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Abstract

Both Evans et al. and Li et al. have presented preconditioned methods for linear systems
to improve the convergence rates of AOR-type iterative schemes. In this paper, we present
a new preconditioner. Some comparison theorems on preconditioned iterative methods
for solving Z,-matrix linear systems are presented. Comparison results and a numerical
example show that convergence of the preconditioned Gauss-Seidel method is faster than
that of the preconditioned AOR iterative method.
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1. Introduction

The solutions of many problems in mathematics, physics, fluid dynamics, engineering

and so on are eventually turned into the solutions of large linear systems of the form

Ax = b, (1.1)

where A e /?"*" and b € R" are given and x e Rn is unknown. For example, it is

shown in [8] that using a finite-difference scheme for the discretization of the Poisson

equation leads to linear system (1.1).

For any splitting A = M — N with det(A/) ^ 0, the basic iterative method for

solving (1.1) is

+ M~*b, n = 0 , I , - -
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under the assumption that au ^ 0, i = 1, 2 , . . . , n. For simplicity, without loss of
generality, we assume throughout this paper that

A = I - L - U,

where / is the identity matrix, and L and U are strictly lower and upper triangular
matrices obtained from A, respectively. Then the iteration matrices of the classical
AOR iterative method in [4] are defined by

Lrw = (/ - (w - r)L + wU], (1.2)

where w and r are real parameters with w ^ 0. It is easy to get the Jacobi, the Gauss-
Seidel (GS) and the successive overrelaxation (SOR) methods for certain values of w

andr.

In order to accelerate the convergence of any iterative method solving the linear
system (1.1), some techniques of preconditioning have been used. That is,

PAx = Pb, (1.3)

where P, called the preconditioner, is a non-singular matrix. The preconditioned
system (1.3) with different preconditioners P is considered in [2], [4-7] and [9].

Recently, in [2], Evans et al. presented a preconditioned AOR iterative method by
using the preconditioners P = I + S and P = I + S', where

S =

0 0
0 0

-an\ 0

and S' =

'0 0
0 0

0 0 0

The authors suggest that if the original iteration matrix is non-negative irreducible,

then performing Gaussian elimination on the last element of the first column of the

iteration matrix (or the last element of the first row of the iteration matrix) to make

it zero will improve the convergence of the iteration matrix and showed that the

preconditioned AOR method is better than the original one.

In [6], Li et al. considered as a preconditioner P = / + 5, where

S =

'0 -an

0 0

0
0

0
-an

0
0

0
0
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whose effect on A is to eliminate the elements of the first upper diagonal in order to
improve the convergence rate of the AOR iteration method.

In this paper, a new preconditioner different from those considered by Evans et at.
and Li et al. for AOR-type iterative methods for solving consistent linear systems is
presented, which is the preconditioner P = I+ S + S. Some comparison theorems on
preconditioned iterative methods for solving L-matrix linear systems are presented.
Comparison results show that convergence of the preconditioned Gauss-Seidel method
is faster than that of the preconditioned AOR (or SOR) iterative method. The numerical
examples also show that convergence of our preconditioned AOR scheme is faster than
that in [2] and [6].

2. Preliminaries

For convenience, the following definitions and lemmas are useful in this paper.
Here p( ) denotes the spectral radius of a matrix.

DEFINITION 2.1. [10] Matrix A is an L-matrix if an > 0; / = 1, • • • , n and au < 0,
for all ij = 1,2, ••• ,n;i ^ j .

DEFINITION 2.2. [8] Matrix A is irreducible if the directed graph associated to A
is strongly connected.

DEFINITION 2.3. [8] The representation A = M — N is called a regular splitting
ofAifM~l>0andN>0.

LEMMA 2.4. [8] Let A e C"xn be a nonnegative and irreducible n x n matrix.
Then

(i) A has a positive real eigenvalue equal to its spectral radius p(A);
(ii) There exists an eigenvector x > 0 corresponding to p(A);

(iii) p(A) is a simple eigenvalue of A;
(iv) p(A) increases when any entry of A increases.

LEMMA 2.5. [1] Let Abe a nonnegative matrix. Then

(1) If ax < Ax for some nonnegative vector x, x ^ 0, then a < p{A).
(2) If Ax < fix for some positive vector x, then p(A) < p. Moreover, if A is

irreducible and ifO^ax<Ax< fix for some nonnegative vector x, then

a < p(A) < P

and x is a positive vector.
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LEMMA 2.6. [8] Let A = M\ — N] = M2 — N2be two regular splittings of A, where
A~l > 0. IfN2 > #i > 0, then

If, moreover, A~] > 0 and ifN2 > Ni > 0, equality excluded, then

0 < p(M^Nt) < p{M~xN2) < 1.

3. A preconditioned AOR iterative method

Now, let us consider the preconditioned linear system,

Ax =b,

where A = (I + S)A and b = (I + S)b with

0 -al2 0
0 0 -«23

0
0

0 0 0
0

(3.1)

We express the coefficient matrix of (3.1) as

A = D-L-U,

where D=diag(A) and L and U are strictly lower and upper triangular matrices
obtained from A, respectively. By calculation, we obtain that

D =

-ana2\ 0 ••'• 0
0 1 - fl23«32 • • • 0

0 0
0 0

an-\,n
am 0

-dn,n-\ + «nlfll,n-l 0_
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and
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u =

0
0

0
0

0 -
0

0
0

al3 +
0

0
0

— fin

— «2fl

0 •

0

Applying the AOR method to the preconditioned linear system (3.1), we have the
corresponding preconditioned AOR iterative method whose iterative matrix is

Lnu = (D-rL) ' [(1 - w)D + (io - r)L + wO]. (3.2)

REMARK 1. When anX = 0, S is considered in [6]. When a,,,+, = 0, i -
1, 2, . . . , « — 1, S is considered in [2].

4. Main results

First, we need the following lemmas for our proof.

LEMMA 4.1. Let A and A be the coefficient matrices of the linear systems (1.1) and
(3.1), respectively. IfO<r<w<\(w^O,r^\),Aisan irreducible L-matrix
with 0 < a\nan\ < 1 and there exists a nonempty set of a C /V = {1, 2, • • • , n — 1}
such that

10 < a,,/+ifl,+1,,- < 1, / ear,

au+ial+lJ = 0 , i e N\a.

Then the iterative matrices Lrw and Lrw associated to the AOR method applied to the

linear systems (1.1) and (3.1), respectively, are nonnegative and irreducible.

PROOF. Since A is an L-matrix, we have that L > 0 (U > 0) is a strictly lower
(upper) triangular matrix. So (/ - rL)~l = I + rL + r2L2 H h rn~]L"~] > 0.

By (1.2), we have

Lrw = (/ - rL)"'[(l - io)/ + (IO - r)L + wU]

= [l + rL + r2L2 + ••• + r"~l L""1] [(1 - w)l + (w - r)L + wU]

= (1 - w)I + (w - r)L + wU + rL( l - w)I + rL[(w - r)L + wU]

+ (r2L2 + ••• + /-"-'L"-1) [(1 - w)I + (w- r)L + wU]

-io(l -r)L-
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where

T = rL[(w-r)L + wU]
+ (r2L2 + . . . + r"-1/."-') x [(1 - w)I + (w- r)L + wU] > 0.

So Lrw is nonnegative. We can also get that (l-w)I + w(\-r)L + wU is irreducible
since A is irreducible, hence Lrw is irreducible.

Subsequently, we prove that Lw_r is nonnegative and irreducible.
It is easy to get that D > 0 from the conditions of Lemma 4.1. Since A is an

L-matrix, we get that L > 0 and U > 0. By (3.2), we have

Lrw = {D- rl)~X [(1 - w)D + (w- r)L + wD]

= (/ - rD-]L)~l [(1 - w)I + (w- r)b~lL

""1

So we have f > 0 and Zru) > 0 from D > 0, L > 0 and U > 0. As Lru), we have
that Lrw is nonnegative and irreducible too. •

We need the following equalities to prove Theorem 4.2, which are easily proved:

(El) U =U = ~SU -~S + U;

(E2) ~D-I= I -L-SL;

(E3) D-L=~D-I + S-SU.

THEOREM 4.2. Let Lrw and Lrw be the iterative matrices of the AOR method
given by (1.2) and (3.2), respectively. If0<r<w< 1 (w ^ 0, r ^ I), A is
an irreducible L-matrix with 0 < auan\ < 1 and there exists a nonempty set of
a C.N = {1,2, ...,n- 1} such that

10 < au+lal+u < 1, iea,

au+lai+u = 0, i e N\a.

Then

(1) p(Lrw) < p(Lrw) ifp(Lrw) < 1;
(2) p(Zrw) = p(Lrw), ifp(Lrw) = 1;
(3) p(Lrw) > p(Lrw), ifp(Lrw) > 1.
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PROOF. From Lemma 4.1, it is clear that Lrw and Lrw are nonnegative and ir-
reducible matrices. Thus, from Lemma 2.4 there exists a positive-vector x, such
that

where k = p(Lrw) or, equivalently,

[(1 - to)/ + (w- r)L + wU]x = k(I - rL)x. (4.1)

From (4.1), we have

wi/x = (A. + w — \)x + (r — w — kr)Lx.

Therefore, for this x > 0,

Lrwx -kx = (D- rL)~l [(1 - io)5 + (w - r)t + wJJ - k (5 - rZ)]x.

Obviously,

A(5-rL);t = A(1 -r)Dx+kr(D-L)x.

Hence

Lrwx -kx = (D- rZ)""1 [(1 - w)D + [w- r)L + wU - k(l - r)D

-kr(D-L)]x.

Using (El), by simple manipulations, we get

Lrwx -kx = (D- rZ)"' [(1 - A.)(l - r)D - (w - r + kr) (D - Z)

+w(SU-'S + U)]x.

By (E2) and (E3), the above equation can be written as

Lrwx -kx = (D- rly1 [(1 - X)(l - r)D - (w - r + kr) (/ - L - 5L)

-(w - r + kr)(S - SU) + w(l +~S)U - w's] x

= (D - rZy1 {(1 - A)(1 -r)D-(w-r + kr)(l - L - ~SL)

+ (/ + 5) [(A. - 1 + w)I -(w-r + kr)L] - (w - r + kr)S

+ (w-r + kr)SU -wS}x

= (5 - rZ)~' [(1 - X)(l - r) (5 - /) - (1 - k)S - (w - r + kr)S

+ (w-r+kr)SU]x

= (5 - rZ)"' {(1 - X)(l - r) (5 - /) - (1 - k)S - (iu - r + kr)S

- r(l - k)SU + S[(k + w-\)I - (iu - r + kr)L]} x

= (5 - rZ)"' [(1 - X)(l - r) (5 - /) - (1 - A)S - (1 - A)(1 - r)S

-r(\-k)SU]x.

We are now ready to deduce (l)-(3).
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(1) If 0 < X < 1; then Lrwx - kx < 0 but is not equal to the null vector. Therefore
Lrwx < kx. By Lemma 2.5, we get p(Lrw) < k = p(Lrw). ^
(2) If A. = 1, then Lrwx -kx =0. By Lemma 2.5, we get p(Lrui) = k = p(Lrw).
(3) If k > 1, then Lrwx — kx > 0 but is not equal to the null vector. Therefore

Lrwx > kx. By Lemma 2.5, we get p(Lrw) > k = p{Lrw). Q

Here, we can also construct the preconditioner. That is,

5 =

0
0

0
0

0
- / 2 f l23

0
0

0
0

for the preconditioned linear system,

Ax = b. (4.2)

The corresponding preconditioned AOR iterative method has iterative matrices

Lrw = (D-rL) '[(1 -

Analogously, we have the following lemma and theorem.

(4.3)

LEMMA 4.3. Let A and A be the coefficient matrices of the linear systems (1.1) and
(4.2), respectively. IfO < r < w < 1 (w £ 0, r ^ 1), A is an irreducible L-matrix
with 0 < lnainan\ < 1 and there exists a nonempty set of ft C N = {1, 2 , . . . , n — 1}
such that

JO < liau+iai+iil < 1, / 6)8,

| M = 0 , i

Then the iterative matrices Lrw and Lrw associated to the AOR method applied to the

linear systems (1.1) and (4.2), respectively, are nonnegative and irreducible.

THEOREM 4.4. Let Lrw and Lrw be the iterative matrices of the AOR method

given by (1.2) and (4.3), respectively. IfO<r<w< 1 (w ^ 0, r ^ I), A is

an irreducible L-matrix with 0 < lna\nan\ < 1 and there exists a nonempty set of

0C.N = {1,2, ••• , n - \) such that,

10 < /,a;,l+1al+li/ < 1, i € 0 ,

fli,/+ifl/+i.j = 0, i € N\p.

Then
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(1) p(Lrw) < p(Lrw), ifp(Lrw) < I;
(2) p(Lrw) = p(Lrw), ifp(Lrw) = 1;
(3) p(Lrw) > p(Lrw), ifp(Lrw) > 1.

The proof of Theorem 4.4 is similar to that of Theorem 4.2, and is omitted here.

THEOREM 4.5. Let 0 < r, < r2 < w < 1 and A~x > 0. Under the hypothesis of
Theorem4.2, then 0 < p(Lwr2) < p(Lwn) < 1, ifO < X < 1.

PROOF. Let

A = Mw,r - Nw,r,

where Mw<r = (l/w)(D - rZ) and Nw,r = (l/w)[(l - w)D 4- (w - r)L + wU\
Since 0 < r\ < ri < w < 1, then 0 < Nw<n < Nwrr In terms of Lemma 2.6, this
completes the proof. •

Subsequently, we have the following theorem.

THEOREM 4.6. Let 0 < rx < r2 < w < 1 and A~x > 0. Under the hypothesis of
Theorem 4.4, then 0 < p(Lwr2) < p(Lwrt) < 1, ifO < X < 1.

REMARK 2. From the previous results, it is easy to reach the conclusion that
convergence of the preconditioned SOR iterative method is faster than that of the
preconditioned AOR iterative method. That is, from the preconditioned AOR, we find
that the optimal value of r is equal to w.

It is well known that, when w = r, AOR iteration reduces to SOR iteration. So we
can easily get the following corollaries.

COROLLARY 4.7. Let Lw and Lw be the iterative matrices of the SOR iterative
method associated to (1.1) and (3.1), respectively. IfO < w < 1, A is an irreducible L-
matrixwithO < alnani < 1 and there exists a nonempty set of a CJV = {1,2 n —
1} such that

10 < a,-,+ 1fl ,+ 1, ; < 1, i e o ,

ai+u =0, / e N\a.

Then

(1) p(Lw) < p(Lw) ifp(Lw) < \;
(2) P(LW) = 1 ifp(LJ = 1;
(3) p(Lw) > p(Lw) ifp(Lw) > 1.
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COROLLARY 4.8. Let Lw and Lw be the iterative matrices of the SOR iterative

method associated to (1.1) and (4.2), respectively. IfO<w<l,A is an irreducible

L-matrix with 0 < lnalnan\ < 1 and there exists a nonempty set of fl C N =
{1, 2, • • • , n - 1} such that

10 </ , -au + 1a f + u < 1, i e 0,

au+lai+u = 0, i e N\0.

Then

(1) p(Lw) < p(Lw) ifp(Lw) < 1;
(2) p(Lw) = \ifp(Lw) = l;
(3) p(Lw) > p(Lw) ifp(Lw) > 1.

COROLLARY 4.9. Let 0 < W\ < w2 < I and A~{ > 0. Under the hypothesis of
Corollary 4.7, then 0 < p(Lwl) < P(LWI) < 1, i/O < X < 1.

COROLLARY 4.10. Ler 0 < UJ, < u;2 < 1 and A"1 > 0. Under the hypothesis of
Corollary 4.8, r/iercO < p(Lwl) < p(LWl) < 1, ifO < X < 1.

REMARK 3. From the above results, it is easy to reach the conclusion that conver-
gence of the preconditioned Gauss-Seidel iterative method is faster than that of the
preconditioned SOR iterative method, that is, w = 1 is the optimal value.

5. Numerical example

Now let us consider the following example to illustrate the results. Suppose that
the coefficient matrix A of (1.1) is given by

1

s

q

r

s

r

q

1

• q

s 1 q '". s

q s 1 ' • r

•• "-. "•• "-. q

s r q s 1

where q = -p/n, r = —p/(n + 1) and q = —p/(n + 2). For n = 6 and p = 1,
Table 1 displays the spectral radius of the corresponding iterative matrix with different
parameters w and r. These calculations were performed using Matlab 7.1. For
convenience, we denote by twr the iterative matrix under the conditions of Theorem 2.2
in [2] and by Lwr the iterative matrix under the conditions of Theorem 2 in [6].
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TABLE 1. Numerical illustration of Theorem 4.2.
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U)

0.9

0.95

0.8

0.7

r

0.8

0.8

0.7

0.65

P(Lwr)

0.5606

0.5362

0.6365

0.6921

P(Lwr)

0.5768

0.5533

0.6492

0.7026

P(C)
0.6367

0.6165

0.6962

0.7416

p(Lwr)

0.6519

0.6325

0.7083

0.7517

REMARK 4. Table 1 also illustrates that convergence of the AOR iterative method
is faster than that of the AOR iterative method of [2] and [6].

REMARK 5. When n = 6 and p = 1, we get Tables 3 and 4 by our numerical
experiments.

TABLE 2. Numerical illustration ofTheorem 4.4.

/

(1,1,2,1,1,1)

(2,1,3,1,1,2)

(1,4,1,3,5,2)

(2,4,5,3,6,8)

w

0.7

0.95

0.9

0.8

r

0.65

0.85

0.86

0.75

p(Lwr)

0.6975

0.5476

0.5844

0.6809

P(Lwr)

0.7517

0.6205

0.6381

0.6998

TABLE 3. Numerical illustration ofTheorem 4.5.

w
O.9

0.9

0.9

0.9

r

0.5

0.6

0.8

0.9

P(Lwr)

0.7748

0.7602

0.7227

0.6977

p(Lwr)

0.8014

0.7899

0.7615

0.7433

6. Conclusion

In this paper, we have presented an accelerating algorithm for iteratively solving
linear systems based on the AOR (SOR) methods. It remains to construct a comparison
theorem for accurate estimation of the optimum parameter. Meanwhile, we obtain that
convergence of the modified Gauss-Seidel method is faster than that of the modified
AOR (SOR) iterative method for L-matrix linear systems.
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TABLE 4. Numerical illustration of Corollary 4.9.

[12]

w

0.1

0.3

0.8

1

r

0.1

0.3

0.8

1

p(Lwr)
0.9798

0.9329

0.7535

0.6284

P(Lwr)

0.9818

0.9402

0.7880

0.6901
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