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1. Introduction

W. H. Cornish (2) has investigated congruences on pseudo-complemented distributive
lattices and has identified those ideals (resp. filters) that are congruence kernels (resp.
cokernels). In this paper we show that many of the principal results concerning congruence
kernels and cokernels hold in a semilattice and therefore do not depend on distributivity,
nor on the existence of unions.

If (L, A , *, 0,1) is a pseudo-complemented semilattice then by a ̂ -congruence on L we
shall mean a semilattice congruence = that satisfies the additional condition x = y => x* =
y*. Now not every ideal of L is the kernel of a *-congruence. The following example, which
will be of use throughout the paper, illustrates this simply: let ££ be the semilattice whose
Hasse diagram is

J£is pseudo-complemented; we have 0* = 1, a* = b, p* = q* = b* = a, d* = 0 for i s 0. The
ideal I={0, a, p, q, b} is not the kernel of a *-congruence. For, suppose that = were a
*-congruence with kernel /; then from a = b = 0 we would have a* = b* = 0*, i.e.
b = a = 1, whence the contradiction 1 = a = 0.

Which ideals, then, of a pseudo-complemented semilattice are kernels of
*-congruences? We provide an answer to this question in Section 2. Here we also describe
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the smallest and largest *-congruences having a given kernel ideal. In Section 3 the main
object of study is the set of kernel ideals. We show that this is a complete implicative lattice
and identify its centre. In Section 4 we consider *-epimorphisms and prove in particular
that the lattice of kernel ideals is isomorphic to the lattice of ideals of the skeleton boolean
algebra. In Section 5 we turn our attention to filters. Here we show that every filter is the
cokernel of a *-congruence and investigate a certain type of filter called a *-filter. We
prove that these filters form a complete lattice that is isomorphic to the lattice of kernel
ideals. In Section 6 we consider those *-congruences R that are boolean (in that LjR is a
boolean algebra) and determine necessary and sufficient conditions for a given kernel ideal
(resp. *-filter) to be the kernel (resp. cokernel) of a unique *-congruence. We also describe
the smallest boolean congruence that identifies a given pair of elements of L. In Section 7
we consider another type of filter, called a D-filter, and a determine necessary and
sufficient conditions for every £>-filter to be a *-filter. This happens in particular when the
semilattice L is modular.

2. Kernel ideals and *-ideals

We refer the reader to (3) for the basic properties of pseudo-complementation. We
begin by establishing the following useful result; this does not appear to be in the literature.

Theorem 2.1. IfL is a pseudo-complemented semilattice then a semilattice congruence
= on L is a *-congruence if and only if

x = 0 => x*=l .

Proof. The condition is clearly necessary. Suppose conversely that the condition
holds and let x = y. Then 0 = XAX* = VAJC* and so (JC*AV)* = 1. Using the identity
a A (a A b)* = a hb* (see, for example, (3, Theorem 15.1 (viii)), we thus have

x* = JC* A (x* A y)* = x* A y*.

Similarly we have y* = x* A y*, whence x*= y*. Q

Definition. An ideal / of a pseudo-complemented semilattice L will be called a kernel
ideal if I is the kernel of a *-congruence on L.

Theorem 2.2. An ideal I of a pseudo-complemented semilattice L is a kernel ideal ofL
if and only if

i,jel 4> (i*A/*)*e/.

Proof. If I is the kernel of a *-congruence = and if i, j e I then i* = l = j* gives
i* hj*=\ whence (i* A /*)* e I.

Conversely, suppose that the condition holds. Consider the relation Rj defined on L by

xRjy O (3i e J)x A i* - y A i*.

Clearly, Rj is both reflexive and symmetric. It is also transitive; for if i, / e I are such that
x A i* = y A i* and y A j* = z A j* then, with k = (i* A /*)* e /, we have
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X A fc* = X A (i* A j * ) * * = x A i* A j *

= y A i* A j *

= Z A i* A j* = Z A ( i * A / * ) * * = Z A fc*

so that x7?7z. It is clear that the equivalence relation R7 is a semilattice congruence on L.
Now taking / = / in the condition we obtain i e / =̂  i** 6 J. Thus we have

xRfi O (3ie7)xAJ* = 0 O ( 3 i e i ) x ^ i * * O x e 7,

so the kernel of 7?7 is 7. Also

xRjl O (3i e I)xAi* = i* <=> ( 3 i e J ) x ^ i * ,

so that

xRfi 4> (3ie7)xAJ* = 0 => (3ie7)i*=gx* => x*R7l.

It follows by Theorem 2.1 that Rj is a *-congruence on L. Q

Corollary 1. 7 is a kernel ideal if and only if

(1) ie I 4>i**e7;
(2) (Vi,/ e 7)(3/c e I)i*AJ* = k*.

Proof. The necessity follows from the above proof. and the fact that i* A j* =
(i* A /*)**. Conversely, if (1) and (2) hold then clearly (i* A j*)* = fc** e I. •

Corollary 2. A principal ideal I = xl is a kernel ideal if and only if x is in the skeleton
boolean algebra S(L) of L.

Proof. =̂ >: If x1 is a kernel ideal then by Corollary 1(1) we have x = x** 6 S(L).
<= : If x = x** and i, j e xl then x* ̂  i* A j * so (i* A /*)* ̂  x** = x whence (i* A /*)* e

X

Corollary 3. The following conditions on a pseudo-complemented semilattice L are
equivalent:

(1) every ideal of L is a kernel ideal;
(2) every principal ideal of L is a kernel ideal;
(3) L is a boolean algebra.

Proof. (1) => (2) is trivial; (2) 4> (3) follows from Corollary 2; and (3) => (1) follows
from the fact that in a boolean algebra (i' A /')' = i v ;. •

Definition. An ideal 7 of a pseudo-complemented semilattice L will be called a
*-ideal if i e I => i** e I.

Theorem 2.3. Every kernel ideal is a *-ideal. A *-idealIis a kernel ideal if and only if
supS(L){«**, /**} belongs to I for all i, j e I.
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Proof. The first statement is immediate from Corollary 1(1) of Theorem 2.2. As for
the second, it suffices to observe that in S(L) we have supSu.){/**, /**} = (i* A /*)*. Q

Corollary. If L is a pseudo-complemented distributive lattice then an ideal I of L is a
kernel ideal if and only if it is a *-ideal.

Proof. In such a lattice we have (i v /")* = i* A /* and supS(I.){i**, /**} = (i** v j**)** =

Theorem 2.4. Let Lbea pseudo- complemented semilattice and let I be a kernel ideal of
L. Then

(1) the smallest *-congruence on L with kernel I is given by

xR/y O (31 e J)XA i* = yh i*;

(2) the largest ̂ -congruence on L with kernel I is given by

xR'y O {a e L; ahx e I} = {a e L;a A y e I}.

Proof. (1) It is shown in the proof of Theorem 2.2 that Rj is a *-congruence with
kernel I. If = is any such *-congruence on L then xRfl gives x A i* = y A i* for some i e I
so that, since i = 0 and hence i* = 1, we have x = y.

(2) That R1 is the largest semilattice congruence on L with kernel I is proved as in, for
example, (1, Theorem 10.5(2)). We show that R' is a *-congruence. Clearly, the cokernel
of R1 is

F={x e L;ahx e I ^> a e J}.

Suppose now that x e I. If a A JC* e I then by Theorem 2.2 we have

a =i a** =i (x* A a*)* = [x* A (a A **)•]• e /

whence a e I and consequently x* e F. Applying Theorem 2.1 we now see that R' is a
*-congruence. Q

In what follows we shall denote by G the Glivenko congruence xGy <=> x** = y**.
Clearly, G is a *-congruence.

Theorem 2.5. If R is a *- congruence on L then

xRvGy O x**Ry**.

Proof. If xR v Gy then there exist a0,..., an e L such that

x = a0 = ai =. . . = an_i = a,, = y

in which each = signifies either R or G. Then

x — a0 =Oi =. . . = an_! = an —y

where, for l ^ i ^ n , either a**xRa** or a*tiGa**. Since the latter is equivalent to
a**i = a** we see that the above chain reduces to x**Ry**.

If, conversely, x**Ry** then we have the chain
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xGx**Ry**Gy
whence xR v Gy. •

We now use Theorem 2.5 to obtain alternative characterisations of R1, the largest
*-congruence with kernel /.

Theorem 2.6. / / / is a kernel ideal of L then R1 = RjV G.

Proof. That / is the kernel of i?7 v G follows from the observation that

xRjvGO O x**RtO O x** e I O x e I.

Suppose now that R is a *-congruence with kernel I. If xRy then we have

i = [0cAy*)*A(x*Ay)*]* € I.
Since

x** A i* = x** A [(x A y*)* A (x* A y)*]**
= [>A(xAy*)*A(x*Ay)*]**

= [XA(XAV*)*]**

= (XAV**)**

= x**A y**

and similarly y** A i* = x** A y**, it follows that x**i?7y** and consequently xRj v Gy.
Thus i?/ v G is the largest *-congruence with kernel I. f j

Corollary. xR'y O [(x A y*)* A (X* A y)*]* e /. D

If / is an ideal of L then J° = {x e L; (Vi e I)x A i = 0}, the set of elements dis-
joint from I, is a kernel ideal; for if x, y e J° then igjc*, y* gives (X*A y*)*^i* so
(x* A y*)* e 1°.

Theorem 2.7. / / / is an ideal of L then

xR'"y O x**lni=y**lni.

Proof. Let = be the equivalence relation defined by

x = y O x**lni=y**lni.

Since (x A Z)** ^ = x**l Hz**l it is clear that = is compatible with A . Now

x = 0 o x**lni=0 O x** e I" O xel";

x = l o x**1D7=/ <» / e x * * 1 .

Thus we have

x = 0 => xel" => (V«6i

and so, by Theorem 2.1, = is a *-congruence with kernel /".
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Suppose now that xR'°y. Then by the Corollary of Theorem 2.6 we have [(x A y*)* A
(JC* A y)*]* e I" whence

(Vi el) [(x A y*)* A (X* A y)*]* A i = 0.

Since [(x A y*)* A (JC* A y)*]* g (JC A y*)** = x** A y* it follows that, for all i s /, x** A y* A
i = 0. If then i e x**1!"!/ we have y*Ai = 0 and so igy** whence i e y**ln/. Thus
x**i n / c y*** n/. Similarly, we can establish the reverse inclusion, whence we obtain
i = y . Since R'° is the largest *-congruence with kernel I" it follows that R'° and =
coincide. Q

Corollary. If1 is a kernel ideal then R1 A R1' = G.

Proof. If xR1 A R'°y then by the Corollary of Theorem 2.6 we see that [(x A y*)* A
(x* A y)*]* belongs to both / and I", whence it is 0. It follows that x** A y* = 0 = x* A y**
whence x**^y** and y**^x** so that xGy. Since R1, R'° ^ G by Theorem 2.6, we
deduce that R1 A R'° = G. Q

3. The lattices of kernel and * -ideals

It is clear that the set I*(L) of *-ideals of L, ordered by set inclusion, is a complete
lattice in which the lattice operations are set-theoretic. It is clear that in I*(L) the infinite
distributive law

in u /„= u (mi,)
a e A tx e A

holds. It follows, therefore, that I*(L) is a complete implicative lattice. An explicit
description of residuals in I*(L) is as follows.

Theorem 3.1. If I, J e I*(L) then

J : /={x e L;x**lnJcI\.

Proof. Given I, J e I*(L), let T={x e L; x*** n J c i). Then T̂ jET since 0 e T;
and since x** = x**** it follows that Tis a *-ideal. We now observe that

x € TM ^> x**lMci,x** e J

^> x € I

so that T D / c I If now K is a *-ideal such that KDJg /then

x e A" => x** e K => x**; n J

and s o i f c l Thus J: / exists and is T. •

Corollary. The centre of I*(L) is trivial.

Proof. If / e I*(L) is complemented then / has a unique complement, namely 0:1.
Then L = JU0:7 gives 1 £ I or 1 e 0:/. The former gives 7=L and the latter gives

i=o.n
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We now note that if /, / a re kernel ideals of L then /U/ i s not in general a kernel ideal.
For example, in the semilattice i?of Section 1 we have that al, bl are kernel ideals (since
a, b e S(L)) but / = a1 U bl is not. Indeed, when L is a pseudo-complemented distribu-
tive lattice the ideal Iv J={x e L; (3/ e I)(3j e JJx^iv j} is not in general a kernel
ideal; for example, in the pseudo-complemented distributive lattice whose Hasse diagram
is

c

the ideals a *, bl are kernel ideals but a^ v bl= cl is not. In fact we have the following
result.

Theorem 3.2. / / L is a pseudo-complemented distributive lattice then the following

statements are equivalent:

(1) if I, J are kernel ideals of L then so is Iv J;
(2) / is a Stone lattice.

Proof. (1) d> (2): Given i, j e l w e have i**i v /** i = (i** v j * * ) l so by (1) and
Corollary 2 of Theorem 2.2 we see that /** v /** e S(L). Thus S(L) is a Stone lattice.

(2) => (1): If L is a Stone lattice then (i v /)** = i** v /'** for all i, j e L. If now I, J are
kernel ideals and x e Iv J then xSi 'v j for some i e I, j e J whence x**^(i v/)** =
i** v ;** e Iv J. Thus x** e Iv J and / v / is a kernel ideal by the corollary of Theorem
2.4. •

Returning to the case of a pseudo-complemented semilattice L, we shall denote by
KI(L) the set of kernel ideals of L.

Theorem 3.3. Ordered by set inclusion, KI(L) forms a complete implicative lattice in
which the operations are as follows: if (IS)K e A is a family of kernel ideals of L then

infKHL){I\; X. e A} = D A,
Xs A

L;OX,, . . . ,Xn e , (

residuals in KI(L) coincide with the corresponding residuals in I*(L).

https://doi.org/10.1017/S0013091500003850 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003850


308 T. S. BLYTH

Proof. It is clear from Theorem 2.2 that the intersection of any family of kernel ideals
is also a kernel ideal, so infima are set-theoretic. Given a family (7A)A e A of kernel ideals, let

= {x e L;(3\,,...,Xn e A)(3x, e (

Then clearly Ux is an ideal of L. Now if x, y e Ux then for suitable x,- and y, (some of which

may be 0) we have x Si I A x* J and y ^ ( A y* ] .By Corollary 1 of Theorem 2.2 there

exist z, such that x* A y* = z* for each i, so that

(x*Ay*)*^ [ (A ^ ) " A ( A y*)"]*= (.A *** fA yt)*= (.A rt)'

whence (x* A y*)* € UA. Thus UA is a kernel ideal. Clearly, U\ contains every 7A. Suppose
now that / is a kernel ideal of L that contains every 7X. Then if x, e Jx. for i = 1,..., n we

see by Theorem 2.2 and a simple inductive argument that [ /\ x*) e J, whence t/Ag /.

This then shows that KI(L) is a complete lattice in which suprema are given by
SUPKKDUA ; A e A} = C/A.

That the complete lattice KI(L) is implicative follows from the fact that the appropriate
infinite distributive law holds in KI(L). To see this, let (h)x e A be a family of kernel ideals
and let / be an arbitrary kernel ideal. If x E ir\supKnL){Ix; \ e A} then, with the above
notation, we have

X=iX**A (A **)

=• supS(L){x** A xi*; 1 g i; ^ n}

I n

= A(

whence x e sup/aa){/n/x; A e A}.
Finally, to show that residuals in KI(L) coincide with the corresponding residuals in

I*(L) it suffices to show that for all I, J e KI(L) the *-ideal I: J={x e L; x**l n / g /}
belongs to KI(L). Suppose then that x,yeI:J and let / 6 (x* A y*)*l n / . Then j A X* A
y* = 0 gives yAX*^y** so that ;Ax*e y ^ ^ f l / c / . But we also have y'Ax**e
x** x n / c J. Passing to quotients modulo Rj we thus have j/R, ^ x**/R{ and ;/i?7 ^ x*/i?7

from which we deduce that jlRt = 0/i?7 and hence that j e I. Thus we have (x* A y*)* e
/ : / and so, by Theorem 2:2, 7: / e 7<7(L). •

Theorem 3.4. / e KI(L) is in the centre of KI(L) if and only if J is principal.

Proof. =̂ >: If / e KI(L) is complemented then / has a unique complement, namely
0: J. Then L = supK/(i){/, 0: J} gives, by Theorem 3.3, 1 = (x* A y*)* for some x e / and
y e 0 : / = {z e L; z**1 DJ=0}. Since (Vy e J) y** A/ = 0 and hence (Vy e J)y^y*we
have, for every j e /,
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= [/A(x*Ay*)*f*

= f*AX**

whence we obtain j** = /** A X** and so j g j** ^ x** e J. Thus we see that / = x**1.

<= :If J £ KI(L) is principal then J- x**l so that

0: J={y £ L;y**AX** = 0} = {y £ L; y A x = 0} = x* ; .

Applying Theorem 3.3 we thus have

SUPKJ(I.)U 0: J} = {y £ L; y ^ (x* A X**)*} = L,

whence J is complemented. Q

Corollary. The centre of KI(L) is isomorphic to S(L). Q

For the lattice iB of Section 1, the lattices I*(££) and KI(3!) are the following:

if

4. *-epimorphisms

If L, Mare pseudo-complemented semilattices then a semilattice morphism f:L-^>M
will be called a *-morphism if

(VxeL) /(**) = [/(*)]*.

If f:L^>M is a *-morphism and /(x) = 0 = /(y) then /[(x* A y*)*] = 0, so Ker/=
{x e L; /(x) = 0} is a kernel ideal. In order to distinguish carefully various mappings that
we shall consider, we shall find it convenient to use the following notation. Given a
mapping / : E^>Fwe shall denote by f~*: P(E)^> P(F) and f~: P(F)-> P(£) the induced
mappings given by the prescriptions

(VXc£) rW = UM;xeX};
= {x e £;/(x) e Y}.

Theorem4.1. / / / : L—*Misa *-epimorphismthenf~~' and f~ preserve kernel ideals.
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Proof. The proof is an easy application of Theorem 2.2.•

It is immediate from Theorem 4.1 that every *-epimorphism / : L^>M induces a
surjective residuated mapping f~£: KI(L)-*KI(M) described by />-»/"*(/), the residual of
this being the injective mapping f^: KI{M)-* KI(L) described by Ji-»/*%/).

Theorem 4.2. / / / : L—>M is a *-epimorphism thenf~£ is a lattice epimorphism.

Proof. If x e fZ(l)nf^(J) then for some i e I, j e J we have x = f(i) = f(j) =
f(iAJ) e f^(irij) so that / ^ ( i ) n / ^ ( J ) c / ^ ( / n j ) . The reverse inclusion being obvious,
fii preserves infima.

If now x e /K(SUPX7(I.){/, J}) then by Theorem 3.3 we have x = f(y) where y ^ (/* A /*)*
for some i e I, j e J. Then x^f[(i* A j*)*] = [(/(i))* A (/(/))*]* so that xe
supKI(L){fZ(I),rZ(J)}. Thus we have fZ(supKI(L){I, J}) g supKia){f2(J), /£(J)}. The
reverse inclusion being obvious, /]J preserves suprema. Q

When / is a *-epimorphism the induced residuated mapping f~£ is surjective and so is
trivially range closed (1, §13). More information is provided by the following result.

Theorem 4.3. If f:L-*M is a *-epimorphism then f~£: KI(L)-*KI(M) is dually
range closed.

Proof. By (1, Theorem 13.1 *) we have that f% is dually range closed if and only if, for
every / e KI(L),

Since / ^ and /"£ are inclusion-preserving, it therefore suffices to show that

Suppose then that x e fl3_f^(T)l Then for some i e I we have f(x) = f(i)^f(i**)
[/(»*)]* so that f(x A i*) = f(x) A f(i*) = 0 whence x A i* e Ker /. Consequently

x ̂  x** =i (i* A **)* = [i* A (i* A x)*]*

whence it follows by Theorem 3.3 that x e supja(z.){/, Ker /}. Q

Corollary. // KIf(L) is the set of kernel ideals of L that contain Ker / then KIf(L)

Proof. By (1, Theorem 13.2) the restriction of / ^ to KIf(L) is an isomorphism. Q

Theorem 4.4. KI(L) = I(S(L)).

Proof. Let g: L —• S(L) be the Glivenko *-epimorphism, described by x >-» x**. Since
S(L) is boolean we have, by Corollary 3 of Theorem 2.2, that KI(S(L)) = I(S(L)). Since
Ker g = 0 it now follows by the Corollary of Theorem 4.3 that g~£: K/(L)-» I(S(L)) is an
isomorphism. Q

Corollary. / / S(L) is complete then KI(L) is a Stone lattice. •
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We now consider under what conditions the induced residuated mapping / ^ is a
*-epimorphism.

Theorem 4.5. If f.L^M is a *-epimorphism then the following statements are
equivalent:

(1) fZ:KI(L)^>KI(M) is a *-epimorphism;
(2) Ker / is a principal ideal.

Proof. (1) => (2): Let A = Ker/; then by (1) we have

fl(snpKliL){A, 0: A}) = ft{0: A) = 0: ft(A) = M.

By the Corollary of Theorem 4.3 it follows that supX/(z_){a, 0: A} = L whence A is a
complemented element of KI(L). That A is principal now follows by Theorem 3.4.

(2) => (1): Clearly, for every / e KI(L), we have f£(0:1) £ 0: fZ(I) so it suffices, using
(2), to establish the reverse inclusion. Now, since / is surjective, we have

) O x = /(y) where (VieDy A/(i) = 0;
and

xeO:/]J(i) O (Vie I ) X A / ( 0 = 0

<» x = f(z) where (Vi e i)z A i e Ker /.

Suppose then that Ker/ is principal. Then by Corollary 2 of Theorem 2.2 we have
Ker/=r**i for some ( e L L e t x e 0 :/£(/); then x = f(z) where (Vi e J )ZAJ e Ker/.
Now

f(z) A /*) = f(Z) A [ /«]* = /(2) A 1 = /(Z)

and 2 A I A ( * = 0. Writing z A f* = a we thus have x = /(a) where (Vi e I) a A i = 0, whence

5. "-filters

Turning our attention to filters, we first prove that, in contrast to the situation
concerning ideals, every filter of a pseudo-complemented semilattice is the cokernel of a
*-congruence; this extends a known result for implicative semilattices (4).

Theorem 5.1. IfL is a pseudo-complemented semilattice and K is a filter ofL then the
relation SK defined on L by

xSKy O (3k 6 K)XA k = yr,k

is a *-congruence with cokernel K; moreover, SK is the smallest such ^-congruence.

Proof. It is clear that SK is a semilattice congruence with cokernel K. Now if xSK0
then x A k = 0 for some k e K whence k ^ x* gives x* e K and hence x*SKl- Thus, by
Theorem 2.1, SK is a *-congruence. Suppose now that = is a "-congruence with cokernel
K. T h e n if xSKy w e h a v e , f o r s o m e k e K, x = xhk = y hk=y.\^]

We now observe that the condition for filters that is dual to that given in Theorem 2.2,
namely (x* A y*)* e K => x, y e K, is of no interest; for, if this held then from (x* A
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x**)* = l e K we would have x, x* e K whence 0 = x A X* e Kand K = L. However, the
condition that is dual to condition (1) of Corollary 1 of Theorem 2.2 is of considerable
interest.

Definition. A filter K will be called a *-filter if it is such that

k** e K => Ice K.

We shall denote the set of *-filters of L by F*(L). The following results, which show
how the notion of a *-filter arises in a natural way, will allow us to investigate the structure
of F*(L).

For every filter F of L let

a(F) = {x e L;x* e F).

Then a(F) is an ideal of L; for if yS=x e a{F) then y*Sx* e F gives y* € F whence
y e a(F). Moreover, a(F) is a kernel ideal; for if x, y e «(F) then x*, y* e F so that
(x* A y*)** = AC* A y* e F and consequently (x* A y*)* e a(F). Denoting by F(L) the
lattice of filters of L, we can therefore define a mapping a: F(L)^> KI(L) by F>-» a(F).

For every kernel ideal I of L let

Then /3(i) is a filter of L. In fact, if y g x e /3(7) then y* § x* e I gives y* e I so that
y e 0(/); and if x, y e /3(J) then x*, y* e / so that, by Theorem 2.2, (xAy)* =
(x** A y**)* G / whence x A y e /3(i). We can therefore define a mapping /3 : KI(L)—*
F(L) by

Theorem 5.2. a is residuated with residual map /3.

Proof. For every F e F{L) we have

/3[a(F)] = /3{x e L ; x * e f} = { i e L; x** e F}^F;

and for every / e KI(L) we have

o[/5(i)]=a{x 6 L ; x * e /} = {x 6 L; x** € I} = I.

Since a, /3 are isotone it follows that a is residuated and that the residual of a is none other
than p. •

Corollary. /3[a(F)] = Fif and only ifFis a *-filter. Q

It follows from Theorem 5.2 and (1, Theorem 2.7) that /3 ° a is a closure mapping on the
complete lattice (F(L), n , v). Using the Corollary of Theorem 5.2 we can therefore
assert:

Theorem 5.3. The set F*(L) of *-filters of a pseudo-complemented semilattice L,
ordered by set inclusion, is a complete lattice in which the lattice operations are as follows: if
(FK)\ e A is a family of *-filters of L then

; Xe A}= n Fx, 5up^(L){Fx; k e A} = /3a( Ainf. _
X. e A
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That the lattice F*(L) is also implicative follows immediately from Theorem 3.3 and
the following result.

Theorem 5.4. F*(L) = KI(L).

Proof. If / e KI(L) then /3(i) e F*(L); for if x** e /3(7) then x* = x*** e I so
x e /3(i). Thus /3 induces an isotone mapping (5:KI(L)^>F*(L). If we denote by
a: F*{L)-+KI{L) the restriction of a to F^CL), the computations in the proof of Theorem
5.2 show that /3°d and d°fi are identity mappings. Thus a, /3 are mutually inverse
isomorphisms. Q]

Corollary 1. F(S(L)) = F*(L) = KI(L) = I(S(L)).

Proof. Apply Theorem 5.4 to both L and S(L), and combine with Theorem 4.4. Q

Corollary 2. Suprema in F*(L) are given by

SUPF*(L){FK; A e A} = {x e L; x** e V FA1-
Xs A

Proof. By Theorem 5.4 we have sup^^Fx ; X. e A} = j8(supK/a){a(Fx); Ke A}).
Now x 6 aiFJ if and only if x* e Fk; and, by Theorem 3.3,

Thus we have

sup Kj(j.){a(F0; \ e A}= {x e L; (3X,,..., \n e A)(3x! e FX|)xS (A ^*) }•

\ 6 A} = {x e L; (3\ i , . . . , X.n 6 A)(3y,- e

= {x e L;(3X,,...,X» e A)(3yi e FXi) A yi^

= { x e L ; x * * G V
L AS AAS A

Theorem 5.5. X ts a *- filter ofL if and only if the *-congruence SKv G has cokernel K.
In this case SKV G is the largest such *-congruence.

Proof. By Theorem 2.5 we have
xSKvGl O X**SK1 O X** e K,

from which the first statement follows. Suppose now that R is a *-congruence with
cokernel K. If xi?y then k = (x A y*)* A (X* A y)* e K, so

X** A k = X** A (X A y*)* A (X* A y)*

= X * * A ( X A V * ) *

= [xA(xAy*)*]**

= (XAV**)**

= x** A y**
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and similarly y** A k = x** A y**. Thus x**SKy** and so xSK v Gy. \J

Corollary. / / K is a *-filter then

xSKvGy » (XAV*)*A(X*AV)* e K Q

6. Boolean congruences

Definition. By a boolean congruence on L we shall mean a *-congruence -R such that
L/R is boolean.

Theorem 6.1. The following condition on a *-congruence R are equivalent:

(1) R is a boolean congruence;
(2) (Vx e L)xRx**;
(3) G^R;
(4) 2? = ScokRvG.

Proof. (1) <=> (2): This is immediate from the fact that in L/R the pseudo-
complement of x/R is x*/R.

(2) O (3): By Theorem 2.5 we have that

G^R <* RvG=R O (x**i?y** => xRy).

Thus, if G^Rv/e deduce from x** = ***** that xi?x**. Conversely, if xi?x** for every
x e L then x**Ry** implies xRy.

(3) o (4): It is clear that (4) 4> (3). To prove that (3) => (4) it suffices to show that
RgScokD v G. Suppose then that xRy. Clearly, fc = (x* A y**)* A(X** A y*)* e Cok R
and since, as is readily seen, x**Ak = y**Ak it follows that x**ScokRy** whence
xScok R v Gy. •

It follows from Theorem 2.6 and 6.1 that if /is a kernel ideal of L then i?7 is a boolean
congruence. We also have the following result.

Theorem 6.2. / / 1 is a kernel ideal of L then the following statements are equivalent:

(1) i?/ is a boolean congruence;
(2) there is a unique *-congruence with kernel ideal I.

Proof. By Theorem 6.1, Rt is a boolean congruence if and only if G ^ R ; ; i.e., by
Theorem 2.6, if and only if Rt = Rt v G = R1. •

Likewise, we see from Theorems 5.5 and 6.1 that if K is a *-filter then SK v G is a
boolean congruence.

Theorem 6.3. 1/ K is.a filter of L then the following statements are equivalent:

(1) SK is a boolean congruence;
(2) K is a *-filter and there is a unique *-congruence with cokernel K.
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Proof. (1) => (2): If Gg SK then SK = G v S K s o G v S K has cokernel K, whence (2)
follows by Theorems 5.1 and 5.5.

(2) => (1): If (2) holds then clearly SK = GvSK whence we have (1). •

For every a e L the relation 6a defined on L by

xday O x A a = y A a

is clearly a semilattice congruence whose kernel is a** and whose cokernel is a}. It is
immediate from Theorem 2.1 that 6a is a *-congruence.

Theorem 6.4. If a, b e L then the smallest boolean congruence that identifies a, b is
given by

Ca,b — ^(aAfc*)*A(o*Ab)* V G.

Proof. Since a** A (a A b*)* A (a* A b)* = a** A b** = b** A (a A b*)* A (a* A b)* it is
immediate by Theorem 2.5 that aC^bb; and, by Theorem 6.1, C,6 is a boolean
congruence. Suppose now that R is any boolean congruence on L that identifies a, b. In
order to show that C^b^R it suffices, by Theorem 6.1(4), to show that 8(a^b*)^am^b)' =
Scok R', and this is immediate from the fact that aRb implies that (a A b*)* A (a* A b)* e
Cok R. •

7. D-filters

Definition. A filter F of a pseudo-complemented semilattice L will be called a
D-filter if it contains the dense filter D.

Theorem 7.1. Every *-filter is a D-filter.

Proof. If F is a *-filter and d e D then d** = l e F gives d e F. •
The converse of Theorem 7.1 is not true in general. For example, in the semilattice i?of

Section 1 we have D = {di\ i^O} and the filter qy is a D-filter that is not a *-filter (since
p** = b e q T butp^ qT). In fact the lattices F*(&) of *-filters and DF(3) of D-filters are

D

Theorem 7.2. For a pseudo-complemented semilattice L the following statements are
equivalent:

(1) every D-filter is a *-filter;
(2) SD is a boolean congruence.
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Proof. (1) => (2): If (1) holds then for every x e L the D-filter x**T v D is a *-filter.
Since x** e x**T v D it follows that x e x**T v D whence there exists d e D such that
x S x** A d, so that x A d = x** A d and hence xSDx**. That SD is a boolean congruence
now follows by Theorem 6.1.

(2) => (1): Let Fbe a D-filter. If (2) holds then, by Theorem 6.1, for every x e L there
exists d e D such that x A d = x** A d. Since D g F it follows that

x * * e F => x A d e F 4> x e F ,

so that F is a *-filter. •

Definition. A pseudo-complemented semilattice L will be called D-reduced if it
satisfies either of the equivalent properties of Theorem 7.2.

Theorem 7.3. Every pseudo-complemented modular semilattice is D-reduced.

Proof. Since 0 = x** A x* ̂  x ̂  x** the modularity gives x = x** A d for some d ^ x*.
Since d ^ x w e have d* ̂  x* ̂  d Si d** whence d* = 0 and d e D. Consequently we have
xSDx** so that SD is a boolean congruence. Q
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