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Using the Leray–Schauder degree, we study the existence of solutions for the following
periodic differential equation with relativistic acceleration and singular nonlinearity:(

u′√
1 − u′2

)′
=

h(t)
uµ

, u(0) − u(T ) = 0 = u′(0) − u′(T ),

where µ > 1 and the weight h : [0, T ] → R is a continuous sign-changing function.
There are no a priori estimates on the set of positive solutions (a condition used in
general to apply the Leray–Schauder degree), and we prove that no solution of the
equation appears on the boundary of an unbounded open set during the deformation
to an autonomous problem.
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1. Introduction

We study the existence of T -periodic solutions for the following nonlinear differential
equation with relativistic acceleration and singular nonlinearity:(

u′
√

1 − u′2

)′
=

h(t)
uµ

, u(0) − u(T ) = 0 = u′(0) − u′(T ),
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where µ > 1 and the weight h : [0, T ] → R is a continuous function. A solution of the
above problem is a strictly positive function u ∈ C2([0, T ]) such that max[0,T ] |u′| <
1 and u verifies the above periodic boundary-value problem.

The main result of this paper is the following theorem.

Theorem 1.1. Assume that there exists a ∈ (0, T ) such that h(a) = 0, h is strictly
positive on [0, a) and non-positive on (a, T ]. If∫ T

0
h(t) dt < 0 and lim

t→a−

h(t)
(a − t)µ−1 = ∞,

the above problem has at least one solution.

First of all, we note that the weight function h must necessarily be sign indefinite,
and

∫ T

0 h(t) dt < 0.
The above periodic boundary-value problem, despite looking simple, is a difficult

one. Because the nonlinearity has an indefinite weight and a singularity, there are
no a priori estimates on the set of positive solutions, a condition used in general
to apply one of the main tools of nonlinear functional analysis: the Leray–Schauder
degree. We show only that no solution of the equation appears on the boundary of
an unbounded open set during the deformation.

To overcome this problem, we introduce a new strategy, together with a homotopy
with an autonomous equation. We prove a continuation theorem (theorem 2.3) for
problems of the type(

u′
√

1 − u′2

)′
= h(t)g(u), u(0) − u(T ) = 0 = u′(0) − u′(T ),

where the weight h is such that

h̄ = T−1
∫ T

0
h(t) dt �= 0,

and g : R → R is continuous. The main idea is to consider for λ ∈ [0, 1] the homotopy(
u′

√
1 − u′2

)′
= (λh(t) − (1 − λ)h̄)g(u) + (1 − λ)h̄,

u(0) − u(T ) = 0 = u′(0) − u′(T ).

If there exists 0 < ε < R such that g(ε) > 1 > g(R), and J ⊂ [0, T ] closed such
that the above problem has no solution on ∂V for all λ ∈ [0, 1], where

V = {u : [0, T ] → R : u continuous with u(0) = u(T ), ε < u < R on J},

then the above problem for λ = 1 has at least one solution in V . The main tool in
the proof is a continuation theorem from [14] (see also [2,11]) in which a homotopy
is made to an arbitrary autonomous equation and one takes advantage of the S1-
invariance of the corresponding periodic problem to compute the associated Leray–
Schauder degree.

There is a large literature concerning nonlinear super- and sublinear problems
with a weight function having an indefinite sign (see, for example, [1, 6, 7, 12]).
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However, fewer results concerning problems with singularity and indefinite weight
seem to be available. Our paper is motivated by the papers [8, 15]. In both these
papers, pure ordinary differential equation strategies are used in the proofs. In the
first one the weight satisfies strong symmetry conditions, and in the second the
weight has only non-degenerate zeros or is piecewise constant. The existence of
periodic solutions for singular nonlinearities with indefinite weight and Newtonian
acceleration is considered for the first time in [9].

Our paper is structured as follows. In § 2 we prove our continuation theorem. In § 3
we apply the continuation theorem to a modified problem, and in § 4 we prove that
the solution of a particular modified problem is also solution of the main periodic
problem. For results concerning periodic solutions of nonlinear perturbation of the
relativistic acceleration, see, for example, [4, 5, 10].

2. Homotopy and degree

To construct the fixed-point operator we need some notation. Let C denote the
Banach space of continuous functions on [0, T ] endowed with the uniform norm
‖ · ‖∞. We consider the closed subspace

CT = {u ∈ C : u(0) = u(T )}.

The open ball of centre 0 and radius r is denoted by Br. We denote by P, Q : C → C
the continuous projectors

Pu(t) = u(0), Qu(t) = T−1
∫ T

0
u(s) ds = ū (t ∈ [0, T ]).

On the other hand, let H : C → C be the continuous linear operator given by

Hu(t) =
∫ t

0
u(s) ds (t ∈ [0, T ]).

Throughout the paper we use the following notation:

φ(s) =
s√

1 − s2
(s ∈ (−1, 1)).

Let Qφ : C → R be the continuous function determined by the relation

Q ◦ φ−1 ◦ (I − Qφ) ◦ u = 0 for all u ∈ C.

We need the following fixed-point lemma (see [3, proposition 2]).

Lemma 2.1. Assume that F : C → C is continuous and takes bounded sets into
bounded sets. Then, u is a solution of the abstract periodic problem

(φ(u′))′ = F (u), u(0) − u(T ) = 0 = u′(0) − u′(T ),

if and only if u ∈ CT is a fixed point of the completely continuous operator M : CT →
CT given by

M = P + QF + H ◦ φ−1 ◦ (I − Qφ) ◦ [H(I − Q)F ].
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Using exactly the same proof as in [14, theorem 4.1], one has the following con-
tinuation result.

Lemma 2.2. Consider the periodic problems

(φ(u′))′ = f(t, u, λ), u(0) − u(T ) = 0 = u′(0) − u′(T ),

where f : [0, T ] × R × [0, 1] is continuous and

f(t, u, 0) = f0(u)

is independent of t. Let Ω be an open bounded subset in CT such that for each
λ ∈ [0, 1] the above problem has no solution on ∂Ω. Then,

dLS[I − M1, Ω, 0] = −dB[f0, Ω ∩ R, 0],

where M1 is the fixed-point operator of the above problem for λ = 1.

Next, for each λ ∈ [0, 1], we consider the periodic problem

(φ(u′))′ = (λh(t) − (1 − λ)h̄)g(u) + (1 − λ)h̄,

u(0) − u(T ) = 0 = u′(0) − u′(T ),

}
(2.1)

where h ∈ C and g : R → R is continuous. The main result of this section is the
following theorem.

Theorem 2.3. Assume that h̄ �= 0 and there exists 0 < ε < R such that g(ε) >
1 > g(R). Let J ⊂ [0, T ] be closed and

V = {u ∈ CT : ε < u < R on J}.

If, for each λ ∈ [0, 1], (2.1) has no solution on ∂V , then, for λ = 1, (2.1) has at
least one solution in V .

Proof. Let u ∈ V̄ be a solution of (2.1). Then, by the fundamental theorem of
calculus, we have

|u(t)| � R +
∫ T

0
|u′(s)| ds < R + T

for each t ∈ [0, T ]. Taking the open bounded set Ω = V ∩ BR+T , it follows that
(2.1) has no solution on ∂Ω, Hence, the homotopy invariance of Leray–Schauder
degree, together with the above lemma, implies that

dLS[I − M1, Ω, 0] = dLS[I − M0, Ω, 0] = −dB[h̄(1 − g), (ε, R), 0],

where Mλ is the fixed-point operator corresponding to (2.1). It follows that dLS[I −
M1, Ω, 0] �= 0, and the existence property of the Leray–Schauder degree concludes
the proof.
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3. A modified problem

In this section we assume that
h̄ < 0.

For each 0 < δ < 1 we define a truncation function gδ : R → R such that gδ is
smooth on R and is non-increasing and bounded by 1 + δ−µ, and gδ(u) = u−µ for
any u � δ. Consider the following family of periodic problems:

(φ(u′))′ = (λh(t) − (1 − λ)h̄)gδ(u) + (1 − λ)h̄,

u(0) − u(T ) = 0 = u′(0) − u′(T ).

}
(3.1)

Lemma 3.1. There exists R > 1+T such that, for any solution u of (3.1), one has

max
[0,T ]

u < R.

Proof. Let

H+ =
∫ a

0
h(t) dt, H− = −

∫ T

a

h(t) dt.

We take R > 1 + T sufficiently large such that

H+ −
(

x − T

x

)µ

H− + T h̄(1 − (x − T )µ) > 0, H+ −
(

x − T

x

)µ

H− < 0,

for all x � R. Assume that u is a solution of (3.1) such that Mu = max[0,T ] u �
R. By integrating both sides of (3.1) over [0, T ] and taking into account that
max[0,T ] u − min[0,T ] u < T , we obtain that

0 � λH+ − λ

(
Mu − T

Mu

)µ

H− − (1 − λ)T h̄ + (1 − λ)h̄T (Mu − T )µ.

It follows that

0 � H+ −
(

Mu − T

Mu

)µ

H−,

which is a contradiction of the choice of R.

Lemma 3.2. Assume that there exists R > 0 such that u ∈ BR for each solution u
of (3.1). There exists K > 0 such that, for any solution u of (3.1), one has∥∥∥∥φ(u′)

gδ(u)

∥∥∥∥
∞

� K.

Proof. Let u ∈ BR be a solution of (3.1). Let tm ∈ [0, T ] be the point where u
attains the maximum value on [0, T ]. From the periodic boundary conditions one
has that u′(tm) = 0. Multiplying both sides of (3.1) by gδ(u)−1 and integrating by
parts, we deduce that

φ(u′)
gδ(u)

=
∫ t

tm

φ(u′)
[

1
gδ(u(s))

]′
ds +

∫ t

tm

(λh(s) − (1 − λ)h̄) ds + (1 − λ)h̄
∫ t

tm

ds

gδ(u)
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for all t ∈ [0, T ]. Taking into account that gδ is a non-increasing function, one can
easily to check that

φ(u′(s))
d
dt

[
1

gδ(u(t))

]
t=s

� 0

for all s ∈ [0, T ]. It follows that

φ(u′)
gδ(u)

� K on [0, tm],
φ(u′)
gδ(u)

� −K on [tm, T ],

where K := ‖h‖1 + T |h̄|(1 + Rµ). The conclusion now follows from the periodic
boundary conditions.

Lemma 3.3. There exists 0 < ε < 1 such that if 0 < δ � ε and u is a solution
of (3.1) then min[0,a/2] u �= ε.

Proof. Let M0 > 0 be such that∫ 3a/4

a/2
φ−1

(
(h0 + h̄Mµ)(s − 1

2a)
Mµ

)
ds > M,

∫ a/2

0
φ−1

(
(h0 + h̄Mµ)( 1

2a − s)
Mµ

)
ds > M,

for all M < M0, where h0 := min{min[0,3a/4] h, |h̄|} > 0. Moreover, we can assume
that

h0

Mµ
0

+ h̄ > 0.

We take R > T +1 as in lemma 3.1 and K > 0 verifying lemma 3.2, and we consider
0 < ε < min{M0, 1} such that

K < h0M
µ
0

∫ M0

ε

ds

sµ
− |h̄|(T + 1)µ+1.

Let δ ∈ (0, ε] be fixed. Assume that there exists a solution u of (3.1) such that
min[0,a/2] u = ε. Let t∗ ∈ [0, 1

2a] be such that u(t∗) = ε. Using lemma 3.1, one has
that max[0,T ] u < R, and then

min
[0,T ]

u > max
[0,T ]

u − T > ε − T > −R.

Hence,
‖u‖∞ < R.

We distinguish two cases.

Case 1 (t∗ ∈ [0, 1
2a)). Observe that u′(t∗) � 0. We claim that

max
[t∗,3a/4]

u � M0.

Indeed, if we assume that u < M0 on [t∗, 3
4a], then one has that (φ(u′))′ > 0 on

[t∗, 3
4a]. Since u′(t∗) � 0, we have u′(t) � 0 and ε � u(t) for t ∈ [t∗, 3

4a] and
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u( 3
4a) = max[t∗,3a/4] u. Multiplying both sides of (3.1) by uµ and integrating from

t∗ to t ∈ [t∗, 3
4a], we deduce that

φ(u′(t)) �
(h0 + h̄u( 3

4a)µ)(t − t∗)
uµ(t)

for all t ∈ [t∗, 3
4a].

Since φ is an increasing homeomorphism, it follows that

u′(t) � φ−1
(

(h0 + h̄u( 3
4a)µ)(t − t∗)

u( 3
4a)µ

)
for all t ∈ [t∗, 3

4a].

Integrating the latter inequality over [t∗, 3
4a], we obtain that

u

(
3a

4

)
�

∫ 3a/4

t∗

φ−1
(

(h0 + h̄u( 3
4a)µ)(t − t∗)

u( 3
4a)µ

)
dt

�
∫ 3a/4

a/2
φ−1

(
(h0 + h̄u( 3

4a)µ)(t − 1
2a)

u( 3
4a)µ

)
dt,

a contradiction of the choice of M0.
Since max[t∗,3a/4] u � M0, we can define b∗ ∈ (t∗, 3

4a] such that u(b∗) = M0 and
ε � u � M0 on [t∗, b∗]. Then (φ(u′))′ > 0 and u′ � 0 (since u′(t∗) � 0) on [t∗, b∗].
Moreover,

(φ(u′))′u′ � h0u
′

uµ
+ (1 − λ)h̄u′ on [t∗, b∗].

Integrating from t∗ to t ∈ [t∗, b∗], we obtain

φ(u′(t)) � h0

∫ u(t)

ε

ds

sµ
+ h̄(T + 1) for all t ∈ [t∗, b∗].

Since ‖u‖∞ < R and uµ = gδ(u)−1 on [t∗, b∗], multiplying both sides of the above
inequality by uµ and applying lemma 3.2 yields

K � h0u
µ(t)

∫ u(t)

ε

ds

sµ
− |h̄|(T + 1)µ+1 for all t ∈ [t∗, b∗],

which contradicts the choice of K taking t = b∗.

Case 2 (t∗ = 1
2a). Observe that u′(t∗) � 0. We claim that

max
[0,t∗]

u � M0.

Assume that u < M0 on [0, t∗]. This implies that (φ(u′))′ > 0 on [0, t∗]. Since
u′(t∗) � 0, we have u′(t) � 0 and ε � u(t) for all t ∈ [0, t∗]. Arguing as in case 1,
multiplying both sides of (3.1) by uµ, integrating from t ∈ [0, t∗] to t∗ and using
that u(0) = max[0,t∗] u, we obtain

−u′(t) � φ−1
(

(h0 + u(0)µh̄)(t∗ − t)
u(0)µ

)
for all t ∈ [0, t∗].

Integrating the latter inequality over [0, t∗], we obtain a contradiction of the choice
of M0.
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Finally, since max[0,t∗] u � M0, we can define a∗ ∈ [0, t∗) such that u(a∗) = M0
and ε � u(t) � M0 for all t ∈ [a∗, t∗]. Then (φ(u′))′ > 0 and u′(t) � 0 (since
u′(t∗) � 0) on [a∗, t∗]. Moreover,

(φ(u′))′u′ � h0u
′

uµ
+ (1 − λ)h̄u′ on [a∗, t∗].

By integrating from t ∈ [a∗, t∗] to t∗ we have

φ(u′(t)) � −h0

∫ u(t)

ε

ds

sµ
+ |h̄|(T + 1) for all t ∈ [a∗, t∗].

Since ‖u‖∞ < R and uµ = gδ(u)−1 on [a∗, t∗], multiplying both sides of the above
inequality by uµ yields

−K � −h0u
µ(t)

∫ u(t)

ε

ds

sµ
+ |h̄|(T + 1)1+µ for all t ∈ [a∗, t∗],

which contradicts the choice of K taking t = a∗.

The main result of this section is the following existence result concerning the
modified problem.

Proposition 3.4. There exists 0 < ε < 1 such that if 0 < δ � ε, then the problem

(φ(u′))′ = h(t)gδ(u), u(0) − u(T ) = 0 = u′(0) − u′(T ),

has at least one solution u with min[0,a/2] u > ε.

Proof. This follows immediately from lemmas 3.1 and 3.3 and theorem 2.3.

4. Proof of the main result

We take R > T +1 as in lemma 3.1, K > 0 verifying lemma 3.2 and ε > 0 given by
proposition 3.4. Using the assumptions upon h, there exists a∗ ∈ ( 1

2a, a) such that

h0ε
µ

∫ ε

2δ

ds

sµ
> K,

where h0 = min[0,a∗] h, and δ = a − a∗ is such that 2δ < ε. Consider u given by
proposition 3.4 with δ defined above. We will show that u � δ on [0, T ]. This means
that u is a solution to our main periodic problem.

Assume by contradiction that min[0,T ] u < δ. Using that min[0,a/2] u > ε and the
periodic boundary conditions, it follows that there exists t∗ ∈ ( 1

2a, T ) such that
min[0,T ] u = u(t∗).

We have three cases.

Case 1 (t∗ ∈ ( 1
2a, a∗]). Since u( 1

2a) > ε, there exists t̃ ∈ ( 1
2a, t∗) such that u(t̃) =

ε. Moreover, using the modified problem, one has that (φ(u′))′ � 0 on [12a, t∗],
which implies that u′ is non-increasing on [12a, t∗]. Then, since u′(t∗) = 0, it follows
that u′ � 0 on [12a, t∗] and

(φ(u′))′u′ � h0gδ(u)u′ on [12a, t∗].
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Integrating, we deduce that

φ(u′(t)) � −h0

∫ u(t)

u(t∗)
gδ(s) ds for all t ∈ [ 12a, t∗].

Multiplying by gδ(u)−1 in the latter inequality and applying lemma 3.2 (note that
‖u‖∞ < R) we deduce that

−K � −h0

gδ(u(t))

∫ u(t)

δ

gδ(s) ds for all t ∈ [ 12a, t∗],

which contradicts the choice of δ taking t = t̃.

Case 2 (t∗ ∈ (a∗, a]). In this case we use a strategy inspired by [13]. Our first task
will consist in observing that

u(a∗) � 2δ.

We use a contradiction argument and assume that u(a∗) < 2δ. Since (φ(u′))′ � 0
on [0, a] and u′(t∗) = 0, we have u′(t) � 0 for all t ∈ [0, t∗]. Using the modified
problem, multiplying by u′ and integrating from t ∈ [0, a∗] to a∗, we obtain

φ(u′(t)) � −h0

∫ u(t)

u(a∗)
gδ(s) ds for all t ∈ [0, a∗].

On the other hand, since u( 1
2a) > ε, there exists t̃ ∈ ( 1

2a, a∗) such that u(t̃) =
ε. Multiplying by gδ(u)−1 in both sides of the inequality above and applying
lemma 3.2, we deduce that

−K � −h0

gδ(u(t))

∫ u(t)

2δ

gδ(s) ds for all t ∈ [0, a∗].

This is a contradiction of the choice of a∗ taking t = t̃.
Next, let t0 ∈ [a∗, t∗) be such that u(t0) = 2δ. A direct integration in the modified

problem shows that

−φ(u′(t)) =
∫ t∗

t

h(s)gδ(u) ds � (1 + δ−µ)
∫ t∗

t

h(s) ds

for all t ∈ [0, t∗]. Thus,

−u′(t) � φ−1
(

(1 + δ−µ)
∫ t

t∗

h(s) ds

)
for all t ∈ [t0, t∗].

We integrate over [t0, t∗] obtaining that

2δ − u(t∗) < t∗ − t0 � a − a∗ = δ.

However, this contradicts that u(t∗) < δ.

Case 3 (t∗ ∈ (a, T ]). From the modified problem it follows that (φ(u′))′ � 0 on
[a, T ], which implies that u is constant on [a, T ]. Hence,

δ > u(t∗) = u(T ) = u(0) > ε,

which is a contradiction. The proof is complete.
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