
J. Fluid Mech. (2022), vol. 933, A58, doi:10.1017/jfm.2021.1114
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In this paper, we numerically study the wave turbulence of surface gravity waves in
the framework of Euler equations of the free surface. The purpose is to understand the
variation of the scaling of the spectra with wavenumber k and energy flux P at different
nonlinearity levels under different forcing/free-decay conditions. For all conditions (free
decay and narrow-band and broad-band forcing) that we consider, we find that the
spectral forms approach the wave turbulence theory (WTT) solution Sη ∼ k−5/2 and
Sη ∼ P1/3 at high nonlinearity levels. With a decrease of nonlinearity level, the spectra
for all cases become steeper, with the narrow-band forcing case exhibiting the most rapid
deviation from WTT. We investigate bound waves and the finite-size effect as possible
mechanisms causing the spectral variations. Through a tri-coherence analysis, we find
that the finite-size effect is present in all cases, which is responsible for the overall
steepening of the spectra and the reduced capacity of energy flux at lower nonlinearity
levels. The fraction of bound waves in the domain generally decreases with the decrease
of nonlinearity level, except for the narrow-band case, which exhibits a transition at a
critical nonlinearity level below which a rapid increase is observed. This increase serves
as the main reason for the fastest deviation from WTT with the decrease of nonlinearity in
the narrow-band forcing case.

Key words: surface gravity waves, homogeneous turbulence

1. Introduction

The normal state of the ocean surface is characterized by a large number of waves at
difference scales subject to nonlinear interactions in the presence of wind forcing and
viscous dissipation. In such a state, referred to as wave turbulence, a continuous surface

† Email address for correspondence: yulinpan@umich.edu

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 933 A58-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
14

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:yulinpan@umich.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.1114&domain=pdf
https://doi.org/10.1017/jfm.2021.1114


Z. Zhang and Y. Pan

elevation spectrum is usually developed with a power-law form in the inertial range,
as a result of the energy cascade through scales. In the framework of weak turbulence
theory (WTT), the wave spectra can be analytically computed based on the assumptions
of weak nonlinearity, infinite domain and phase stochasticity, leading to the so-called
Kolmogorov–Zakharov spectra (Zakharov & Filonenko 1967). For surface gravity waves,
the omnidirectional Kolmogorov–Zakharov wavenumber spectra have the form

Sη(k) ∝ P1/3k−5/2, (1.1)

where P is the energy flux to small scales and k is the wavenumber.
Since the assumptions in WTT are difficult to satisfy in finite facilities, experimental

attempts to verify WTT often show deviations from (1.1). In terms of the scaling Sη(k) ∼
kα (or its frequency counterpart), different values of α are observed in experiments under
different conditions (e.g. forcing with different amplitudes and bandwidths), and these
findings are sometimes in disagreement with one another. For example, observing waves
generated by a localized wave maker, Falcon, Laroche & Fauve (2007), Nazarenko et al.
(2010), Deike et al. (2015) and Denissenko, Lukaschuk & Nazarenko (2007) show that
the spectral slope α depends on the forcing condition and approaches (1.1) at high (or
certain) forcing amplitudes. In contrast, insensitivity of α to the forcing amplitude is
reported in Issenmann & Falcon (2013), Aubourg & Mordant (2016) and Herbert, Mordant
& Falcon (2010), with the former two experiments forced by horizontal vibrations of the
whole container and the third one by a wave maker. The spectra obtained in these three
experiments are all steeper than (1.1) and inconsistent with each other. Issenmann & Falcon
(2013) further suggest that their forcing by vibration provides a more homogeneous and
isotropic spectrum than the forcing by a wave maker, and therefore is potentially more
consistent with WTT. In addition, Cobelli et al. (2011) show that the observed spectra also
depend strongly on the bandwidth of the forcing provided by a wave maker.

The situation for the scaling between Sη(k) and P is more elusive, with Falcon et al.
(2007) and Issenmann & Falcon (2013) reporting a scaling Sη ∼ P in disagreement
with (1.1). However, their measurement of P is based on the mean power injected by
a wave maker, which may lead to inconsistency with the concept of energy flux due
to the broad-scale dissipation (Deike, Berhanu & Falcon 2014; Pan & Yue 2015). More
specifically, the dissipation occurring at all scales may result in significant dissipation in
the inertial range (or even at larger scales), potentially rendering the energy input rate to
be dominated by the large-scale dissipation instead of the energy flux across the inertial
range. Using the same measurement of P, Cobelli et al. (2011) further suggest that the P
and P1/3 scaling can be realized with respectively broad-band and narrow-band forcing.

The inconsistencies in experiments (with WTT and with one another) are usually
attributed to factors including the finite-size effect, bound waves and coherent structures.
First, the finite-size effect (e.g. Pushkarev & Zakharov 2000; Lvov, Nazarenko & Pokorni
2006; Nazarenko 2006) occurs at low nonlinearity level when the nonlinear broadening is
not sufficient to overcome the discreteness of k caused by the finite size of the facility. This
is in contrast to the continuous k configuration in deriving (1.1). Second, bound waves can
be considered as wave components not satisfying the dispersion relation, generated from
harmonics (i.e. non-resonant interactions) or distortion of the carrier wave (Plant et al.
1999, 2004; Herbert et al. 2010). It is found in Michel et al. (2018) and Campagne et al.
(2019) that bound waves are dominant at high frequencies and are likely responsible for
the deviation of the measurements from WTT (and its dependence on forcing amplitudes).
Third, coherent structures (such as rogue waves and wave breaking) occurring at high
nonlinearity levels are not described by WTT, and thus may lead to spectra different
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from (1.1). Candidate theories to model such spectra include the Phillips spectra (Phillips
1958) and the Kuznetsov spectra (Kuznetsov 2004). Finally, all experiments involve other
complexities such as reflection from boundaries, broad-scale dissipation and the surface
tension effect which inevitably affect the spectra to some extent.

In numerical simulations, we are able to have a better control of the wave field by
precisely specifying the forcing/dissipation and the implementation of periodic boundary
conditions. This offers us a clean environment to study wave turbulence at various
conditions free of the complexities that are present in experiments. Existing work includes
Dyachenko, Korotkevich & Zakharov (2004) and Lvov et al. (2006) for forcing turbulence
and Onorato et al. (2002) and Yokoyama (2004) for free-decay turbulence of gravity waves
in the context of Euler equations. While all these works report a scaling Sη(k) ∼ k−5/2

consistent with (1.1), the simulation (in each of them) is conducted at a single nonlinearity
level, and therefore is not capable of resolving/understanding the sensitivity of the spectra
to various conditions and their scaling with P. On the other hand, free-decay turbulence
is studied for capillary waves in Pan & Yue (2014), which reveals steepened spectra with
a decrease of nonlinearity level. However, the finding cannot be naively applied to gravity
waves, because the spectral behaviour at low nonlinearity critically depends on the discrete
resonant manifold (Hrabski & Pan 2020) which has not been characterized for surface
gravity waves.

In this work, we conduct a numerical study of the spectral properties of gravity wave
turbulence at different forcing (in terms of bandwidths and amplitudes) and free-decay
(with relatively broad-band initial data) conditions. The purpose is to elucidate the
mechanisms underlying the spectral variation under different conditions. In particular, we
focus on the hypothetical mechanisms of finite-size effect and bound waves, and leave the
study of coherent structures to our future work which directly simulates the two-phase
Navier–Stokes equations (since only some of the coherent structures can be simulated in
the framework of Euler equations). We also envision the presented numerical findings
to be eventually used to explain the aforementioned experimental observations with the
necessary considerations of further complexities in experiments.

The outline and some main findings of the paper are as follows. In § 2, we present
the numerical set-up of the Euler equations under forcing and free-decay conditions. In
§ 3, we show the numerical results including the scaling of the wave spectra with k and
P at different nonlinearity levels. It is found that the WTT solution is approached at
high nonlinearity levels for all conditions (free decay and narrow-band and broad-band
forcing). The spectra deviate from WTT as the nonlinearity level decreases with the
largest deviation rate observed in the narrow-band forcing case. Mechanisms leading to
the variation of spectra with nonlinearity levels are discussed in terms of bound waves
and the finite-size effect. Through a tri-coherence analysis we find that the finite-size
effect is present at low nonlinearities for all cases, responsible for the overall steepening
of the spectra and the reduced energy flux capacity. The fraction of bound waves generally
decreases with a decrease of nonlinearity, but exhibits a sharp transition and explains the
rapid deviation of the spectra from WTT in the narrow-band forcing case. The conclusions
are provided in § 4.

2. Mathematical formulation

We consider gravity waves on a two-dimensional free surface of an incompressible,
inviscid and irrotational fluid. The flow can be described by a velocity potential φ(x, z, t)
satisfying Laplace’s equation. Here x = (x, y) is the horizontal coordinates, z is the
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vertical coordinate and t is time. The surface velocity potential is defined as φS(x, t) =
φ(x, z, t)|z=η, where η(x, t) is the surface elevation. The evolutions of η and φS satisfy the
Euler equations in Zakharov form (Zakharov 1968):

ηt + ∇xη · ∇xφ
S − (1 + ∇xη · ∇xη)φz = 0, (2.1)

φS
t + η + 1

2∇xφ
S · ∇xφ

S − 1
2 (1 + ∇xη · ∇xη)φ2

z = 0, (2.2)

where φz(x, t) = ∂φ/∂z|z=η is the surface vertical velocity and ∇x = (∂/∂x, ∂/∂y)
denotes the horizontal gradient. In (2.2), we assume that the mass and time units are
properly chosen such that density and gravitational acceleration both take values of unity
(Dommermuth & Yue 1987).

To integrate (2.1) and (2.2) in time, we use the higher-order spectral (HOS) method
(Dommermuth & Yue 1987; West et al. 1987). We use a nonlinearity order M = 3 which
includes nonlinear terms up to the third order allowing both three-wave and four-wave
interactions. While the three-wave interactions are responsible for the generation of bound
waves, the four-wave resonant interactions are considered the dominant energy transfer
processes for gravity waves (e.g. Hammack & Henderson 1993; Mei, Stiassnie & Yue
2005). All simulations are conducted in a doubly periodic square domain of size 2π × 2π
corresponding to a fundamental wavenumber k0 = 1, with a spatial resolution of 512 ×
512 (which is sufficient to capture the phenomena of interest, and chosen in consideration
of the total computational cost of 25 simulations needed in this work). To account for the
dissipation at high wavenumbers, we add two artificial terms respectively on the right-hand
sides of (2.1) and (2.2):

Dη(k) = γkη, (2.3)

DφS(k) = γkφ
S, (2.4)

with the dissipation coefficient γk defined as

γk = γ0(k/kd)
ν, (2.5)

where γ0, kd and ν are parameters characterizing the dissipation. This formulation is
equivalent to the low-pass filter operation used in Xiao et al. (2013), developed through
a phenomenological matching with the measurement of dissipation in experiments. In
the current work, we use values of γ0 = −50, kd = 115 and ν = 30. We note that this
formulation provides a sharp transition to the dissipation range above k ≈ kd, which is
essential for us to use the dissipation rate to measure the energy flux in our numerical
studies (i.e. free of the broad-scale dissipation effect).

In this work, we conduct simulations for a free-decay case, and two cases with external
forcing of broad and narrow bandwidth. For the free-decay case, we use as initial condition
a wavenumber spectrum converted from a directional frequency spectrum SD(ω, θ) =
D(θ)G(ω), where θ is the directional angle with respect to the positive x direction. The
spreading function D(θ) characterizes the angular dependence of the spectra and is chosen
to be a cosine-squared function:

D(θ) =
⎧⎨⎩

2
π

cos2 θ, |θ | ≤ π/2,

0, |θ | > π/2.

(2.6)

Instead of using an isotropic initial condition, we use here an angle-dependence
spectrum to better represent the real ocean condition (Tanaka 2001; Onorato et al. 2002).
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To further justify this choice, we have also verified that using different spreading angles in
(2.6) does not critically affect the results presented in this paper.

The frequency spectrum G(ω) is set to the form of a Gaussian function:

G(ω) = B√
2πσ 2

exp

[
−(ω − ωp)

2

2σ 2

]
, (2.7)

with σ = 0.4 and B a parameter characterizing the initial effective steepness ε as a measure
of the nonlinearity level, which is defined by

ε = kpHs/2, (2.8)

where Hs is the significant wave height and kp the peak wavenumber. We use ωp = √
10

corresponding to kp = 10 in the initial wavenumber spectrum.
For the forcing cases, the initial condition is a quiescent water surface and the waves are

generated by forcing with different bandwidths and amplitudes. Numerically the forcing
is modelled by an artificial pressure term Q(θ, k, t) = H(θ)F(k, t) added to the right-hand
side of (2.2). The angular cut-off function H(θ) takes a value of one for |θ | ≤ π/4 and
zero otherwise. We use a relatively narrow forcing spreading angle here because the HOS
method is less numerically stable for cases with broader-angle and isotropic forcing of this
type. While the reason for this requires further study, to obtain results for a broad range
of nonlinearity as shown in § 3, the usage of the current spreading angle is practically
necessary. The function F(k, t) takes the form (e.g. Dyachenko et al. 2004; Pan 2020)

F(k, t) =
{

fk exp[−Ct + i(ωkt + R)], t ≤ Tc,

fk exp[−CTc + i(ωkt + R)], t > Tc,
(2.9)

with

fk =
⎧⎨⎩f0

(k − k1)(k2 − k)
(k1 − k2)2 , k1 ≤ k ≤ k2,

0, otherwise,
(2.10)

where f0 is the parameter determining the forcing amplitude, ωk is the angular frequency
for wavenumber k calculated from the dispersion relation, k1 and k2 are the lower and upper
bounds of the forcing range and R is a random number uniformly distributed in [0, 2π]
that are different for each wave mode. In the broad-band and narrow-band cases, we use
[k1, k2] = [1, 19] and [k1, k2] = [9, 11] respectively, both corresponding to a peak mode
of kp = (k1 + k2)/2 = 10. As described by (2.9), the forcing level decays exponentially in
time with rate C before t = Tc, and then remains constant. This provides a fast convergence
to stationary turbulence state where the forcing balances the dissipation. We use values of
Tc = 500Tp and C = ln 5/Tc (where Tp is the peak period corresponding to kp) which lead
to favourable convergence rates in our study.

3. Results

In this section, we present the results from simulations of free-decay turbulence and
forcing turbulence with broad and narrow bandwidths. The former is conducted at different
effective steepness of the initial conditions, and the latter at different forcing amplitudes,
in order to cover a sufficient range of nonlinearity levels. In the following, we focus on
the scaling of Sη(k) with k and P at different nonlinearity levels, and investigate the
mechanisms underlying the variations.
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3.1. Spectral slopes
We first define the omnidirectional wavenumber spectrum Sη(k) (we neglect its t
dependence for simplicity in the definition) by

Sη(k) =
∫ 2π

0
|η̃(k)|2k dθ, (3.1)

where k = (kx, ky), k = |k| and η̃(k) is the spatial Fourier transform of η(x):

η̃(k) =
∫∫

[0,2π]×[0,2π]
η(x) exp(−ik · x) dx. (3.2)

To demonstrate the (quasi-)stationarity of the spectral evolution, we define two integral
measures Ein and Ψin respectively for the spectra and compensated spectra (which assigns
more weight on the high-wavenumber part), given by

Ein(t) ≡
∫ kd

kc

Sη(k, t) dk, (3.3)

Ψin(t) ≡
∫ kd

kc

k5/2Sη(k, t) dk, (3.4)

where kc = 19 locates within the inertial range as is shown later (also corresponding to
the upper bound of the broad-band forcing). We check the evolutions of Ψin/Ein and Ψin in
free-decay and forcing cases to characterize their stationary state, where the denominator
in the first quantity is used to account for the slow decay of energy level with time in the
free-decay case.

The results obtained from free-decay cases are presented in figure 1. Figure 1(a) shows
the evolution of Ψin/Ein with different nonlinearity levels, measured by the value of ε

evaluated at t = 500Tp. It can be seen that quasi-stationary states are established for all
cases after t = 500Tp. A typical spectral evolution for the case with ε = 0.151 is also
shown as an inset to demonstrate the convergence of the spectrum to a power-law state.
The spectra at quasi-stationary states for different nonlinearity levels (i.e. values of ε)
are shown in figure 1(b). At high nonlinearity level of ε = 0.151, we observe a clear
power-law spectrum which has a slope α ≈ −5/2 consistent with WTT solution (1.1)
in an approximate range of [10, 65]. We note that the power-law range ends at k ≈ 65
which is smaller than kd = 115, similar to other numerical simulations with a sharp
dissipation cutoff (e.g. Dyachenko et al. 2004; Pan & Yue 2014), probably due to the
interaction of the spectrum with the dissipation range that is not in a power-law form.
With a decrease of nonlinearity level ε, the power-law spectrum becomes shorter and
steeper, reaching α ≈ −3.4 at ε = 0.068. This steepening of the spectra is in contrast to
the results from Majda–McLaughlin–Tabak (MMT) turbulence with ω = k2 and quartet
resonance (Hrabski & Pan 2020), mainly because the latter forms a continuous resonant
system (Faou, Germain & Hani 2016) at low nonlinearity (we elaborate this more in § 3.4).
We also remark that ε = 0.151 is about the highest nonlinearity we can reach in the current
HOS context. The simulation for this strongly nonlinear case is possible using the HOS
method because of the damping terms (2.3) and (2.4) which phenomenologically account
for the wave breaking (e.g. Xiao et al. 2013). Previous free-decay simulations of Onorato
et al. (2002) and Yokoyama (2004) which result in α ≈ −5/2 are both conducted at a
value of ε close to 0.15 (respectively 0.15 and 0.14).

The results from the forcing cases are shown in figure 2. The evolutions of Ψin in
the narrow-band and broad-band cases with different forcing amplitudes f0 (resulting
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Figure 1. (a) Time evolution of Ψin/Ein and (b) stationary spectra in free-decay cases with ε = 0.068 (- · -,
green), 0.106 (· · ·, red) and 0.151 (—–, blue) evaluated at t = 500Tp from different runs. Inset of (a) shows
wave spectra obtained at t = 0 (– – –, orange), 100Tp (—–, magenta), 200Tp (—–, cyan) and 500Tp (—–) with
ε = 0.151. The theoretical power-law scaling k−5/2 (– – –) is indicated in (b) for reference.

in different values of ε at the stationary state) are plotted in figures 2(a) and 2(c),
all showing stationary states in [1000Tp, 1500Tp]. The stationary power-law spectra
obtained at t = 1500Tp for the two cases are plotted in figures 2(b) and 2(d), respectively.
For both cases, we observe that the spectral slopes α approach −5/2 at sufficiently
high forcing/nonlinearity (consistent with previous work (Dyachenko et al. 2004)). The
power-law ranges for both cases begin immediately above k = 10, even though the forcing
is applied to the range above k = 10. This is an indication that the nonlinear interaction
is strong enough (relative to the forcing) to dominate the dynamics in this range. With a
decrease of nonlinearity, the spectra for both cases become steeper, which are also reported
in experiments in Falcon et al. (2007), Nazarenko et al. (2010) and Deike et al. (2015).
However, we observe that the spectra at low nonlinearity clearly show a dependence on
the bandwidth of the forcing, with the one from the narrow-band case much steeper (even
not showing a power law) than the one from the broad-band case. It can also be noticed
that, for the narrow-band case, the spectrum at low nonlinearity level (ε = 0.059) exhibits
discrete superharmonic peaks, are explained through bound waves in § 3.3.

To obtain a complete view of spectral slopes for both the free-decay and forcing cases,
we plot the values of α in all cases as functions of the nonlinearity level in figure 3. This
plot is limited above by the stability of the HOS method and below by the existence of
a power-law spectrum. In practice, we consider a power-law spectrum not existing if the
power-law range is less than 0.5 decade or if the spectrum is dominated by discrete peaks
such as the one with low nonlinearity level in figure 2(d). We see that for all cases, the
spectral slope α approaches the WTT value −5/2 at sufficiently high nonlinearity levels
of ε ≈ 0.15. With a decrease of ε, all spectra become steeper but with different steepening
rates especially at relatively low nonlinearity level. It is also clear that the narrow-band
forcing case shows a transition at εc ≈ 0.11, below which a very rapid steepening is
observed. The mechanisms underlying these behaviours are further analysed in §§ 3.3 and
3.4.

3.2. Energy flux
In this section, we investigate the scaling between the spectral level of Sη(k) and the
energy flux P. For the evaluation of P, we can directly compute the energy transfer
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Figure 2. (a) Time evolution of Ψin and (b) stationary spectra obtained at t = 1500Tp in the broad-band forcing
case with f0 = 3 × 10−7, ε = 0.061 (- · -, green); f0 = 1.6 × 10−6, ε = 0.118 (· · ·, red); f0 = 3.2 × 10−6,
ε = 0.145 (—–, blue). (c) Time evolution of Ψin and (d) stationary spectra obtained at t = 1500Tp in the
narrow-band forcing case with f0 = 8 × 10−7, ε = 0.059 (- · -, green); f0 = 4 × 10−6, ε = 0.114 (· · ·, red);
f0 = 1 × 10−5, ε = 0.148 (—–, blue). The theoretical power-law scaling k−5/2 (– – –) and boundaries of the
forcing ranges (—–) are indicated in (b,d) for reference.

0.06 0.08 0.10 0.12 0.14 0.16
–6

–5

–4α

ε

–3

–2

Figure 3. The spectral slope α as functions of effective steepness ε for the free-decay (◦, blue), broad-band
forcing (�, red) and narrow-band forcing (	, green) cases, compared with the prediction of WTT with α =
−5/2 (– – –).
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due to nonlinear terms in the primitive equation (Hrabski & Pan 2020) or use energy
dissipation rate as a measure of P (e.g. Pan & Yue 2014). For dissipation localized at
high wavenumbers (such as our cases), the two approaches are equivalent (as all energy
flux through the inertial range is dissipated at high wavenumbers in a stationary state).
Therefore, we use dissipation rate as a measure of P, which takes the form (Pushkarev &
Zakharov 1996; Pan & Yue 2014)

P =
∫∫

k
γk(|η̃(k)|2 + k|φ̃S(k)|2) dk, (3.5)

where φ̃S(k) is the spatial Fourier transform of φS(x). We note that (3.5) is slightly less
accurate in the free-decay case since the spectra slowly evolve in the quasi-stationary state.
However, the evolution rate of the spectra is much smaller than the energy flux so that the
associated error is negligible.

The scaling between Ein and P1/3 is plotted in figure 4 for the free-decay case and the
two forcing cases. The variable P1/3 is used for the horizontal axis so that the WTT scaling
Ein ∼ P1/3 becomes a straight line in the figure. We see that, at high nonlinearity level,
the scaling in all cases approaches the WTT scaling, although the range of consistency
is longer in the free-decay case and the broad-band forcing case. With the decrease of
nonlinearity, the scaling deviates from the WTT prediction with a smaller value of P
for given Ein. This indicates a reduced capacity of energy cascade with the reduction of
nonlinearity. As the nonlinearity level is further decreased, all curves approach states with
P → 0 and finite Ein, suggesting the formation of ‘frozen turbulence’, which is previously
(only) introduced for capillary waves (Pushkarev & Zakharov 2000; Pan & Yue 2014).
This result is remarkable because of the existence of (sparse) exact resonances for gravity
waves on a discrete grid of k (rational torus), in contrast to capillary waves. Before this
study it is not clear whether the exact quartet resonances of gravity waves can be connected
to result in a cascade (Kartashova, Nazarenko & Rudenko 2008), although this has been
demonstrated to be possible in MMT turbulence (Hrabski & Pan 2020). The results here
suggest that the energy cascade should not be expected under the current wavenumber
range in spite of the existence of energy transfer within a small number of resonant
quartets. A more detailed study can be performed considering the kinematic expansions
of exact quartet interactions (e.g. Lvov et al. 2006; Hrabski et al. 2021).

In the following, we study hypothetical physical mechanisms concerning bound waves
and the finite-size effect, which may lead to the spectral behaviours presented in §§ 3.1 and
3.2.

3.3. Bound waves
In this section, we study the effect of bound waves, which is argued as a major factor
influencing spectral behaviour in previous experiments (Michel et al. 2018). Here we
generally define bound waves as wave components that do not satisfy the linear dispersion
relation, no matter whether they are generated by carrier-wave distortion (Plant et al.
1999, 2004), superharmonics (Herbert et al. 2010; Cobelli et al. 2011; Michel et al.
2018) or other mechanisms (Longuet-Higgins 1992; Campagne et al. 2019) proposed in
previous literature. In fact, as we show in § 3.3.1, all bound waves in a periodic-domain
simulation can be interpreted through non-resonant nonlinear interactions. This definition
distinguishes bound waves from free waves which satisfy the linear dispersion relation (or
lie in its vicinity). To separate bound waves from the wave field, it is necessary to conduct
a spatiotemporal analysis and obtain the wavenumber–frequency spectrum Sη(k, ω),
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Figure 4. Plots of the energy density in the inertial range Ein as a function of P1/3 for free-decay (◦, blue),
broad-band forcing (�, red) and narrow-band forcing (	, green) cases, compared with the prediction of WTT
Ein ∼ P1/3 (– – –).

defined as

Sη(k, ω) =
∫ 2π

0
|η̃(k, ω)|2k dθ, (3.6)

where η̃(k, ω) is the spatiotemporal Fourier transform of η(x, t):

η̃(k, ω) =
∫∫∫

[0,TL]×[0,2π]×[0,2π]
η(x, t)hT(t) exp(−i(k · x − ωt)) dx dt, (3.7)

with hT(t) the Tukey window (Bloomfield 2004) of length TL = 20Tp, the time duration
of the collected data within 1480Tp–1500Tp at the stationary state.

3.3.1. Generation mechanisms
The wavenumber–frequency spectra Sη(k, ω) are plotted in figure 5 for narrow-band
forcing with low and high nonlinearity levels, and broad-band forcing with low and
high nonlinearity levels. The results for free-decay cases are not shown since they are
somewhat similar to those for the broad-band forcing case. In all cases, we (seem to)
observe significant amount of energy away from the linear dispersion relation (red curve
in each panel), indicating the presence of bound waves in the simulations. In addition,
the plot for narrow-band forcing at low nonlinearity (figure 5a) shows discrete peaks of
bound-wave components, a visually distinct pattern from the other panels. With respect to
the results in § 3.1, these discrete peaks correspond to the peaks in wavenumber spectra
with low nonlinearity in figure 2(d). As marked by red dots in figure 5(a), these peaks can
be quantified as superharmonics of the peak mode (ωp, kp) of carrier waves, in the form
of

(ωb, kb) = (nωp, nkp), n = 2, 3, 4, . . . (3.8)

The phase velocity for all bound-wave components, described by (3.8), can be computed as
ωb/kb = ωp/kp, which is the same as the phase velocity of the peak mode of carrier waves.
Therefore, the bound waves can be considered as non-dispersive, i.e. they are ‘bound’ to
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Figure 5. Normalized wavenumber–frequency spectra Sη(ω, k)/Sη(ωp, kp) in log scale for narrow-band
forcing cases with (a) ε = 0.059 and (b) ε = 0.148 and for broad-band forcing cases with (c) ε = 0.061 and
(d) ε = 0.145. The linear dispersion relation is marked by (—–, red). In (a), the peak modes are marked by
(•, red) computed from (3.8) with n = 2, 3, 4, 5. In (b–d), the lines corresponding to (3.9) with m = 2, 3 are
indicated by · · ·, and the lines corresponding to (3.10) with l = −1, 1, 2 are indicated by (– – –, brown).

the carrier wave as the latter travels. This behaviour agrees with some of the classical
views of bound waves described in Lake & Yuen (1978) and Plant (2003).

For cases in figure 5(b–d), however, the bound-wave patterns are dramatically different
from that in 5(a). It is clear from the plots that these bound-wave components are not
necessarily non-dispersive, which is consistent with other general views of bound waves
(e.g. Phillips 1981). In these cases, we observe several bound-wave branches (in contrast to
the main branch of linear dispersion relation) on the spectra Sη(ω, k). These bound-wave
branches can be explained through two different mechanisms discussed below.

The first mechanism corresponds to the superharmonics of all free waves, i.e. modes
(ω, k) in the main (carrier) branch of the linear dispersion relation, satisfying

(ωb, kb) = (mω, mk), m = 2, 3, 4, . . . (3.9)

The second mechanism corresponds to bound waves generated by the (non-resonant)
interactions between the harmonics of peak mode (ωp, kp) and an arbitrary free wave
(ω, k) in the main branch, satisfying

(ωb, kb) = (ω + lωp, k + lkp), l = ±1, ±2, ±3, . . . (3.10)

The curves described by (3.9) and (3.10) are marked in figure 5(b–d) respectively
by black solid lines and brown dashed lines. The two mechanisms co-explain the
superbranches of bound waves on the right of the main branch, as they both contribute
to the energy in each of the visible superbranches. The second mechanism with
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Figure 6. A typical illustration for the separation of free and bound waves in a wavenumber–frequency
spectrum. The region of [ωk − δω, ωk + δω] defined in (3.11) is marked by (– – –, red). The region bounded
by - · - corresponds to the inertial ranges [ωc, ωd] × [kc, kd] used in (3.12).

l = −1 further explains the sub-branches of bound waves on the left of the main branch.
We remark that the two mechanisms (3.9) and (3.10) are also separately observed in
experiments of Herbert et al. (2010), Cobelli et al. (2011) and Campagne et al. (2019).
Our results here provide a more comprehensive view of bound waves: we need to consider
the property of carrier waves to distinguish cases in figures 5(a) and 5(b–d), and consider
combined mechanisms (3.9) and (3.10) for the explanation in the latter case.

3.3.2. Effects on wave spectra
Our next goal is to separate bound waves and free waves to elucidate their relative
importance to the wave turbulence of gravity waves. The algorithm for the separation is
illustrated in figure 6, which shows the definition of a free-wave finite band (by dashed line)
in the vicinity of the linear dispersion relation. Specifically, this finite band is generated
through a filter (similar to Campagne et al. 2019):

f (k, ω) ≡
{

1, |ω − ωk| ≤ δω,

0, |ω − ωk| > δω,
(3.11)

where δω = 0.6ω0 is a parameter characterizing the width of the free-wave band, with
ω0 = 1 the fundamental frequency in the domain. We have tested that this choice of
δω lies in a stationary range in terms of the results discussed below, i.e. reducing or
increasing it results in respectively insufficient free-wave energy or contamination by
bound-wave branches. For the separation, we apply the filter (3.11) directly to η̃(k, ω)

and obtain the free-wave and bound-wave components as η̃f (k, ω) = f (k, ω)η̃(k, ω)

and η̃b(k, ω) = η̃(k, ω) − η̃f (k, ω). Then we compute the free-wave spectra S f
η(k, ω),

S f
η(k) and bound-wave spectra Sb

η(k, ω), Sb
η(k) likewise using (3.6) and (3.1). We note

that it is also possible to directly apply the filter (3.11) to Sη(k, ω) for the separation,
but our operation (with respect to η̃) is desirable due to the study that is discussed
in § 3.4.
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Figure 7. Plots of S f
η (k) (– – –, red), Sb

η(k) (- · -, green) and Sη(k) (—–, blue) in free-decay cases with (a)
ε = 0.068 and (b) ε = 0.151; broad-band forcing cases with (c) ε = 0.071 and (d) ε = 0.145; narrow-band
forcing cases with (e) ε = 0.059 and ( f ) ε = 0.148. The boundaries of the power-law ranges are indicated by
– – –, except for (e) where discrete peaks are observed.

The free-wave and bound-wave wavenumber spectra are shown in figure 7 for all three
(free-decay and broad-band and narrow-band forcing) cases at high and low nonlinearity
levels. In most cases, we find that the power-law ranges of the spectra are dominated by
free-wave components with their energy at least one order of magnitude higher than those
of the bound-wave components. The only exception is the case with narrow-band forcing
at low nonlinearity level shown in figure 7(e), where bound waves dominate most of the
range above k ≈ 17 exhibiting discrete peaks. On the other hand, waves at sufficiently
small scales in the dissipation range are dominated by bound waves in all cases, but their
influences to the inertial-range spectra are not significant.

The general behaviour of bound waves in figure 7 suggests that they are not the major
factor causing the steepening of the spectra except in the narrow-band forcing case. This
point will be made more clear after further quantifying the fraction of bound waves in the
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Figure 8. The proportions of bound-wave energy Eb/Et as functions of ε for the free-decay (◦, blue),
broad-band forcing (�, red) and narrow-band forcing (	, green) cases.

wave field. For this purpose, we define the bound-wave energy in the inertial range as

Eb ≡
∫ ωd

ωc

∫ kd

kc

Sb
η(k, ω) dk dω, (3.12)

where [kc, kd] and [ωc = k1/2
c , ωd = k1/2

d ] are a box describing the limits of inertial range
as shown in figure 6. We quantify the fraction of bound waves using the ratio of Eb/Et,
where Et is the total wave energy in the inertial range computed in a similar way to (3.12)
but with Sη(k, ω) replacing Sb

η(k, ω).
Figure 8 summarizes the quantity Eb/Et at different nonlinearity levels for all three

cases. For the broad-band forcing and free-decay cases, we see that the fraction of
bound-wave energy consistently decreases with a decrease of nonlinearity level. This
provides a clear evidence that the steepening of the spectra with the decrease of
nonlinearity is not caused by bound waves in these cases. For the narrow-band forcing
case, the fraction of bound-wave energy is consistently larger than those in the other two
cases (at all nonlinearity levels). In addition, with a decrease of nonlinearity, a transition
occurs at a critical nonlinearity level (εc ≈ 0.11), below which Eb/Et increases with a
decrease of ε. In general, we expect the critical level εc to increase with a decrease
of the forcing bandwidth. (For the broad-band forcing case considered here, the frozen
turbulence regime is reached first with a decrease of nonlinearity, so εc does not exist in
this case.) The critical level εc is consistent with the transition in figure 3, below which a
much more rapid steepening of the spectral slope is observed for the narrow-band forcing
case. We thus conclude that the presence of bound waves explains the largest steepening
rate of the spectra at low nonlinearity levels in the narrow-band forcing case. Moreover,
the significant fraction of bound waves in the narrow-band forcing case also provides an
explanation of the rapid deviation from Ein ∼ P1/3 shown in figure 4, since bound waves
account for energy which does not follow the WTT cascade pathway.

We finally remark that while the transition at εc in figure 8 is consistent with the
transition to rapid variation of α in figure 3, the percentage of bound waves remains not
significant for the range of nonlinearity levels considered in the two figures. As a result,
computing the spectral slope from S f

η(k) provides almost the same values as those shown in
3, as evidenced from figure 7 for many cases (which is also true for the narrow-band forcing
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cases at nonlinearity levels associated with power-law spectra). Physically, this suggests
that bound waves cannot be simply considered as linear superpositions on free waves.
Instead, their nonlinear interactions with free waves can be important in understanding the
evolution and dynamics of the wave fields.

3.4. Finite-size effect
In order to further understand the steepening of spectra and reduced energy flux capacity
at low nonlinearity levels, we investigate another hypothetical mechanism of the finite-size
effect. In general, the finite-size effect arises due to the violation of the assumption of the
infinite domain in WTT (Pushkarev & Zakharov 2000; Lvov et al. 2006; Nazarenko 2006).
In the framework of the WTT kinetic equation, the energy cascade is enabled by modes
on the continuous resonant manifold satisfying (for gravity waves)

k1 + k2 = k3 + k, (3.13)

ω1 + ω2 = ω3 + ω, (3.14)

where ω2
i = ki (i = 1, 2, 3). In a finite domain, discreteness of wavenumber and frequency

(imposed by the domain boundary) reduces the manifold defined by (3.13) and (3.14) by
limiting the resonances to discrete points. This discreteness effect can be compensated by
the nonlinear broadening which allows the occurrence of quasi-resonances, characterized
by a modification of (3.14) as

|ω1 + ω2 − ω3 − ω| < Δω, (3.15)

with Δω a nonlinear broadening parameter depending on the nonlinearity level.
One way to quantify the finite-size effect (in particular to measure the nonlinear

broadening and interaction strength) of gravity waves is through a tri-coherence analysis
(see e.g. Pan & Yue (2017) for a bi-coherence study of capillary waves). We first define a
tri-coherence function

T(k, k1, k2) ≡
|〈η̃f (k1, t)η̃f (k2, t)η̃∗

f (k3, t)η̃∗
f (k, t)〉|

〈|η̃f (k1, t)||η̃f (k2, t)||η̃∗
f (k3, t)||η̃∗

f (k, t)|〉 , (3.16)

where k3 ≡ −k + k1 + k2, 〈·〉 denotes the time average (for stationary states) and an
asterisk denotes the complex conjugate. Here η̃f (k, t) corresponds to the free-wave modes,
and is computed by the spatial Fourier transform of ηf (x, t) with the latter obtained after
applying the filter (3.11) to the wavenumber–frequency spectra. By definition, the function
T(k, k1, k2) continuously varies between 0 and 1. In particular, T takes larger values
for quartets closer to exact resonance, with the maximum value of 1 achieved for exact
resonances among k, k1, k2 and k3 satisfying (3.14). In (3.16), we use η̃f instead of η̃

for the evaluation to remove the contamination by bound waves since they result in noisy
values of T not lying in the vicinity of the resonant manifold (as found in previous work
(Pan & Yue 2017)). This operation is also compatible with findings in § 3.3 that bound
waves do not contribute to the general steepening of the spectra (except in the narrow-band
forcing case).

To facilitate the visualization of T , we fix k1 = (40, 40) and k2 = (20, −40) so that
T(k) with k = (kx, ky) can be shown by two-dimensional contour plots. Figure 9 shows
such plots of T(k) in the broad-band forcing case at three different nonlinearity levels.
The results for the narrow-band forcing and free-decay cases are not included due to
their similarity to the presented results (the quantification of broadening and interaction
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Figure 9. The tri-coherence T(k, k1, k2) with k1 = (40, 40), k2 = (20, −40) for broad-band forcing cases
with (a) ε = 0.071, (b) ε = 0.118 and (c) ε = 0.145. The continuous resonant manifold is plotted by (—–, red).
The discrete resonant solutions with k ∈ (Z, Z) are marked by (×, red). The data for generating these figures
are collected from t = 1460Tp to t = 1500Tp in the stationary state. (d–f ) Zoom-in views of (a–c) respectively.

strength for all cases is presented later). Also shown in figure 9 is the continuous resonant
manifold (red lines) satisfying (3.13) and (3.14), and the discrete resonant points (red
crosses) with k only taking integer values. In particular, to compute the resonant manifold
we need to consider the wave travelling direction and the complex conjugate relation for
real functions, with details presented in Appendix A.

From figure 9(a–c) we can see that all significant values of T are concentrated close to
the resonant manifold (as a result of using η̃f in (3.16)). It is also clear that the nonlinear
broadening is visibly wider at a higher nonlinearity level compared with that at a lower
nonlinearity level. The finite-size effect can be further visualized through the zoom-in
views in figure 9(d–f ). At low nonlinearity, figure 9(d) shows discrete peaks of T ∼ O(1)

at only a number of grid points (kx, ky) lying on or very close to the resonant manifold.
This is a direct result of the finite-size effect, as it is in contrast to the situation of T taking
uniform values of 1 on the resonant manifold that can be expected in an infinite domain.
With an increase of nonlinearity level from figure 9(d) to 9( f ), the broadening of the
interaction width overcomes the discreteness in T , alleviating its destructing effect on the
nonlinear interactions.

In addition, the discrete resonant points seem to be sparse on the continuous manifold,
with all four points in each panel of figure 9 as trivial quartet solutions (either with
repetition or symmetry with given vectors of k1 and k2). This sparsity can be further
demonstrated by a numerical analysis which identifies no non-trivial solution with
stretching of the current resonant manifold (see Appendix B). This problem has also
been considered analytically and numerically in Kartashova (2006) and Lvov et al. (2006),
which reach a consistent conclusion on the rareness of the discrete solutions except for two
special types of collinear quartets and tridents (which, however, do not exist in our case
with waves propagating only to the positive x direction). Moreover, the sparsity of discrete
solutions in this case is in contrast to the situation of the ω = k2 MMT dispersion relation
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Figure 10. (a) The characteristic length of nonlinear broadening L̂b and (b) the intensity of nonlinear
interactions I as functions of ε for the free-decay (◦, blue), broad-band forcing (�, red) and narrow-band
forcing (	, green) cases.

studied in Hrabski & Pan (2020). The difference in the structure of the discrete resonant
solutions is the key for the gravity-wave spectra and MMT spectra to show completely
different behaviours at low nonlinearity, with the former deviating from the WTT spectral
slope but the latter approaching the WTT spectral slope.

To further quantify the effect of nonlinearity level on quartet resonances, we define two
measures L̂b and I respectively for the broadening width and overall interaction strength.
For L̂b, we define it as a characteristic width (Pan & Yue 2017):

L̂b ≡
∑

k |Ω̂|T(k)∑
k T(k)

, (3.17)

where |Ω̂| is the normalized frequency mismatch given by |Ω̂| = |Ω|/k−1/2 with Ω ≡
ω1 + ω2 − ω3 − ωk and the denominator k−1/2 estimating the frequency discreteness at k
associated with the wavenumber spacing. In (3.17), the summation is for all the grid points
of k. Thus, L̂b measures the nonlinear broadening around the exact solutions by the first
moment of T(k).

We further define I as
I ≡

∑
k

T(k), (3.18)

which measures the overall interaction strength by summing up contributions from
both resonant and quasi-resonant interactions. We remark that I provides supplemental
information to Lb, because Lb itself does not quantify the dynamics of energy transfer, i.e. a
larger Lb does not mean a stronger energy transfer if the function T becomes more discrete
in the interaction broadening region. In contrast, I provides a measure of the overall
interaction strength accounting for both the finite-size effect and the nonlinear broadening.
Another improved quantification of the interaction strength of exact and quasi-resonances
through a quartet-level decomposition of the energy flux can be found in Hrabski & Pan
(2021).

The characteristic width L̂b and the interaction strength I are plotted as functions of ε

for all cases in figure 10. We can observe a general increase of L̂b and I for increasing
ε, indicating a wider nonlinear broadening and a larger interaction strength with more
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quasi-resonances alleviating the finite-size effect. We remark that this clear behaviour
of L̂b and I is only possible to resolve by using η̃f to evaluate the tri-coherence. The
general trend of L̂b with respect to ε seems to be consistent with the nonlinear detuning
(or correction) of the dispersion relation introduced in Stuhlmeier & Stiassnie (2019),
but the exact relation between the two quantities is yet to be understood. The reduction
of the nonlinear broadening and the interaction strength with decreasing nonlinearity
is consistent with the steepening of spectra and the reduction of energy flux capacity
discussed in §§ 3.1 and 3.2. Therefore, we conclude that the finite-size effect is a major
contributor to the spectral behaviours at low nonlinearity levels (especially for cases with
sufficient spectral bandwidth). Finally, the values of L̂b and I in the narrow-band forcing
case are slightly smaller than in the other two cases for all nonlinearity levels, probably
because of the higher fraction of bound waves (which leads to a larger ε than the other two
cases, but not larger L̂b or I).

4. Conclusions

We conduct numerical simulation of Euler equations to study the surface gravity wave
turbulence in three representative conditions, namely free-decay, narrow-band forcing and
broad-band forcing turbulence. In all cases, We find that the scalings of the wave spectra
with wavenumber and energy flux both approach the WTT solution at sufficiently high
nonlinearity levels. With a decrease of nonlinearity level, steeper spectra and reduced
energy flux capacity can be observed indicating the deviation from WTT, with the largest
deviation rate found in the narrow-band forcing case. Two hypothetical mechanisms for
bound waves and finite-size effect to explain these spectral variations are investigated. For
bound waves, we elucidate their generation mechanisms through a spatiotemporal analysis
(which generalizes the previous study of this topic) and find that their fraction generally
decreases with a decrease of nonlinearity level except for the narrow-band forcing case.
This suggests that bound waves only account for the rapid deviation from WTT in the
narrow-band forcing case (but not for the other two cases). For the finite-size effect,
we perform a tri-coherence analysis and find that both the nonlinear broadening and
interaction strength decrease with a decrease of nonlinearity level, which accounts for the
deviation from WTT at low nonlinearity levels in all cases of our simulation. We finally
remark that cautions have to be taken in applying these numerical findings to experiments
due to the additional complexity inevitably involved in the latter.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Yulin Pan https://orcid.org/0000-0002-7504-8645.

Appendix A. Computation of resonant manifold in figure 9

We start by considering a (quasi-)stationary wave field described by

η(x, t) =
∑

i

Ai exp(i(κ i · x − ωit)) + A∗
i exp(−i(κ i · x − ωit)), (A1)

where Ai = |Ai| eiφi ∈ C and ωi ∈ R+. Since the wave fields in our simulations generally
only contain waves travelling to the positive x direction (due to the setting of initial
condition and forcing), for each mode in (A1) we have κix · ωi > 0 so that κ i = (κix, κiy) ∈
(R+, R).
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i(a) (b)ii

o

kx < 0,

k3x > 0
kx > 0,

k3x < 0

Ωd = 0

Ωd = 0

kx > 0,

k3x > 0

k1

k2

iii i ii iii

Figure 11. (a) Sketches of the three situations under discussion. Vectors k1 and k2 are indicated in the figure;
k and k3 are denoted by red and yellow arrows. The two vertical lines mark the boundaries of situations (i), (ii)
and (iii) in the discussion. (b) The solution in situation (ii) as denoted by red lines (ellipse bounded by the two
vertical lines).

Considering η̃(k, t) with k ∈ (R, R) as the spatial Fourier transform of η(x, t), we can
see that

η̃(ki, t) =
{

Ai e−iωit, kix > 0,

A∗
i eiωit, kix < 0.

(A2)

Substituting (A2) into (3.16), we obtain

T = |〈exp(i(−Ωdt + Φd))〉|, (A3)

where Φd = φ1 + φ2 − φ3 − φ and

Ωd = sgn(k1x)ω1 + sgn(k2x)ω2 − sgn(k3x)ω3 − sgn(kx)ω, (A4)

with

sgn(x) =
{

1, x > 0,

−1, x < 0.
(A5)

In our case, we have k1x = 40 > 0, k2x = 20 > 0 and k3x = k1x + k2x − kx = 60 −
kx, so that (A4) is reduced to Ωd = ω1 + ω2 − sgn(60 − kx)ω3 − sgn(kx)ω. We are
interested in the case of Ωd = 0, which results in T = 1 indicating the resonant manifold.
Whether Ωd = 0 can be realized needs to be discussed in the following three situations
(summarized in figure 11a):

(i) For kx < 0, we need Ωd = ω1 + ω2 − ω3 + ω = 0 which has no solution (for ω ∈
R+) on the (kx, ky) plane.

(ii) For 0 < kx < 60, we need Ωd = ω1 + ω2 − ω3 − ω = 0 which has solutions shown
as an ellipse bounded by kx = 0 and kx = 60 in figure 11(b). These solutions
correspond to the resonant manifold shown in figure 9.

(iii) For kx > 60, we have Ωd = ω1 + ω2 + ω3 − ω = 0 which has no solution on the
(kx, ky) plane.

In summary, the resonant manifold shown in figure 9 corresponds to the second case
above, which is the only possibility to have solutions in Ωd = 0 for a wave field travelling
to the positive x direction.
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Appendix B. Sparsity of the discrete resonant solutions

We count the number of discrete resonant solutions as in figure 9, but with stretched k1 and
k2. The purpose is to demonstrate the sparsity of discrete resonances with the expansion
of the resonant manifold. In particular, we define k1 = λ(40, 40) and k2 = λ(20, −40),
where λ is a factor of stretching, and compute the number of exact resonances N as a
function of λ. For λ varying from 1 to 10, our numerical searching algorithm gives N = 4
always, indicating that no non-trivial solution can be identified. While this numerical study
is presented for k1 and k2 in particular directions, we have also tested other directions to
confirm that the exact resonances are indeed sparse for gravity waves.
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