provides insight into the optimality of so-called ‘bang-bang’ policies
when processing rates can be chosen from an interval, say [uo, t1], for some action k. With
appropriate rescaling, we can think of there being one subset of the actors with total rate (¢ and
with their only admissible action being assignment to action k, and another subset with total
rate ;1 — o and with two admissible actions: assignment to k and idling. Then we know that,
within each subset, it is optimal for all actors to take the same action, so the optimal service
rate will be either g or 1.
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Another model that is equivalent to the collaborative model in a scheduling context is the
following. Consider a grid of parallel computers (actors) with different speeds, and arrivals of
tasks of different types. Itis permitted to send copies of the same task to more than one computer
at a time, with the completion time of the task being the earliest completion time of any of its
copies [8]. For exponential processing times, this copy option is equivalent to a collaboration
option because the minimum of a set of exponential random variables is an exponential random
variable with rate equal to the sum of the individual rates. Thus, it is optimal to process the
same task on all of the computers, where the task chosen is the one that is optimal when there
is only a single computer, e.g. it is chosen according to the ‘cu-rule’ for appropriately defined
c and u.

Mandelbaum and Reiman [9] also considered a restricted form of collaboration, or resource
pooling, in Jackson queueing networks. They compared steady-state sojourn times for a system
with dedicated servers for each node in a network to one in which a single server with combined
service rate can serve at all of the queues. However, in their model, when service is pooled
there can be no preemption and jobs are processed on a first-come-first-served basis, and so
the pooled system operates as an M/PH/1 queue. Under these constraints, the pooled model
may have worse performance than the dedicated-server model. In the special case of tandem
systems, Mandelbaum and Reiman showed that pooling is always better. This result follows
from ours because, assuming that optimal policies are always followed, a system that permits
collaboration and preemption, and in which all servers can perform all tasks (call this system 1,
say) will perform better than a system that requires collaboration, does not permit preemption,
and in which all servers can perform all tasks (the MR pooled system). System 1 will also
perform better than a system that does not permit collaboration and in which each server can
only perform one task (the MR dedicated-server system). From Corollary 3.3, the optimal
policy in system 1 has all servers serving the same task at all times, i.e. acting as a single server.
It is easy to show that the optimal policy for a single server when preemption is permitted is
to always work on the task that is at the latest node in the tandem system, so preemption does
not occur. Hence, for tandem queues, the performance of the MR pooled system is as good as
that of system 1 and, hence, is better than that of the MR dedicated-server system. (See also
[11], where the optimal, preemption-permitting, collaborative policy for tandem systems was
shown to be the ‘expedite policy’, which, in fact, never preempts.)

3.3. Generalized firing rates

We now permit more generalized firing rates. Assigning asubsetofactors,I'C {1, 2, ..., N},
to action k € JK in state s will cause a state transition with rate r;(I")vi(s), so the firing
rate for the set of actors I' is r¢(I"). In Section 3.1, we assumed that the firing rate was
re(I') = Ziel" ui(s). Now we let I (T, s) be an indicator (analogous to [; (s)) for whether the
set of actors I fires, so P(I (I', s) = 1) =ry(INv =1 —-P{ (', s) = 0). Let G(s) be the set of
admissible assignments of actors to actions in state s, i.e.

() =Tk, ke K:Tp S{L,2, ... NE [Tkl = My; j €Tk = k € Aj(s);
IyNTy=oforl € X, #k}.

With our other definitions as before, we have

Viti(s) = D 1Tk, $)mi(s) + Hi(s). 3.1)

max
{Tk.keK}eGls)
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We have the following variants of Corollary 3.2.

Corollary 3.4. Suppose that rs(T') = ps(O_ jer Mj (s)), where ps(x) is an increasing convex
function of x for all s, and suppose that there is a stochastically optimal policy. For state s and
time t, order the available actors in decreasing order of i (s) and order the permissible actions
in decreasing stochastic order ofmfc(s). If Ai(s) = A(s) foralli and s, and My (s) = M(s)
for all s and all available k, then the optimal policy is a greedy policy that assigns the fastest
min{M (s), N(s)} actors to action 1, the next fastest min{M (s), N(s) — M (s)} actors to action
2, etc., until all actors are assigned.

Proof. Suppose that some policy f does not follow the greedy policy that we claim is
optimal, and let 7 4+ 1 be the smallest time to go at which this is true. Suppose that the state at
timez+1iss. Let {['y, k € K} be the assignments at time ¢ + 1 under policy f,let {['}, k € K}
be the assignments under the greedy policy, and define x; = > jery Mj (s). If x; > x; for
some j > 1,letI'} =T, F} =Ty,and ) =T forl # 1, j, and let f’ be the policy that
assigns actors at time # 4 1 according to {I';, k € X} and then agrees with f, following the
greedy policy. Then

Vi) = hml(s) + ms(s) + > Lamly(s) + Hy(s)
keX k#1,j

<a Lim{ () + hm'y(s) + Y Iam(s) + Hi(s)
ke X k#1,j

= v/, 6

where I = 1 with probability ps (x4 )v (and equals O otherwise) with k € J, and the inequality
follows from Lemma 3.1 because p;(x;) > pg(x1). We can repeat such interchanges until we
have a policy f” such that x| > x}’ forall j > 1. Now suppose that [['{| < |I'{|. Then we can
assign another actor to action 1, and similarly show that the new policy has greater net benefit.
Now, for a policy f” such that x{" > x}” forall j > 1 and |T')'| = |T}|, if ['{” # '} we
can interchange actors as we did above and again improve the net benefit. Finally, for a policy
f"" with T'{"” = '}, we can think of action 1 as no longer being admissible for the remaining
actors, and repeat the argument for action 2, etc. By induction on ¢, the result follows.

Now suppose that 7 (I') = ps(|T"|), where ps(x) is increasing and concave in x for all s.
That is, actors are indistinguishable in terms of their firing rates. Actors may, however, differ
in terms of admissible actions, but we suppose that, for each s, the actors can be ordered so
that Ai(s) € Ax(s) € .-+ C Apn()(s). Then, the optimal policy can be determined by a
greedy algorithm, as follows. For state s and time ¢, order the available actors in increasing
order of their admissible sets and order the admissible actions in decreasing stochastic order
of mf{(s). Actor 1 should be assigned to the lowest-indexed action it can be. Suppose that the
first j actors have been assigned, let n(k) be the number of those actors assigned to action k,
k=1,...,N(s),and let Y C {1,2,..., N(s)} be the set of eligible actions for j + 1, i.e.
Y ={k:n(k) < M(k)and k € Aj;1(s)}. Then actor j + 1 should be assigned to action k if
both k € Y and

mi (s)[rs(n(k) + 1) — ry(n(k))] =g mj($)[rs(n(l) + 1) — rg(n()]

for all [ € Y. The algorithm requires O (N?) computations.
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Corollary 3.5. Suppose that rs(I') = ps(|T'|), where ps(x) is increasing and concave in x for
all s, that the actors can be ordered so that A1(s) € Ax(s) C --- € An¢)(s) for each s, and
that there is a stochastically optimal policy. Then the optimal policy can be determined from
the greedy algorithm described above.

Proof. Suppose that some policy f does not follow the greedy algorithm, and let # 4+ 1 be
the smallest time to go for which this is true. Suppose that the state at time 7 4+ 1 is s. Let
{Tk, k € K} be the assignments at time ¢ + 1 under policy f, and let {I'}, k € K} be the
assignments under the greedy policy. Suppose first that, at time ¢ 4+ 1, f assigns actor 1 to
action k > ki, where ky = min{/: [ € A}, sothat 1 € I';. If f assigns some actor j > 1 to
action k1, we can interchange the actions for actors 1 and j without affecting the net benefit.
If f does not assign an actor to action k1, let f’ assign actor 1 to action k; instead of action &,
and let it otherwise agree with f. Let [ be the number of actors assigned to action k under f’,
and let I; = 1 with probability ps(i)v and I; = O otherwise, i =0, 1,...N. Then

V() = Toml () + L)+ > Leml(s) + Hy(s)
le X ,l1#k,ky

< himj () + Imj(s) + Y Lemj(s) + Hy(s)
le X Ik ki

=V,
where the inequality follows from Lemma 3.2, below. That is, the optimal policy must assign
actor 1 according to the greedy algorithm. Now suppose, for the purposes of induction, that
it is optimal to assign actors 1 through j according to the greedy algorithm. The problem of
assigning the remaining actors is as if only these actors are available and only the actions in Y

(defined in the algorithm) are admissible, so the argument for assigning actor j + 1 is the same
as the preceding argument for assigning actor 1. The result then follows by induction on ¢.

Lemma 3.2. Suppose that X and Y are (not necessarily independent) random variables with
X >4 Y, that I, I, I3, and 14 are Bernoulli random variables with p; = P(I; = 1), p1 < p» <
P3=<p4 pa—p3<p2—p1,p1+p2+p3+ps < LandP(ly =14 =1) =P, = 3) =0,
and that (X, Y) is independent of (11, I, I3, 11). Then

DX+ LY >4 X + 14Y.

Proof. Let po = 0,letg; = pi — pi—1,i = 1,2,3,4, and let g5 = g» — g4. Additionally,
let U be uniformly distributed on [0, 1], and let

1 =1{2q> < U <2q2 + q1},

N =120 +q+q <U <2q2+q1 + g3+ q1},
J3=1{2q +q1 < U < 2q2 +q1 + g3},

Js =1U < qa},

Ji=Uq <U < g2+ qa),

Js=Ugs <U = q4+q5 = q2},
Js=Uqp+qs <U < g2+ qa+q5 =2q)}.
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Finally, let (X', Y') =4 (X, Y) be independent of (X, Y) and let both (X, Y) and (X', Y’) be
independent of U. Then

LX +BY =4 hX + Uy +I)X + (] + 3+ Jy+ J5)Y
>q WX+ U+ I+ s+ J5)Y + 1Y
=g [1X + 14Y.

Note that, for these generalized firing rates, the optimal policy can again be determined in
a distributed fashion. That is, if actors are given priority based on their indices (actor 1 has
highest priority, etc.), then each actor should choose an action that maximizes its marginal
increase in the value function, given the choices of the higher priority actors.

3.4. Mean optimal policies

If there is not a stochastically optimal policy, all of our results still hold, except with the
random variables replaced by their means (e.g. E V; instead of V;, v instead of J, Em}c, etc.)
and our objective is to maximize the expected net benefit. Our results can also be extended
to the infinite-horizon problem when the long-run average or discounted expected-net-benefit
criterion is considered. Under appropriate conditions, one can show that there exists a solution
of the optimality equation for the expected discounted benefit. If the solution exists, the expected
benefit-to-go function starting from state s, E V;(s), is replaced by the limit of the expected
discounted benefit-to-go. Sufficient conditions would be, for example, a finite state space or
an upper bound on rewards and costs. In the average-benefit case, the value function E V; (-) is
replaced by the long-run average benefit, b*, and the relative value function, v(-); the optimality
equation can be rewritten by substituting b* + v(s) in place of E V;(s). Under appropriate
conditions (for example, the SEN assumptions of Sennott [10, p. 132]), the solution of the
average-benefit optimality equation exists, the long-run average benefit is replaced by a scalar,
b (independent of the initial state), and there exists a stationary, deterministic optimal policy. The
proofs for the infinite-horizon problems immediately follow after substituting the corresponding
value functions for V;(s).

4. Conclusions

We have given a formulation of multi-actor Markov decision processes that allows us to
make general statements about optimal policies. The key assumptions are as follows.

1. Firing rates are multiplicative, so that some actors are uniformly faster or slower than
others.

2. State transitions depend on the action chosen, and not on which actor chooses the action.

These assumptions imply a decomposition of the objective function, making it clear that
actions should be chosen according to their marginal values, and that faster actors should be
assigned to actions with higher marginal values. Such a decomposition will not hold without our
key assumptions. For example, Andradottir et al. [2] considered a preemptive tandem system
with two stations and two servers that can collaborate on jobs, and in which service times are
exponential, with rate u;; for server i serving a job at station j, such that p11 22 > pi2p21. In
this case, it is better for each server to serve the station at which it is (relatively) more effective.
That is, it is optimal to assign server 1 to the first station and server 2 to the second station
whenever that assignment is nonidling; otherwise the servers should collaborate on tasks in the
nonempty buffer.
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Assumption 2 tends to rule out models that do not permit preemption. When preemption is
not allowed, the state must describe which actors have been working on which actions, and so
state transitions will depend on both the action and the actor.
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