SECTION I.

§1. Centroid.
§2. Circumcentre.
§3. Incentre.
§4. Excentres.
§5. Orthocentre.
§6. Euler's Line.
§7. Relations among Radif.
§8. Area

§ 1. Centroid.

The medians of a triangle are concurrent.*
Figure 1.
Let the medians $\mathrm{BB}^{\prime}, \mathrm{CC}$ cut each other at G ; join AG , and let it cut BC at A^{\prime}.

Produce AA^{\prime} to L , making GL equal to GA , and join BL, CL.
Because $\quad C^{\prime} G$ bisects $A B$ and $A L$, therefore $\quad \mathrm{C}^{\prime} \mathrm{G}$ is parallel to BL .
Similarly
B'G ," ", CL;
therefore $\quad \mathrm{BLCQ}$ is a parallelogram ;
therefore $\quad A^{\prime}$ is the mid point of $\mathbf{B C}$.
This theorem may be proved in many other ways.
Def.-The point G is called sometimes the centre of grarity \dagger of the triangle ABC ; sometimes the centre of mean distances \ddagger of the points A, B, C; and more frequently now the centroid § of the triangle $A B C$.

The simplest construction for obtaining G by means of the ruler and the compasses is the following \|:-

With B as centre and AC as radius describe a circle; with C as centre and $A B$ as radius describe a second circle cutting the former below the base at D . Join DC and produce it to meet the second circle at E .

AD and BE intersect at the centroid G .
(1) $\mathrm{A}^{\prime} \mathrm{G}=\frac{1}{2} \mathrm{AG}=\frac{1}{3} \mathrm{AA}^{\prime}$.

Hence the centroid of a triangle may be found by drawing any median and trisecting it; and if two (or a series of) triangles have the same vertex and the same median drawn from that vertex, they have the same centroid.

[^0](2) Triangle $\mathbf{G B C}=\mathbf{G C A}=\mathbf{G A B}=\frac{1}{3} \mathrm{ABC}$.
(3) The sides of triangle $A^{\prime} B^{\prime} C^{\prime}$ are respectively parallel to those of $A B C$; hence these triangles are directly similar.

Also, since the lines $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ joining corresponding vertices are concurrent at G, triangles $A B C, A^{\prime} B^{\prime} \mathbf{C}^{\prime}$ are homothetic, and G is their homothetic centre.

Def.-Triangles such as the fundamental triangle ABC, and that formed by joining the feet of its medians have in recent years received the following names:-
$A^{\prime} B^{\prime} C^{\prime}$ is the complementary triangle of $A B C$.
ABC " , anticomplementary " " A'B'C'.
These names are applied also to corresponding points* in such triangles. Thus if P be any point in or outside of triangle ABC, and \mathbf{P}^{\prime} be the corresponding point in or outside of triangle $A^{\prime} B^{\prime} C^{\prime}$,
\mathbf{P}^{\prime} is the complementary point of \mathbf{P}
$\mathbf{P}, "$ anticomplementary,,$\quad \mathbf{P}^{\prime}$.
(4) If $A_{1} B_{1} C_{1}$ be the triangle formed by drawing through $\mathrm{A}, \mathrm{B}, \mathrm{C}$ parallels to the opposite sides of triangle ABC ,
$A B C$ is the complementary triangle of $A_{1} B_{1} C_{1}$,
$\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$, , anticomplementary " "ABC.

Figure 2.

(5) The fundamental triangle ABC is directly similar to the triangles cut off from it by the sides of its complementary triangle, $\mathrm{AC}^{\prime} \mathrm{B}^{\prime}, \mathrm{C}^{\prime} \mathrm{BA}^{\prime}, \mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{C}$.
(6) The centroid of the fundamental triangle is the centroid of the complementary triangle; the centroid of the complementary triangle is the centroid of its complementary triangle ; and so on.
(7) All straight lines parallel to the base of a triangle and terminated by the other sides are bisected by the median to the base.

[^1]Hence, if EF, GH, KL ... be parallel to BC, the points E, G, K ... being on AC , and $\mathrm{F}, \mathrm{H}, \mathrm{L} \ldots$ on AB , the intersections of

BE, CF ; BG, CH ; BK, CL ; FG, EH ; FK, EL will all lie on the median ${ }^{*}$ from A.
(8) If two triangles have the same base, the straight line which joins their vertices is parallel to and three times as long as the straight line which joins their centroids.
(9) If G be any point in the plane of $A B C$, and G_{a}, G_{b}, G_{c} be the centroids of triangles $G B C, G C A, G A B$, triangle $G_{a} G_{b} G_{c}$ is directly similar \dagger to triangle $A B C$.
(10) If P be any point on the circumcircle of ABC , the centroids of the four triangles $\mathrm{PBC}, \mathrm{PCA}, \mathrm{PAB}, \mathrm{ABC}$ are concyclic. ${ }_{+}^{+}$

For if the centroids of these triangles be denoted by $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ respectively, the quadrilateral DEFG has its sides DE, EF, FG, GD respectively parallel to $\mathrm{BA}, \mathrm{CB}, \mathrm{PC}, \mathrm{AP}$, and one-third as long.

Mr Griffiths states § that if the circle on which the four centroids lie be called the centroid-circle of the quadrangle ABCP , it may be shown that the centroid-circles of the five quadrangles that can be formed from five concyclic points will also have their centres on the circumference of another circle of one-third the radius of the first.

Townsend gives the following generalisation $\|$ of (10) :
If $\mathbf{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$, etc., be the position of any number (n) of equal masses distributed in space, G that of their centre of gravity, and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}$, etc., those of the centres of gravity of their n different groups of $(n-1)$; then always the two systems of n points A, B, C, D, E, F, etc., and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}, F^{\prime}$, etc., are similar, oppositely placed with respect to each other, have G for their centre of similitude, and $(n-1): 1$ for their ratio of similitude.

The truth of this is evident, for the several lines $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$, $\mathrm{DD}^{\prime}, \mathrm{EE}^{\prime}, \mathrm{FF}^{\prime}$, etc., all connect through G , and are then divided internally in the common ratio of $(n-1): 1$.

[^2]Def.-If the vertex A of a triangle $A B C$ be joined to any point D in the base, the fourth harmonic ray to $A B, A D, A C$ is found by dividing $B C$ externally at D^{\prime} in the ratio $\mathrm{BD}: \mathrm{CD}$, and joining AD^{\prime}.

When the point D is the mid point of $B C$, namely A^{\prime}, the fourth harmonic ray to $\mathrm{AB}, \mathrm{AA}^{\prime}, \mathrm{AC}$ is the line through A parallel to BC , and it may be denoted by $\mathrm{AA}_{\boldsymbol{\alpha}}$.

Similarly, the line through B parallel to CA will be the fourth harmonic ray to $\mathrm{BC}, \mathrm{BB}^{\prime}, \mathrm{BA}$, and may be denoted by BB_{∞}; the line through C parallel to AB will be the fourth harmonic ray to $\mathrm{CA}, \mathrm{CC}, \mathrm{CB}$, and may be denoted by CC_{∞}.

If therefore $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ be called the internal medians of triangle ABC , then $\mathrm{AA}_{\infty}, \mathrm{BB}_{\infty}, \mathrm{CC}_{\infty}$ may be called the external medians.
(11) The six medians, internal and external, of a triangle meet three and three in four points, which are the centroid and the points anticomplementary to the vertices of the triangle, namely $\mathrm{G}, \mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}$.

Figure 2.

Def.-The points A_{1}, B_{1}, C_{1}, \mathbf{G} form a tetrastigm (a system of four points, no three of which are collinear), and the three pairs of opposite connectors,

$$
A_{1} G, B_{2} C_{1} ; B_{2} G, C_{1} A_{1} ; C_{1} G, A_{1} B_{1}
$$

meet in A ; B ; C ,
which are the centres of the tetrastigm, and ABC is the central triangle of the tetrastigm.

If ABCG be the tetrastigm, the points $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ are its centres, and $A^{\prime} B^{\prime} C^{\prime}$ its central triangle.
(12) If in the internal median $A A^{\prime}$ of trinngle $A B C$ any point M be taken, and MP, MQ be drawn perpendicular to $A C, A B$, then $M P, M Q$ are inversely proportional to $A C, A B$.

Figure 3.

Join MB, MC.

Then
therefore
therefore
$\mathrm{AMB}=\mathrm{AMC} ;$
$\mathrm{AB} \cdot \mathrm{MQ}=\mathrm{AC} \cdot \mathrm{MP} ;$
$\mathrm{AB}: \mathrm{AC}=\mathrm{MP}: \mathrm{MQ}$.
(13) If in the external median $A A_{\infty}$ of triangle $A B C$ any point M^{\prime} be taken, and $M^{\prime} P^{\prime}, M^{\prime} Q^{\prime}$ be drawn perpendicular to $A C, A B$, then $M \Gamma^{\prime}, M \Gamma^{\prime} Q^{\prime}$ are inversely proportional to $A C, A B$.

Figure 4.

Join $\mathrm{M}^{\prime} \mathrm{B}, \mathrm{M}^{\prime} \mathrm{C}$.

Then
therefore
therefore
$A M^{\prime} B=A M^{\prime} C ;$
$\mathrm{AB} \cdot \mathrm{M}^{\prime} \mathrm{Q}^{\prime}=\mathrm{AC} \cdot \mathrm{M}^{\prime} \mathbf{P}^{\prime}$;
$\mathrm{AB}: \mathbf{A C}=\mathrm{M}^{\prime} \mathbf{P}^{\prime}: \mathrm{M}^{\prime} \mathbf{Q}^{\prime}$.
(14) If from G the centroid of $A B C$ there be drawn $p_{1}, p_{0,} p_{3}$ perpendicular to $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$, then

$$
\mathrm{BC}: \mathrm{CA}: \mathrm{AB}=\frac{1}{p_{1}}: \frac{1}{p_{2}}: \frac{1}{p_{3}}
$$

(15) If from G the centroid of $A B C$ there be drawn $p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}$ perpendicular to $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$, then

$$
\mathrm{BC}: \mathrm{CA}: \mathrm{AB}=\frac{1}{p_{1}^{\prime}}: \frac{1}{p_{2}^{\prime}}: \frac{1}{p_{3}^{\prime}}
$$

(16) If the vertex A of the triangle $A B C$ falls on the base $B C$, the centroid G of the three collinear points A, B, C is found by the construction indicated in (1):

Bisect $B C$ in A^{\prime}, and divide $A A^{\prime}$ at G so that

$$
\mathrm{AG}: \mathrm{A}^{\prime} \mathrm{G}=2: 1
$$

In this case the sum of the distances from the centroid of the points on one side of it is equal to the distance from the centroid of the point on the opposite side.

Figure 5.
For

$$
\begin{aligned}
\mathbf{A G}+\mathbf{B G} & =\left(\mathrm{AA}^{\prime}-\mathrm{GA}^{\prime}\right)+\left(\mathrm{BA}^{\prime}-G A^{\prime}\right), \\
& =\mathbf{A A}^{\prime}+\mathrm{BA}^{\prime}-2 \mathrm{GA}^{\prime} \\
& =\mathbf{A A}^{\prime}+\mathbf{C A}^{\prime}-\mathbf{G A}, \\
& =\mathbf{C A}-\mathbf{G A}, \\
& =\mathbf{C G}
\end{aligned}
$$

(17) If $A B C$ be a triangle, G its centroid, and $A^{\prime}, B^{\prime}, C^{\prime}, G^{\prime}$ the projections of A, B, C, G, on any straight line $X Y$, then G^{\prime} is the centroid of the three collinear points $A^{\prime}, B^{\prime}, C^{\prime}$.

Lemma.*

If a straight line $B C$ be divided internally at M so that

$$
B M: C M=n: m
$$

and if from B, M, C perpendiculars $B B^{\prime}, M M, C C^{\prime}$, be draun to any straight line $X Y$, then

$$
(m+n) M M=m B B^{\prime} \pm n C C^{\prime}
$$

the upper sign being taken when B and C are on the same f side of $X Y$, and the lower when they are on opposite sides of $X Y$.

Figure 6.
Join BC^{\prime} meeting MM^{\prime} in N .
The triangles $\mathrm{BB}^{\prime} \mathrm{C}, \mathrm{NM} \mathrm{M}^{\prime} \mathrm{C}$ are similar ;
therefore $\quad \mathrm{BB}^{\prime}: \mathrm{NM}^{\prime}=\mathrm{BC}^{\prime}: \mathrm{NC}^{\prime}$
$=\mathrm{BC}: \mathrm{MC}$
$=m+n: m ;$
therefore

$$
m \mathbf{B B}^{\prime}=(m+n) \mathbf{N M}^{\prime}
$$

The triangles $\mathrm{BCC}^{\prime}, \mathrm{BMN}$ are similar;
therefore

$$
\mathrm{CC}: \mathrm{MN}=\mathrm{BC}: \mathrm{BM}
$$

$$
=m+n: n ;
$$

therefore

$$
n \mathrm{CC}^{\prime}=(m+n) \mathrm{MN}
$$

Hence

$$
\begin{aligned}
m \mathrm{BB}^{\prime}+n \mathrm{CC}^{\prime} & =(m+n) \mathrm{NM}^{\prime}+(m+n) \mathrm{MN}^{\prime} \\
& =(m+n) \mathrm{MM}^{\prime} .
\end{aligned}
$$

(19) The distance of the centroid of a triangle from any straight line is an arithmetic mean between the distances of the vertices from the same straight line.

Figure 7.

Let $A M$ be the median from A, and G the centroid.
Take $A^{\prime}, B^{\prime}, C^{\prime}, G^{\prime}, M^{\prime}$ the projections of A, B, C, G, M on any straight line XY.

[^3]Sect. I.

Because
therefore
Because
therefore
therefore
$\mathrm{BM}: \mathrm{CM}=1: 1$,
$\mathrm{BB}^{\prime}+\mathrm{CC}^{\prime}=2 \mathrm{MM}^{\prime}$.
$\mathrm{AG}: \mathrm{MG}=2: 1$,
$\mathrm{AA}^{\prime}+2 \mathrm{MM}^{\prime}=3 \mathrm{GG}^{\prime} ;$
$A A^{\prime}+B B^{\prime}+C C^{\prime}=3 G G^{\prime}$.

The figure and demonstration refer only to the case when A, B, C are all on the same side of XY. If A and B be on the same side of $X Y$, and C on the opposite side, the result will be

$$
\mathrm{AA}^{\prime}+\mathrm{BB}^{\prime}-\mathrm{CC}^{\prime}=3 \mathrm{GG}^{\prime} .
$$

When XY passes through the centroid G, the sum of the distances from XY of the vertices on one side of it is equal to the distance from XY of the vertex on the opposite side.

- For a very full account of the properties of the centre of mean distances see the preliminary dissertation in Lhuilier's Élemens d'Analyse (1809), and Townsend's Modern Geometry of the Point, Line, and Circle, I. 117-143 (1863).
(ㅇ) The sum of the squares of the distances of the vertices of a triangle from any point is equal to the sum of the squares of their distances from the centroid increased by three times the square of the distance between the point and the centroid.*

Figure 8.

Let G be the centroid of $A B C$, and P any other point. Join PG, and on it draw perpendiculars from A, B, C.

Then

$$
\begin{aligned}
& \mathrm{AP}^{2}=\mathrm{AG}^{2}+\mathrm{PG}^{2}-2 \mathrm{PG} \cdot \mathrm{~A}^{\prime} \mathrm{G} \\
& \mathrm{BP}^{2}=\mathrm{BG}^{2}+\mathrm{PG}^{2}+2 \mathrm{PG} \cdot \mathrm{~B}^{\prime} \mathrm{G} \\
& \mathrm{CP}^{2}=\mathrm{CG}^{2}+\mathrm{PG}^{2}-2 \mathrm{PG} \cdot \mathrm{C}^{\prime} \mathrm{G}
\end{aligned}
$$

therefore

$$
\begin{aligned}
\mathrm{AP}^{2}+\mathrm{BP}^{2}+\mathrm{CP}^{2}= & A G^{2}+B \mathrm{G}^{2}+\mathrm{CG}^{2}+3 \mathrm{PG}^{2} \\
& -2 P G\left(\mathrm{~A}^{\prime} \mathrm{G}-\mathrm{B}^{\prime} \mathrm{G}-\mathrm{C}^{\prime} \mathrm{G}\right) \\
= & A G^{2}+\mathrm{BG}^{2}+\mathrm{CG}^{2}+3 \mathrm{PG}^{2}
\end{aligned}
$$

since

$$
A^{\prime} G-B^{\prime} G-C^{\prime} G=0
$$

(21) If a circle be described with G as centre, and any radius, and any two points P, Q be taken on its circumference \dagger

$$
\mathrm{AP}^{2}+\mathrm{BP}^{2}+\mathrm{CP}^{2}=\mathrm{A} \mathrm{Q}^{2}+\mathrm{BQ}^{2}+\mathrm{CQ} \mathrm{Q}^{2}
$$

[^4](22) That point the sum of the squares of whose distances from the vertices of a triangle is a minimum is the centroid of the triangle.*

If the triangle $A B C$ is fixed, G is a fixed point, and $A G, B G$, CG fixed distances. Hence for any variable point $P, A^{2}+\mathrm{BP}^{2}+$ $\mathbf{C P}^{2}$ always exceeds the constant quantity $\mathrm{AG}^{2}+\mathrm{BG}^{2}+\mathrm{CG}^{2}$ by $3 P^{2}$. The nearer therefore \mathbf{P} approaches to G, the nearer does $A P^{2}+\mathbf{B P}^{2}+\mathbf{C P}^{2}$ approach this constant quantity.
(23) That point inside a triangle which has the product of its distances from the three sides a maximum is the centroid of the triangle. \dagger

Let G be any point inside $A B C$, and $G R, G S$, $G T$ its distances from $B C, C A, A B$.

Then GR \times GS \times GT is a maximum, when $\quad G R \cdot \frac{1}{2} B C \times G S \cdot \frac{1}{2} \mathrm{CA} \times \mathrm{GT} \cdot \frac{1}{2} \mathrm{AB}$ is a maximum, that is, when GBC \times GCA \times GAB is a maximum, that is, when these three triangles are equal, that is, when G is the centroid.
(24) If three straight lines drawn fiom the vertices of a triangle are concurrent, the three straight lines drawn parallel to them from the mid points of the opposite sides are also concurrent; and the straight line joining the two points of concurrency passes through the centroid of the triangle and is there trisected. +

The triangles $\mathrm{ABC}, \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ are similar and oppositely situated, G is their homothetic centre, and $2: 1$ is the ratio of similitude.

Hence if $\mathrm{AD}, \mathrm{BE}, \mathrm{CF}$ be concurrent at O , the corresponding straight lines $A^{\prime} D^{\prime}, B^{\prime} E^{\prime}, C^{\prime} F^{\prime}$ will pass through the corresponding point O^{\prime}; OO^{\prime} the straight line joining two corresponding points, will pass through the homothetic centre G ; and $\mathrm{OG}: \mathrm{O}^{\prime} \mathrm{G}=2: 1$.

[^5](25) If $A B C$ be a triangle, O any point whatever, and A_{1}, B_{1}, C_{1} symmetrical to O with respect to the mid points of $B C, C A, A B$, then *
(a) $A A_{1}, B B_{1}, C C_{1}$ are concurrent at a point P.
(b) The straight line OP turns round a fixed point G when the point O moves in any manner whatever.
(c) The point G divides OP in a constant ratio.

Figure 9.

Let $A^{\prime}, B^{\prime}, C^{\prime}$ be the mid points of $B C, C A, A B$.
(a) Then $A_{1} B_{1}$ is parallel to $A^{\prime} B^{\prime}$ and equal to $2 A^{\prime} B^{\prime}$; therefore it is equal and parallel to $A B$, but oppositely directed.
Similarly $B_{1} C_{1}$ and $C_{1} A_{1}$ are equal and parallel to $B C$ and $C A$, but oppositely directed.
The three pairs of parallels $B C$ and $B_{1} C_{1}, C A$ and $C_{1} A_{1}, A B$ and $A_{1} B_{1}$ form therefore three parallelograms, whose diagonals $A A_{1}$, $\mathrm{BB}_{1}, \mathrm{CC}_{1}$ cut each other at P the mid point of each of them.
(b) In triangle $O A A_{1}$ the lines $O P, A A^{\prime}$ are medians;
therefore $O P$ cuts $A A^{\prime}$ at G such that $A G=2 A^{\prime} G$.
But $A A^{\prime}$ is a median of triangle $A B C$; therefore G is the centroid of $A B C$, and consequently a fixed point.
(c) $O P$ is divided at G so that $O G=2 G P$.
(26) The sum of the squares on the sides of the complementary triangle is one-fourth of the sum of the squares on the sides of the fundamental triangle.
(27) If in a triangle its complementary triangle be inscribed, and in the complementary triangle its complementary triangle be inscribed, and so on, the limit of the sum of the squares on the sides of all the triangles so formed is one-third of the sum of the squares on the sides of the fundamental triangle. \dagger
(28) If in a triangle its complementary triangle be inscribed, and so on, the limit to which these triangles tend is a point, and the sum of the squares on the lines drawn therefrom to the vertices of

[^6]all the inscribed triangles is one-third of the sum of the squares on the lines drawn from the same point to the vertices of the fundamental triangle.*
(29) If $A_{1} B_{1} C_{1}$ be the complementary triangle of $A B C, A_{2} B_{2} C_{2}$ the complementary triangle of $A_{1} B_{1} C_{1}$, and so on ; and if P be any point in the plane of the triangle, then \dagger
$$
\mathrm{PA}_{n}^{2}+\mathrm{PB}_{n}^{2}+\mathrm{PC}_{n}^{2}=3 \mathrm{PG}^{2}+\frac{1}{3 \cdot 4^{n}}\left(\mathrm{BC}^{2}+\mathrm{CA}^{2}+\mathrm{AB}^{2}\right)
$$

Figure 10.

J oin P with A, B, C, A^{\prime}, G, and with D the mid point of $A G$.
Then

$$
\begin{aligned}
A B^{2}+A C^{2} & =2 A_{1} A^{2}+2 A_{1} B^{2} \\
& =18 A_{1} G^{2}+2 A_{1} B^{2}
\end{aligned}
$$

therefore $\mathrm{BC}^{2}+\mathrm{CA}^{2}+\mathrm{AB}^{2}=18 \mathrm{~A}_{1} \mathrm{G}^{2}+6 \mathrm{~A}_{1} \mathrm{~B}^{2}$.
Again,

$$
\begin{aligned}
\mathrm{PG}^{2}+\mathrm{PA}^{2} & =2\left(\mathrm{GD}^{2}+\mathrm{PD}^{2}\right) \\
\mathrm{PB}^{2}+\mathrm{PC}^{2} & =2\left(\mathrm{~A}_{1} \mathrm{~B}^{2}+\mathrm{PA}_{1}{ }^{2}\right) \\
2\left(\mathrm{PA}_{1}{ }^{2}+\mathrm{PD}^{2}\right) & =4\left(\mathrm{~A}_{1} \mathrm{G}^{2}+\mathrm{PG}^{2}\right)
\end{aligned}
$$

therefore by addition, and subtraction of what is common,

$$
\begin{aligned}
\mathrm{PA}^{2}+\mathrm{PB}^{2}+\mathrm{PC}^{2} & =3 \mathrm{PG}^{2}+6 \mathrm{~A}_{1} \mathrm{G}^{2}+2 \mathrm{~A}_{1} \mathrm{~B}^{2} \\
& =3 \mathrm{PG}^{2}+\frac{1}{8}\left(\mathrm{BC}^{2}+\mathrm{CA}^{2}+\mathrm{AB}^{2}\right)
\end{aligned}
$$

Similarly $\mathrm{PA}_{1}{ }^{2}+\mathrm{PB}_{1}^{2}+\mathrm{PC}_{1}^{2}=3 \mathrm{PG}^{2}+\frac{1}{8}\left(\mathrm{~B}_{1} \mathrm{C}_{1}{ }^{2}+\mathrm{C}_{1} \mathrm{~A}_{1}{ }^{2}+\mathrm{A}_{1} \mathrm{~B}_{1}{ }^{2}\right)$

$$
=3 P G^{2}+\frac{1}{3 \cdot 4}\left(\mathrm{BC}^{2}+\mathrm{CA}^{2}+\mathrm{AB}^{\prime \prime}\right)
$$

Hence $\mathrm{PA}_{n}{ }^{2}+\mathrm{PB}_{n}{ }^{2}+\mathrm{PC}_{n}{ }^{2}=3 \mathrm{PG}^{2}+\frac{1}{3 \cdot 4^{4}}\left(\mathrm{BC}^{2}+\mathrm{CA}^{2}+\mathrm{AB}^{2}\right)$
(30) If the sides of triangle $A B C$ be divided at $A_{j}, B_{i} \quad C_{1}$, so that $B A_{1}: B C=C B_{1}: C A=A C_{1}: A B=m$, then

$$
A_{1} B_{1} C_{1}=A B C\{1-3 m(1-m)\} .
$$

[^7]
Figure 11.

For

$$
\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}=\mathrm{ABC}-\mathrm{AB}_{1} \mathrm{C}_{1}-\mathrm{BC}_{1} \mathrm{~A}_{1}-\mathrm{CA}_{2} \mathrm{~B}_{1} .
$$

Now

$$
\frac{\mathrm{AB}_{1} \mathrm{C}_{1}}{\mathrm{ABC}}=\frac{\mathrm{AC}_{1}}{\mathrm{AB}} \cdot \frac{\mathbf{A B _ { 1 }}}{\mathrm{AC}}=m(1-m)
$$

therefore
$\mathrm{AB}_{1} \mathrm{C}_{1}=\mathrm{ABC} \cdot m(1-m)$.
Similarly $\mathrm{BC}_{1} \mathrm{~A}_{1}=\mathrm{ABC} \cdot m(1-m)$,
and $\mathrm{CA}_{1} \mathrm{~B}_{1}=\mathrm{ABC} \cdot m(1-m)$;
therefore

$$
\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}=\mathrm{ABC}\{1-3 m(1-m)\} .
$$

(31) Let there be a series of triangles

$$
\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}, \mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}, \ldots \mathrm{~A}_{n} \mathrm{~B}_{n} \mathrm{C}_{n}
$$

such that each is derived from the preceding in the same way as $A_{1} B_{1} C_{1}$ was derived from $A B C$; and let them be denoted by $\triangle_{1}, \Delta_{2}, \ldots \Delta_{n}$.

Then the formula

$$
\triangle_{1}=\triangle\{1-3 m(1-m)\}
$$

may be applied to triangle $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$;
therefore

$$
\begin{aligned}
\triangle_{2} & =\triangle_{1}\{1-3 m(1-m)\} \\
& =\triangle\{1-3 m(1-m)\}^{2} \\
\triangle_{3} & =\triangle\{1-3 m(1-m)\}^{3} \\
\triangle_{n} & =\triangle\{1-3 m(1-m)\}^{n} .
\end{aligned}
$$

Similarly
and
Hence $\triangle, \Delta_{1}, \Delta_{2} \ldots$ form a decreasing geometrical progression, whose sum to infinity is equal to $\frac{\triangle}{3 m(1-m)}$.
(32) This sum is a minimum when the product $m(1-m)$ is a maximum, that is, when $m=\frac{1}{2}$. Hence the minimum sum is $\frac{4}{3} \triangle$, and each triangle is then the complementary triangle of its predecessor.

When m is 0 or 1 , the sum becomes infinite. This arises from the fact that then $\Delta_{1}, \Delta_{2}, \ldots$ coincide with \triangle.

When m varies from 0 to 1 , the sum diminishes from infinity to its maximum $\frac{4}{3} \triangle$, and then increases to infinity.
(33) The centroid G of $A B C$ is the centroid of $A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}, \ldots$.

Figure 11.
Through B_{1}, C_{1} draw parallels to $A B, A C$; these parallels will intersect on $B C$ at a point D such that

$$
B D: D C=A B_{1}: B_{1} C=B_{1}: C_{1} A
$$

Hence $B D=C_{1}$, and $A D, B_{1} C_{1}$, the diagonals of the parallelogram $A B_{1} D C_{1}$, bisect each other at E. Now if A^{\prime} be the mid point of BC , it will also be the mid point of DA_{1};
therefore $\mathrm{AA}^{\prime}, \mathrm{A}_{1} \mathrm{E}$, two medians of triangle ADA_{1}, intersect at a point G such that

$$
\mathrm{AG}=2 \mathrm{~A}^{\prime} \mathrm{G} \text { and } \mathrm{A}_{1} \mathrm{G}=2 \mathrm{EG}
$$

Hence since $A A^{\prime}, A_{1} E$ are medians of $A B C, A_{1} B_{1} C_{1}$ these two triangles have the same centroid G.

What has been proved with regard to $\mathrm{ABC}, \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{1}$ will hold equally with regard to $\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{3}, \mathrm{~A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$; and so on. Therefore the whole series of triangles have the same centroid.*

The last property may also be proved thus \dagger :-

Figure 12.

Bisect $B C$ and $A_{1} B_{1}$ at A^{\prime} and F;
join $A A^{\prime}, C_{1} F$ cutting each other at G;
and draw $\mathrm{B}_{1} \mathrm{D}$ paralle] to AB .
Then

$$
\begin{aligned}
\mathrm{BA}_{1}: \mathrm{CA}_{1} & =\mathrm{CB}_{1}: \mathrm{AB}_{1} \\
& =\mathrm{CD}: \mathrm{BD} ; \\
\mathrm{BA}_{1} & =\mathrm{CD} ;
\end{aligned}
$$

therefore
therefore A^{\prime} is the mid point of $A_{1} \Gamma$;
therefore $A^{\prime} F$ is parallel to DB_{1}, and equal to $\frac{1}{2} \mathrm{DB}_{1}$.
Again $\quad B_{1} \mathrm{D}: \mathrm{AB}=\mathrm{CB}_{1}: \mathrm{CA}$, $=A C_{1}: A B ;$
therefore

$$
\mathrm{B}_{1} \mathrm{D}=\mathrm{AC} \mathrm{C}_{1} ;
$$

therefore $A^{\prime} F$ is half of $A C_{1}$, and it is parallel to it;
therefore $A G=2 A^{\prime} G$ and $C_{1} G=2 F G$;
therefore G is the centroid of both $A B C$ and $A_{1} B_{1} C_{3}$.

[^8]Relations which Exist Between a Triangle and the Triangle whose Sides are the Medians of the Formel.. ${ }^{*}$
(34) If $A B C$ be any triangle, another triangle can always be constructed whose sides are equal to the medians of $A B C$.

Figere 13.

Let $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}, \mathrm{CC}^{\prime}$ be the medians of ABC .
Through A^{\prime} draw $\mathrm{A}^{\prime} \mathrm{L}$ parallel to BB^{\prime}, and produce it so that $A^{\prime \prime} L=A^{\prime} \mathbf{L}$; join $A^{\prime \prime} B^{\prime}, A^{\prime} C^{\prime}$.

Because A^{\prime} is the mid point of $B C$, and $A^{\prime} L$ is parallel to B^{\prime}, therefore L is the mid point of $B^{\prime} C$.
Hence $\mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{CA}^{\prime \prime}$ is a parallelogram, as well as $\mathrm{B}^{\prime} \mathrm{BA}^{\prime} \mathrm{A}^{\prime \prime}$, and

$$
\mathrm{A}^{\prime} \mathrm{A}^{\prime \prime}=\mathrm{BB}^{\prime}
$$

Since $\quad A B^{\prime}$ is equal and parallel to $C^{\prime} A^{\prime}$
and $\mathrm{B}^{\prime} \mathrm{A}^{\prime \prime}, \quad " \quad, \quad, \quad \mathrm{~A}^{\prime} \mathrm{C}$;
therefore $\mathrm{A}^{\prime \prime} \mathrm{A}, ", ", \quad, \quad \mathrm{CC}$;
that is $\mathrm{AA}^{\prime} \mathrm{A}^{\prime \prime}$ is the triangle required.
(35) The sides of $A A^{\prime} A^{\prime \prime}$ are parallel to the medians of $A B C$ ard " " "ABC " " ", " $A A^{\prime} A^{\prime \prime}$.

The first part of the theorem has been already proved.
Since

$$
A B^{\prime}: B^{\prime} L=2: 1
$$

therefore B^{\prime} is the centroid of $\mathrm{AA}^{\prime} \mathrm{A}^{\prime \prime}$, Now the median $\mathrm{B}^{\prime} \mathrm{A}^{\prime \prime}$ is parallel to BC ,
and "" "" $\mathbf{B}^{\prime} \mathbf{A}^{\prime}$ is parallel to $\mathbf{A B}$.
(36) $\mathrm{A}^{\prime \prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ are collinear.
(37) If $A B C$ be a triangle whose centroid is $G, D E F$ the triangle whose sides are the medians of $A B C$, that is $E F=A A^{\prime}, F D=B B^{\prime}$, $D E=C C^{\prime}$, then
$-D=G B C+G C B,-E=G C A+G A C, \neg F=G A B+G B A$.

[^9]
Figure 13.

The angles which are equal have been marked with the same number ; and the triangle DEF corresponds to the triangle $A^{\prime \prime} A^{\prime}$.
(38) If
$\begin{array}{llll}A B C, & A_{1} B_{1} C_{1}, & A_{2} B_{2} C_{2} & \ldots \ldots \\ D E F, & D_{1} E_{1} F_{1}, & D_{2} E_{2} F_{2} & \ldots \ldots\end{array}$
be two sets of triangles such that the sides of

$$
\begin{aligned}
& D E F \text { are equal to the medians of } A B C \\
& A_{1} B_{1} C_{1}, \quad " \\
& D_{1} E_{1} F_{1}
\end{aligned}, \quad " \quad " \quad, \quad " \quad " \quad " D E F
$$

and so on; the triangles $\quad A B C, A_{1} B_{1} C_{1}, \ldots$ will be similar to each other* and $D E F, D_{1} E_{1} F_{1} \ldots \quad$ ",

Figure 14.
The proof of the theorem will appear from the figure \dagger if it be observed that

Triangles	correspond to		
DEF	$\mathrm{A}^{\prime \prime} \mathrm{A} \mathrm{A}^{\prime}$	$(4,5 ; 6,1 ; 2,3)$,	
$\mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{C}_{2}$	$\mathrm{~L} \mathrm{~A}^{\prime \prime \prime} \mathrm{A}$	$(1,2 ; 3,4 ; 5,6)$,	
$\mathrm{D}_{2} \mathrm{E}_{1} \mathrm{~F}_{1}$	$\mathrm{~A} \mathrm{M} \mathrm{A}^{\mathrm{Ir}}$	$(4,5 ; 6,1 ; 2,3)$,	
$\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$	$\mathrm{~A}^{v} \mathrm{~A} \mathrm{~N}^{2}$	$(1,2 ; 3,4 ; 5,6)$,	
$\mathrm{D}_{2} \mathrm{E}_{2} \mathrm{~F}_{2}$	$\mathrm{P} \mathrm{A}^{\mathrm{II}} \mathrm{A}$	$(4,5 ; 6,1 ; 2,3)$.	

The theorem may be proved also as follows: \ddagger
If $m_{1}, m_{2} m_{3}$, be the three medians of ABC , then

$$
m_{1}^{2}=\frac{1}{2}\left(b^{2}+c^{2}-\frac{1}{2} a^{2}\right), \quad m_{2}^{2}=\frac{1}{2}\left(c^{2}+a^{2}-\frac{1}{2} b^{2}\right), \quad m_{3}^{2}=\frac{1}{2}\left(a^{2}+b^{2}-\frac{1}{2} c^{2}\right) .
$$

Make a triangle whose sides are m_{1}, m_{2}, m_{3}, and let its medians be $\quad a_{1}, b_{2}, c_{1}$; then

$$
\begin{aligned}
a_{1}^{2} & =\frac{1}{2}\left(m_{2}^{2}+m_{3}^{2}-\frac{1}{2} m_{1}^{2}\right), b_{1}^{2}=\frac{1}{2}\left(m_{3}^{2}+m_{1}^{2}-\frac{1}{2} m_{2}^{2}\right), c_{1}^{2}=\frac{1}{2}\left(m_{1}^{2}+m_{2}^{2}-\frac{1}{2} m_{3}^{2}\right) \\
& =\frac{P_{1}^{2}}{1} a^{2},
\end{aligned}
$$

therefore

$$
a_{1}=\frac{3}{4} a, b_{1}=\frac{3}{4} b, c_{1}=\frac{3}{4} c,
$$

and
$a_{1}: b_{1}: c_{1}=a: b: c$.

[^10](39) If
\[

$$
\begin{aligned}
& \Delta, \Delta_{2}, \Delta_{4} \ldots \ldots \\
& \triangle_{1}, \triangle_{3}, \Delta_{5} \ldots \ldots
\end{aligned}
$$
\]

denote the two sets of triangles in (38), the sides of

(40) The triangles $\triangle, \triangle_{1}, \triangle_{2}, \triangle_{3} \ldots$ form a geometrical progression* whose common ratio is $\frac{3}{4}$.

Figure 13.

Since
therefore
therefore
$\mathrm{AL}=\frac{3}{4} \mathrm{AC}$
$A A^{\prime} L=\frac{3}{4} \mathrm{AA}^{\prime} \mathrm{C}$;
$\mathrm{AA}^{\prime} \mathrm{A}^{\prime \prime}=\frac{3}{4} \mathrm{ABC}$; and so on.

$$
\begin{equation*}
\triangle+\triangle_{1}+\triangle_{2}^{-}+\ldots \text { ad infinitum }=4 \triangle \tag{41}
\end{equation*}
$$

(42) If $p, p_{2}, p_{4} \ldots$ be the perimeters of $\triangle, \triangle_{2}, \triangle_{4} \ldots$ $p+p_{2}+p_{4}+\ldots$ ad infinitum $=4 p$.
(43) If $p_{1}, p_{3}, p_{5} \quad \ldots$ be the perimeters of $\triangle_{1}, \triangle_{3}, \triangle_{5} \ldots$ $p_{1}+p_{3}+p_{3}+\ldots$ ad infinitum $=4 p_{1}$.

$$
\begin{aligned}
& \triangle+\triangle_{2}+\triangle_{1}+\ldots a d \text { infinitum }=\frac{10}{7} \triangle . \\
& \triangle_{1}+\triangle_{3}+\triangle_{5}+\ldots \text { ad infinitum }=\frac{12}{7} \triangle .
\end{aligned}
$$

(46) If G be the centroid of $A B C$ and another triangle $A_{0} B_{0} C_{0}$ be formed with sides respectively equal to $\sqrt{3} \mathrm{GA}, \sqrt{3} \mathrm{~GB}, \sqrt{3} \mathrm{GC}$, then ABC may be derived from $\mathrm{A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}$ in the same way as the latter was derived from the former, that is, the relation between the triangles is a conjugate one. \dagger

[^11](47) The areas of $\mathrm{ABC}, \mathrm{A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}$ are equal.*

These two theorems follow without much difficulty from what precedes.
(48) If through the centroid G of a triangle $A B C$ a straight line be drawn cutting $B C, C A, A B$ in D, E, F and the points E, F be on the same side of G then \dagger

$$
\frac{1}{G E}+\frac{1}{G F}=\frac{1}{G D}
$$

Figure 15.
Through A draw AN parallel to BC meeting DEF in K , and through G draw LMN parallel to AB meeting $\mathrm{BC}, \mathrm{CA}, \mathrm{AN}$ in L, M, N.

Then $\quad \mathrm{LG}=\mathrm{MG}$, and $\mathrm{CM}=2 \mathrm{AM}$.
But since triangles CML, AMN are similar, therefore $\quad \mathrm{ML}=2 \mathrm{MN}$;
therefore $\quad G M=M N$.
Hence AG, AM, AN, AF form a harmonic pencil ; and they are cut by the transversal GEKF ; therefore G, E, K, F form a harmonic range ;
therefore

$$
\begin{aligned}
\frac{1}{\mathrm{GE}}+\frac{1}{\mathrm{GF}} & =\frac{2}{\mathrm{GK}} \\
& =\frac{1}{\mathrm{GD}} \\
\mathrm{GK} & =2 \mathrm{GD} .
\end{aligned}
$$

since

[^12]
Formule connected with the Medians.

The medians in terms of the sides.

The sides in terms of the medians.

$$
\left.\begin{array}{r}
9 a^{2}=-4 m_{3}^{2}+8 m_{2}^{2}+8 m_{3}^{2} \\
9 b^{2}=8 m_{1}^{2}-4 m_{2}^{2}+8 m_{3}^{2} \\
9 c^{2}=8 m_{1}^{2}+8 m_{i}^{2}-4 m_{3}^{2} \tag{13}
\end{array}\right\}
$$

$$
\begin{align*}
& \left.\begin{array}{l}
4 m_{1}^{2}=-a^{2}+2 b^{2}+2 c^{2} \\
4 m_{2}^{9}=2 a^{2}-b^{2}+2 c^{2} \\
4 m_{3}^{2}=2 a^{2}+2 b^{2}-c^{2}
\end{array}\right\} \tag{1}\\
& \left.\begin{array}{l}
4 m_{1}{ }^{2}=-a^{2}+(b+c)^{2}+(b-c)^{2} \\
4 m_{2}{ }^{2}=-b^{2}+(c+a)^{2}+(c-a)^{2} \\
4 m_{3}{ }^{2}=-c^{2}+(a+b)^{2}+(a-b)^{2}
\end{array}\right\} \tag{2}
\end{align*}
$$

$$
\begin{align*}
& 4\left(m_{1}{ }^{2}+m_{2}{ }^{2}+m_{3}{ }^{2}\right)=3\left(a^{2}+b^{2}+c^{2}\right) \tag{5}\\
& 3\left(\mathrm{AG}^{2}+\mathrm{BG}^{2}+\mathrm{CG}^{2}\right)=a^{2}+b^{2}+\mathrm{c}^{2} \tag{6}\\
& 12\left(\mathrm{~A}^{\prime} \mathrm{G}^{2}+\mathrm{B}^{\prime} \mathrm{G}^{2}+\mathrm{C}^{\prime} \mathrm{G}^{2}\right)=a^{2}+b^{2}+c^{2} \tag{7}\\
& m_{1} \cdot \mathrm{AG}+m_{2} \cdot \mathrm{BG}+m_{3} \cdot \mathrm{CG}=\frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right) \tag{8}\\
& m_{1} \cdot \mathrm{~A}^{\prime} \boldsymbol{G}+m_{2} \cdot \mathrm{~B}^{\prime} \mathrm{G}+m_{3} \cdot \mathrm{C}^{\prime} \mathrm{G}=\frac{1}{4}\left(a^{2}+b^{2}+c^{2}\right) \tag{9}\\
& 16\left(m_{1}{ }^{4}+m_{2}{ }^{4}+m_{3}{ }^{4}\right)=9\left(a^{4}+b^{4}+c^{4}\right) \tag{10}\\
& 16\left(m_{2}^{2} m_{3}^{2}+m_{3}^{2} m_{1}^{2}+m_{1}^{2} m_{n_{-}^{2}}^{2}\right)=9\left(b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}\right) \tag{11}
\end{align*}
$$

$$
\begin{align*}
3\left(b^{2} \sim c^{2}\right) & =4\left(m_{3}{ }^{2} \sim m_{2}{ }^{2}\right) \tag{16}\\
3\left(c^{2} \sim a^{2}\right) & =4\left(m_{1}^{2} \sim m_{3}^{2}\right) \\
3\left(a^{2} \sim b^{2}\right) & =4\left(m_{2}{ }^{2} \sim m_{1}^{2}\right) \\
2 s & =a+b+c \\
2 s^{\prime} & =b+c+2 m_{1} \\
2 s^{\prime \prime} & =c+a+2 m_{2} \\
2 s^{\prime \prime \prime} & =a+b+2 m_{3}
\end{align*}
$$

If
then (3) and (4) become

$$
\left.\begin{array}{rl}
\left(s^{\prime}-b\right)\left(s^{\prime}-c\right) & =s(s-a) \\
\left(s^{\prime \prime}-c\right)\left(s^{\prime \prime}-a\right) & =s(s-b) \\
\left(s^{\prime \prime \prime}-a\right)\left(s^{\prime \prime \prime}-b\right) & =s(s-c) \tag{18}\\
s^{\prime \prime}\left(s^{\prime \prime}-2 m_{1}\right)=(s-b)(s-c) \\
\left.s^{\prime \prime \prime}-2 m_{2}\right)=(s-c)(s-a) \\
s^{\prime \prime \prime}\left(s^{\prime \prime \prime}-2 m_{3}\right)=(s-a)(s-b)
\end{array}\right\}, s^{\prime}\left(s^{\prime}-b\right)\left(s^{\prime}-c\right)\left(s^{\prime}-2 m_{1}\right),
$$

For each

$$
=s(s-a)(s-b)(s-c)
$$

If

$$
\begin{aligned}
& 2 m=m_{1}+m_{2}+m_{3} \\
& 2 n_{1}=m_{2}+m_{3}+\frac{3}{2} a \\
& 2 n_{2}=m_{3}+m_{2}+\frac{3}{2} b \\
& 2 n_{3}=m_{1}+m_{2}+c
\end{aligned}
$$

then (14) and (15) become

$$
\left.\begin{array}{ll}
\left(n_{1}-m_{2}\right)\left(n_{1}-m_{3}\right)=m\left(m-m_{1}\right) & n_{1}\left(n_{1}-\frac{3}{2} a\right)=\left(m-m_{2}\right)\left(m-m_{3}\right) \tag{19}\\
\left(n_{2}-m_{3}\right)\left(n_{2}-m_{1}\right)=m\left(m-m_{3}\right) & n_{2}\left(n_{2}-3 b\right)=\left(m-m_{3}\right)\left(m-m_{1}\right) \\
\left(n_{3}-m_{1}\right)\left(n_{3}-m_{2}\right)=m\left(m-m_{3}\right) & n_{3}\left(n_{3}-\frac{3}{2} c\right)=\left(m-m_{1}\right)\left(m-m_{2}\right)
\end{array}\right\}
$$

Area of triangle in terms of its medians.

Figure 1.

Because

$$
\begin{aligned}
& \mathrm{ABC}=2 \mathrm{ABA} \mathrm{~A}^{\prime}=6 \mathrm{GBA}^{\prime}=3 \mathrm{GBL} ; \\
& \mathrm{GL}=\frac{2}{3} m_{1}, \mathrm{CB}=\frac{2}{3} m_{2}, \mathrm{BL}=\frac{2}{3} m_{\mathrm{s}} ; \\
& \Delta^{2}=9(\mathrm{GBL})^{2}
\end{aligned}
$$

and
therefore

$$
\begin{align*}
& =9\left\{\frac{m_{1}+m_{2}+m_{3}}{3} \cdot \frac{-m_{1}+m_{2}+m_{3}}{3} \cdot \frac{m_{1}-m_{2}+m_{3}}{3} \cdot \frac{m_{1}+m_{2}-m_{3}}{3}\right\} \\
& =\frac{\frac{1}{g}\left\{\left(m_{1}+m_{2}+m_{3}\right)\left(-m_{1}+m_{2}+m_{3}\right)\left(m_{1}-m_{2}+m_{3}\right)\left(m_{1}+m_{2}-m_{3}\right)\right\} .}{} \\
& \text { Let } \quad 2 m=m_{1}+m_{2}+m_{3} \\
& \text { then } \quad \Delta^{2}=\frac{10}{y}\left\{m\left(m-m_{1}\right)\left(m-m_{2}\right)\left(m-m_{3}\right)\right\}
\end{align*}
$$

Sect. I.

If

$$
\begin{gather*}
2 m^{\prime}=-m_{1}+m_{2}+m_{3} \\
2 m^{\prime \prime}=m_{1}-m_{2}+m_{3} \\
2 m^{\prime \prime \prime}=m_{1}+m_{2}-m_{3} \\
\Delta=\sqrt[3]{m^{\prime} m^{\prime \prime} m^{\prime \prime \prime}} \tag{21}
\end{gather*}
$$

then

$$
\left.\begin{array}{rl}
\Delta & =\frac{4}{3} \sqrt{\sqrt{n_{1}\left(n_{1}-m_{2}\right)\left(n_{1}-m_{3}\right)\left(n_{1}-\frac{3}{3} a\right)}} \tag{22}\\
& =\frac{4}{3} \sqrt{n_{2}\left(n_{2}-m_{3}\right)\left(n_{2}-m_{1}\right)\left(n_{2}-\frac{3}{3} b\right)} \\
& =\frac{4}{3} \sqrt{n_{3}\left(n_{3}-m_{1}\right)\left(n_{3}-m_{2}\right)\left(n_{3}-\frac{3}{3} c\right)}
\end{array}\right\}
$$

This is deduced from (20) by means of (19).
If R, S, T be the projections of G on the sides

$$
\left.\begin{array}{c}
\mathrm{BR}=\frac{3 a^{2}-b^{2}+c^{2}}{6 a} \quad \mathrm{CR}=\frac{3 a^{2}+b^{2}-c^{2}}{6 a} \\
\mathrm{CS}=\frac{a^{2}+3 b^{2}-c^{2}}{6 b} \quad \mathrm{AS}=\frac{-a^{2}+3 b^{2}+c^{2}}{6 b} \\
\mathrm{AT}=\frac{-a^{2}+b^{2}+3 c^{2}}{6 c} \quad \mathrm{BT}=\frac{a^{2}-b^{2}+3 c^{2}}{6 c} \tag{25}
\end{array}\right\}
$$

Of the preceding formulæ, (8) and (9) are given by C. F. A. Jacohi, De Trianyulorum Rectilineorum Proprietatibus, p. 7 (1825); (10) and (11) occur in Hind's Trigonometry, 4th ed., p. 244 (1841) ; (12) in Thomas Simpson's Select Excrcises, Part II., Problem xxii. (175̃2); (2)-(4), (13)-(19), (21), (22) are due to Thomas Weddle. See Lady's and Gentleman's Diary for 1848, pp. 74-75. I have changed the notation adopted by Weddle.

On the authority of Férussac's Bulletin des Sciences Mathématiques, xii. 297 (1829), formula (20) should be assigned to Professor Desgranges.

[^0]: * Archimedes, De planorum cquilibriis, I. 13, 14.
 \dagger Archimedes.
 \ddagger Carnot, Géométrie de Position, p. 315 (1803), and Lhuilier, Elémens d'Analyse, p. X. (1809).
 § This expression was suggested by T. S. Davies in 1843 in the Mathematician I. 58. It had been used by Dr Hey in 1814 to designate another point.
 $\|$ Mr E. Lemoine in the Report (second part) of the 21st session of the 4 ssociation Franfaise pour l'avancement des sciences, p. 77 (1892).

[^1]: * See Mr Emile Vigarie's articles Sur les Points Complementaires in Mathesis, VII., 5-12, 57-62, 84-9, 105-110 (1887).

[^2]: * Jacobi, De Triangulorum rectilineorum proprietatibus, pp. 5-6 (1825),
 + Professor R. E. Allardice.
 \ddagger Mr J. Griffiths, in Mathenatical Questions from the Educational Times, V. 92 (1866).
 § Notes on the Geometry of the Plane Triangle, p. 65 (1867).
 || Mathematical Questions from the Educational Times, V. 92 (1866).

[^3]: * Lhuilier, E'lémens d'Analyse, pp. 1-2 (1809).
 + The figure and demonstration refer only to this case. The other case and the consideration of what happens when BC is divided externally are left to the reader.

[^4]: * This is a particular case of a more general theorem proved in Robert Simson's Apolonii Pergaei Locorum Planorum Libri II., pp. 179-180 (1749).
 + C. F. A. Jacobi, De Triangulorum Rectilineorum Proprietatibus, p. 7 (1825).

[^5]: * J. F. de Tuschis a Fagnano in Nova Acta Eruditorum, anni 1775, p. 290. The article referred to is entitled : Prollemata quaedam ad methodum maximorum et minimorim spectantia, and the volume in which it occurs was published at Leipzig in 1779.
 + H. Watson in the Ladies' Diary for 1756.
 \ddagger Frégier in Gergonne's Annales, VII. 170 (1816-7).

[^6]: * Mr Maurice d'Ocagne in the Nouvelles Annales, 3rd Series, I. 239 (1882); proof on p .430.
 + Leybourn's Mathematical Repository, new series, V. 111 (1820).

[^7]: * Mr E. Conolly in Mathematical Questions from the Educational Times, IV. 76 (1865).
 \dagger Mr Stephen Watson, in Mathematical Questions from the Educational Times, XX. 109.112 (1873), where four solutions are given. The solution in the text is Mr Watson's.

[^8]: *The theorem that $A_{3} B_{1} C_{3}$ har the came centroid as $A B C$ will be found in Pappus's Mathematical Collection, VIII. 2. Chasles has some remarks on the theorem in his Δ perçu historique, 2nd ed., p. 44.

 + This mode of proof was communicated to me by Mr A. J. Pressland. Conpare also Fuhrmann's Synithetische Beweise planinetrischer Sätic, pp. 48.9 (1890).

[^9]: * In connection with this subject, the following authorities may be consulted:

 Gergonne's Annales, II. 93 (1811).
 Supplemente $z u$ G. S. Klüget's Wörterbuche der reinen Mathematik, Vol. I. Art. "Dreieck" (J. A. Grunert), p. 706 (1833).
 Nouvelles Annales, III. 457-460 (1844).
 Battaglini's Giornale di Matematiche, I. 126-7 (1863).
 Grunert's Archiv, XLI. 112-4 (1864).

[^10]: * Gergonne's Annales, II. 93 (1811).
 \dagger The figure has been taken from Grumert's article "Dreieck" previously referred to.
 \ddagger Grunert's Archiv, XLI. $112-4$ (1864).

[^11]: * Gergonne's Annales, II. 93 (1811).
 \dagger Rev. T. C. Simmons in Milne's Companion to the Weekly Problem Papers, pp. $100-1$ (1888).

[^12]: * Rev. T. C. Simmons in Milne's Compenion to the Weckly Problem Papers, p. 151 (1888).
 + This property, proved in the manner given, will be found in Maclaurin's Algetra (1748) in the Appendix, De Linearum Geometricarum Proprietatilus gencralibus Tractatus, $\$ 98$ or p. 57. A proof by Dr E. v. Hunyady of Pesth, by means of transversals, will be found in Schlomilch's Zeitschrift, VII. 268.9 (1862).

