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A finite set covering theorem II

Alan Brace and D.E. Daykin

Let n, s, t be integers with s > t > 1 and n > {t+2)28 t l .

We prove that if n subsets of a set S with s elements have

intersection I and union J then some t of them have

intersection I and union J . The result is best possible.

1. Introduction

Small letters denote non-negative integers and large letters denote

sets. Also [i, j] denotes the set {i, i+1, i+2, ..., j) . We assume

s > t > 1 and let S = [l, s] . If a family M of subsets of S has

union S we say it covers S . If it covers 5 and has empty

intersection 0 we say it laces S . We say we invert an element k of

S in M when we adjoin k to all sets in M not possessing k and

delete k from all sets in M possessing k . Clearly inversion will not

affect lacing. An important family of subsets of S is

E = U; X = P u Q, P c [l, fc+i], \p\ s i j c S\P} .

The number e of sets in E is

e = e(s, t) = (t+2)2S~t~1 ,

and these e sets lace S . Our result is the

THEOREM. Let n, s, t be integers with s > t > 1 and let

N = {X,, Xo, ..., X } be n different subsets X. of S = [l, s] .

Firstly suppose N covers S but no t sets X. of N cover S . Then

(i) n < e , and
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(ii) if 3 - t and n = e we can obtain N from E by permuting

the elements of S .

Secondly suppose N laces S but no t sets X. of N lace S . Then

(Hi) n 5 e j and

(iv) if 3 5 t and n = e we can obtain N from E by permuting

and inverting elements of S .

When t - 2 the value e can be attained in many ways beside E ,

for instance

F = {X; X = P u Q, P = 1 or 2 or 3 or [ l , 3 ] j c [1*, s]} .

In an earlier paper [I] we proved parts (i) and (ii) of the theorem and we

will use them in proving the remainder. When the characterization of the

extreme case is not required, the theorem takes the pleasing form presented

in the abstract at the beginning of this paper.

2. Preliminary results

Let A? be a family of subsets of S and for each k £ S put

Ak(M) = {X; X u k i M, X\k € M] ,

Bk(M) = {X; X (. M, k i X, X\k \ M} ,

Ck(M) = {X; X 6 M, k { X, X u k { M] ,

Bk(M) = {X\k; X € Bk(M)} .

For example C. (E) f 0 but BAE) = B (E) = C (E) = 0 . Then
X X S S

M = A AM) U BAM) U CAM)

is a partition of M , and

A = A(M, k) = AA_M) U B'k(M) u C^M)

defines and partitions a family A of subsets of 5 . Clearly

(1) AA.M) = Ak{L{M, k)) ,

(2) Bk{MM, k)) = 0 ,
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(3)

CO
We will need

\Bk(M)\ + \Ck(M)\ = \C

\M\ = |A| .

, k))\ ,

LEMMA 1. If j, k i S and M is a family of subsets of S and
, k) then

if 6 *\B.{M)\ >

\Cj{M)\ >

Proof. To simplify notation suppose k = 1 and 0=2. Then for

each fixed subset R of [3, s] consider 16 cases as set out in

Table 1.
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Table 1
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We explain the table by discussing the third line up. This line

c o r r e s p o n d s t o t h e c a s e R Z M , l u R t M , 2 u R $ M , l u 2 u R £ M , s o

that R is in C2(W) while luff and 1 u 2 u R are in AZ(M) • These

facts are indicated by the letters C, A, 0, A in the left hand columns

headed R, l u J , 2 o R, 1 u 2 u J respectively. The sets R, 1 u R are

in A\{M) and so are unaltered when changing from M to A] = A(M, l) .

However the set 1 u 2 u R is in BX(M) and so is changed to 2 u R .

Thus in h\ we get R and 2 u J in A2(&i) and 1 u J in C2(Aj) , as

indicated by the letters A, C, A, 0 in the right hand columns.

The table is not difficult to check. The inequalities of the lemma

hold for each line of the table, and the result follows.

LEMMA 2. Let M be a family of subsets of S which lace S , and

such that no t of the subsets lace S . Then if A = A(M, l) can be

obtained from E by permuting and inverting elements of S , so can M .

Proof. If Ci(M) = 0 then A is obtained from M by inverting

element 1 , so M can be obtained from E by permuting and inverting.

Now suppose Ci(M) i- 0 . Then Cj{A) # 0 by (3), and therefore, by

suitably permuting and inverting the elements 2, 3, ..., s in M and A

simultaneously, we can make A = E . If Bi(M) ^ 0 there must be a set X

in M containing two elements of [l, i+l] and hence t sets in M

lacing S , a contradiction. Therefore Bl{M) = 0 and M = A . This

completes the proof.

3. Proof of parts (iii) and (iv) of the theorem

The case t = 2 is trivial because we can't have a set and its

complement among the X. . For t > 2 we use induction. We assume the

theorem true for s-1, t-1 and deduce its validity for s, t . Also we

suppose that n is as large as possible.

We define a sequence Nn, N , ..., N of families of subsets of 5

by NQ = N and

Nk = A(/l?fc_1, k) for k = 1, 2, ..., s .

We have \flv\ = \N \ = n by (I4). Also we notice from (2) that

K. U

https://doi.org/10.1017/S000497270004421X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004421X


A covering theorem 23

B, (N.) = 0 . So if t sets of N, were to lace S at least one of them

would possess the element k and so lie in A^(ff,) . Then we would easily

get t sets of "ĵ _i lacing S . Thus by induction we know that for

0 2 k 5 s no t sets of N, lace 5 .

Next we claim that if 1 5 j < s and 0 5 fe 2 s then 4 . (ff,) t 0 .

For otherwise, by (l) and Lemma 1, we would have A .{N) = 0 . Then by
0

renumbering the elements of S we could have j = 1 so AyiN) = 0 .

Since N laces 5 this would imply Bj(N) t 0 and Cj(ff) / 0 . Consider

the family N' of subsets of [2, s] defined by

N' = {X\l, X i N] .

There are as many sets in N' as in N and they lace [2, s] . Moreover

no t - 1 of them lace [2, e] , for if they did, because Bi(N) + 0 and

C\{N) t 0 , we would immediately get t sets of iV lacing S . Thus by

our induction hypothesis

\N\ = \N' I 5 e(s-l, t-1) < e(s, t) = |ff| ,

contradicting our assumption that n is maximal. This proves that no

A . {NA is 0 , and hence that each of N , N N lace S .

J K U X S

Consider now N . By (2) and Lemma 1 we have B. (N ) = 0 for

1 5 j < s . Further no t sets 7 , ..., Y, of N can cover S . For

-L "C S

suppose they did and let h £ S . If i is in every Y. then every Y.

is in i4, (# ) , and we replace Yj by X\\h . Repeating this for every

hiS would produce t sets of N which lace 5 , which we just proved

s
was impossible. Thus part (i) of the theorem applies to N and we have

s
n = \N I £ e proving (iii).

s
Finally suppose \N \ = e and t > 2 . Then part (ii) of the theorem

says that N can be obtained from E by permuting elements of S . In
s

turn Lemma 2 says that // , can be obtained from E by permuting and

inverting elements of S and, by repeated application of the lemma, so
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can N = N . This proves (iv).
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