
J. Austral. Math. Soc. Ser. B 30(1989), 326-342

CONSTRAINT QUALIFICATIONS IN INPUT OPTIMISATION

M. VAN ROOYEN1, M. SEARS1 AND S. ZLOBEC2

(Received 21 September 1987; revised 22 March 1988)

Abstract

We introduce assumptions in input optimisation that simplify the necessary con-
ditions for an optimal input. These assumptions, in the context of nonlinear
programming, give rise to conceptually new kinds of constraint qualifications.

1. Introduction

Constraint qualifications in nonlinear programming are conditions on the con-
straints that guarantee positiveness of the leading Lagrange multiplier (corre-
sponding to the objective function) in the necessary conditions for optimality.
Many papers have been written about constraint qualifications (abbreviation:
CQ) particularly in the late sixties and in the seventies (see, for example, [9],
[13], [14], [15], and [16]). Even in the cases when no such extraneous condition is
needed, CQ may significantly simplify the theory and the numerical effort. For
example, the BBZ complete characterisations of optimality in convex program-
ming (see [2] and [3]) do not require any CQ. However, if a CQ, such as Slater's
condition holds, the BBZ theory is significantly simplified and it recovers the
classical KKT theory (of Karush [11] and Kuhn and Tucker [13]).

Recently a conceptually new level of optimisation, termed "input optimisa-
tion", has been formulated (see [23], [24], [25]). In input optimisation one is

1 Department of Computational and Applied Mathematics, University of the Witwatersrand,
Johannesburg, South Africa 2001.
2Department of Mathematics and Statistics, McGill University, Burnside Hall, 805 Sherbrooke
Street West, Montreal, Quebec, Canada H3A 2K6.
© Copyright Australian Mathematical Society 1989, Serial-fee code 0334-2700/89

326

https://doi.org/10.1017/S0334270000006275 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006275


[2] Constraint qualifications 327

concerned with mathematical models of the form

Mm{x)f°(x,0)

s.t. f(z,$)<0, «e5» = {l m} (P,0)
0€l.

Here we assume that f3 : Rn x Rp —> R are continuous functions, f3 (•, 0): Rn —>
i? are convex, j € {0} U &>, and / C Rp is a convex set. Such models are
termed convex models. (Note that for a fixed 6, the model (P, 9) becomes a
usual mathematical program.) With every "input" (parameter) 0, we associate
the "output" triple, that is

the feasible set;
F(9) =

the set o/ optimal solutions x(9), and

the optimal value. Suppose that the model is currently (initially) running with
some input 6 = 0°. The main objective of input optimisation is to optimise the
optimal value function /(#), from 0 = 0°, by "stable" (that is, output continuous)
perturbations of the input 0. The result is an optimal input 0*, that is, an input
9* with the property that

Kn < ho)
for every 0 € N(0*) D S{0*), where N(0*) and S{0*) are, respectively, some
neighbourhood of 9* and a region of stability at 9* (see Definition 2.1 below).
The corresponding program (P, 9*) is termed an optimal realisation of the model
[P,0). Note that 0* and (P, 0*) depend on the initial 0°, that is, determination
of an optimal input is not generally a unique process.

Recently, a complete characterisation (that is, no CQ of any kind required) of
an optimal input with respect to an arbitrary path-connected region of stability
was given in [19] for convex models. The result, as expected, is complicated.
Under the so-called "input constraint qualifications" (ICQ), the complete char-
acterisation is significantly simplified and we recover the results from [22], and
[25] (in Section 2). The main objective of this paper is to introduce a new kind of
ICQ's, termed "modified input constraint qualifications" (MICQ). Under these
conditions, we obtain yet another new and essentially different simplified form
of necessary conditions for an optimal input (in Section 3). Then we show how
ICQ's and MICQ's affect upper semicontinuity of various Lagrange multipliers,
considered as point-to-set mappings (in Section 4), and we use these results to
derive necessary conditions for an optimal input for differentiable functions (in
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328 M. van Rooyen, M. Sears and S. Zlobec (3)

Section 5). The novelty is that our results are stated here for convex, rather
than for more restrictive bi-convex, models. The results of this paper are readily
applicable to the nonlinear (nonconvex) programs

Mmf°(z)
s.t. f(z)<0, ie&>,

whenever, after identification z = (x,0), the resulting "model" (P, 0) is convex.
Since a locally optimal solution of (P) is necessarily a locally optimal input (but
not vice versa!) we know that the necessary conditions for optimal inputs are
also necessary conditions for optimal solutions. This means that we can state
necessary conditions for a locally optimal solution of (P) without assuming any
CQ! If an ICQ or an MICQ happens to be satisfied, then the necessary conditions
for a locally optimal solution of (P) are simplified. The two conditions, ICQ
and MICQ, are generally incomparable. They are a genuine product of input
optimisation and a point-to-set approach to mathematical modelling and, as
such, they do not seem to have counterparts in the usual theory of mathematical
programming. We shall finish the paper by illustrating some of the above ideas on
a well-known "pathological" program of Kuhn and Tucker. After an appropriate
splitting z — (x,6), the nonconvex program becomes a convex model to which
all our results are easily applicable.

Finally, let us note that the results of this paper can be readily extended to
the study of multi-objective mathematical programming models over regions of
stability. One may use the approach recently suggested in [24]. However, it
is not clear whether and how the results of this paper can be extended to the
models with generalised convex functions.

2. Preliminaries

The notion of stability in input optimisation is centred around the point-to-
set mapping T: 0 —> F(6). Following [24] and [28] we say that a set 5 C Rp is a
region of stability at 0* e S if the point-to-set mapping T is lower semicontinuous
at 6* over S. This will be now formalised.

2.1 DEFINITION. Consider the convex model (P, 6) at some 6* el. A set S C Rp

is a region of stability at 8* e S if, for each open set $/ C Rn satisfying

there exists a neighbourhood N(0*) of 0* such that

sf n F{6) # 0

for each 0 € N{9*) n S.
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Lower semicontinuity of a point-to-set mapping is equivalent to its openness
(see [1], [4] and [10]). On the other hand, the mapping T is always closed for
our (P, 9), so T is continuous (in the sense of, say, Hogan [10]). This means
that lower semicontinuity guarantees continuity. On the regions of stability the
optimal solution mapping

f: 0->F(0)

is closed and the optimal value function f{0) is continuous at 9* for every realistic
objective function. We recall the definition from [18] and [25].

2.2 DEFINITION. Consider the convex model (P, 0) at some 0" € / . The objective
function f° is realistic if F(9*) / 0 and bounded).

The complete characterisation of an optimal input 9* is given in terms of the
mapping

> : 0 - » F f ( 0 ) ,

where

F7(0) = {x:f(x,0)<0, te^=(n}

and
&>=(0) = {i€&>:xeF(0) =>fi(x,0)=O}.

We shall also use the related set

All our optimality conditions use the restricted Lagrangian, defined close to
9* E / by

Lf(x,u;9) = f°(x,9) + £ «,/*(*,*), (2.1)

where, for the sake of simplicity, we use the abbreviation

We shall also denote by /?+ ' the non-negative orthant of the q(9") =
ca.rd£B<(9*) dimensional Euclidean space.

There is still one small technical problem: in what follows, there will appear
three different necessary conditions for optimality, each expressed in terms of
the Lagrangian (2.1). However, the saddle-point inequalities will be restricted to
different sets in the variable x, resulting in three essentially different Lagrange
multiplier functions. For the lack of reasonable notation, and to make things
as clear as possible, we shall replace "«" by "A" in (2.1), but only in the char-
acterisation of optimality, and use different u's in the two remaining necessary
conditions.
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We recall the characterisation from [19]:

2.3 THEOREM. Consider the convex model (P, 9) with a realistic objective func-
tion at some 9* G I. Let x{9*) be a corresponding optimal solution and let S be
an arbitrary path-connected region of stability at 9*. Then 9* is a locally optimal
input with respect to S if, and only if, there exists a neighbourhood N(6*) of 0*
and a non-negative vector function

such that, whenever 0 G N($*) n S,

L?(x(0*),\;0*) < L<(x{9*),A(0');9*) < L<(x,A(0);9)

for every A 6 i?+ and every x G F^(9).

Examples exist showing that the above result does not generally hold at op-
timal inputs with respect to "unstable" regions.

The above result is not always easy to use to check optimality, so one may
introduce an ICQ to simplify things. Following [22], and [25], an ICQ for the
convex model (P,9) at 6* G /, with respect to a region of stability S(9*), is
a condition on the constraints of the model with the property that for every
6 G N{0*) ("1 S{9*), where N{0*) is a neighbourhood of 9", the system

f°(x,$)<f{n
f(x,6)<0, ie&><{9*) (C,9)

xeF=(9m)

is inconsistent. For some regions of stability, such as

W{0*) = {0: F=(0*) C F=(0), ^>={e") = &>=(9)} n /

and

Vi(tf') = {0: F=(0*) C F=(0) and f{x,9) < OVz G F=($*),

it is easy to show that the system (C, 0) is always inconsistent at an optimal input
0*. (The system (C, 9*) is also inconsistent for every mathematical program
(P, 0*).) But for more general regions of stability, such as

') = {0:F{0*) CF=(9) and f\x,9) < OVx G F{9*), i G 9>={
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the inconsistency of (C, 0) may not be easy to establish. In this case we use
various "sufficient conditions" for ICQ such as

"For every 0 € N(0*) n Z(0*), where N{0*) is a neighbourhood
of 0*, and for every x €E F~(0*) such that

f{x,0)<O, ie^><{0*)

it follows that

fl{x,0*)<O, iG^0<{e*y\

This (nontrivial!) condition, called ICQ1 in the literature [22], is an ICQ for
Z(0*). In particular the famous CQ of nonlinear programming:

"There exists x* such that f{x*,0*) < 0, t e ^" '

(the so-called Slater condition) is also an ICQ. Note that ICQ1 does not seem
to have a known counterpart in usual nonlinear programming. If an ICQ holds,
then the necessity part from Theorem 2.3 can be significantly simplified. We
recall the result from [22]:

2.4 THEOREM. Consider the convex model (P, 0) with a realistic objective func-
tion at some 0* € / . Let i{0*) be a corresponding optimal solution. Suppose that
0* is a locally optimal input with respect to a region of stability S(0*) and that
an input constraint qualification is satisfied at 0* with respect to S(0*). Then
there exists a neighbourhood N{0*) of 0* and a non-negative vector function

such that, whenever 0 G N{0*) n S{0*),

Z,<(*(n,«;O < Lf(x(0*)^(0');0*) < L<{x,V{0);O) (2.2)

for every u £ R9^ ' and every x € F=(0*).

Since the sets F= (0*) and F= (0) are generally incomparable on a region of sta-
bility, the two conditions are different and so are their Lagrange multiplier func-
tions. Note that S(0*), in Theorem 2.4, is not required to be a path-connected
set.

3. Modified input constraint qualifications

We introduce a new kind of ICQ's referred to below as "modified input con-
straint qualifications" (MICQ).
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3.1 DEFINITION. Consider the convex model {P,0), with a realistic objective
function at some 6* e / , and let S{6*) be a region of stability at 9*. A condition
on the constraints of the model (P,9), with the property that for every 9 €
N(9*) n S{9*) where N{9*) is a neighbourhood of 6*, the system

f°(x,9)<f(n
r{x,9)<0, i&^><{9*) (MC,9)

xeF=(9)

is inconsistent, is called a modified input constraint qualification.
Since the sets F~{9*) and F~{9) are generally incomparable on regions of

stability, ICQ's and MICQ's are essentially different conditions on the constraints
of the model (P, 6). In other words, there are situations where an ICQ is not an
MICQ and vice versa.

The following three conditions are easily verified to be MICQ's. There is a
neighbourhood N(9*) of 9* such that for every 9 € N(9*) fl S(9m):

MICQ1: ufl{x,9) < 0 , i e ^ = ( « ' ) \ ^ = ( f l ) for every x € F= (<?)";
MICQ2: "&>={9)=&>={9*)n;
MICQ3: "The constraints /•, i e &°=(0*) do not depend on 0".
Because of the continuity of the constraints it is obvious that MICQ3 is also

MICQ2. Clearly MICQ2 is stronger than MICQl. So it suffices to show that
MICQ1 is MICQ.

3.2 LEMMA. Consider the convex model (P, 9) with a realistic objective function
at some 9* € / . Suppose that 9* is a locally optimal input with respect to a region
of stability S(9*). Then there is a neighbourhood N(9*) of 9* where the condition
MICQl is a modified input constraint qualification.

PROOF. If such a neighbourhood did not exist, we could find sequences 9k e
S(9*), 9k — 9* and xk = xk{6k) e F=(9k) such that

f°(xk,9k)<f(9*) (3.1)

and
fi{xk,9k)<0, i

But

r{xk,9k)<o, ie^B

by the condition MICQl. Hence xk € F(9k) and (3.1) implies

f(0k)<f°(xk,9k)<f(9*) (3.2)

contradicting local optimality of 9*.
It is obvious that on any region of stability S(0"), where F=(9*) C F=(9), any

MICQ is also ICQ. On the other hand, if on a region of stability F=(9) C F=(0*)
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then the opposite is true. The two conditions coincide on the regions of stability
where locally F={9) = F=(0*). Note that ICQ1 is not necessarily ICQ on an
arbitrary region of stability. However, on such a region an MICQ may be satisfied.

Also note that MICQ1 always holds on the set

R2(0*) = {9: fi(x,9)<0Vx&F={9), i e0>={9*) \&>={9)} Hi,

which is a region of stability, provided that the point-to-set mapping 7: 9 —>
F=(9) is lower semicontinuous at 9* (see [18]). (The region i?2 was used recently
to prove stability of the Charnes-Cooper tests for efficiency of multiple-input
multiple-output decision making units in data envelopment analysis, see [5].)

Now we are ready to use an MICQ to state a new necessary condition for an
optimal input.

3.3 THEOREM. Consider the convex model (P, 9) with a realistic objective func-
tion at some 9* € / . Let x{9*) be a corresponding optimal solution and let S(9*)
be an arbitrary path-connected region of stability at 9*. If 9* is a locally opti-
mal input relative to S{6*), and if a modified input constraint qualification holds
at 6* relative to S(9*), then there exists a neighbourhood N(9*) of 9* and a
non-negative vector function

such that, whenever 9 G N(9*) n S(9*),

L<(i(9*),u;9*) < L<(x(P),

for every u e R^ ' and every x e F= (9).

(3.3)

PROOF. The proof is similar to those of Theorems 2.2 and 2.3. It has two parts:
First, assuming (without loss of generality) that ^a<(6'*) = {1,... ,q(9*)}, for
an arbitrary but fixed 9 6 iV(#*) n S(9*), we construct the following two sets in

Ki(0)={y.y>

and

for at least one x € F~ (9)

0

0
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The two sets are convex (note that F~{0) is convex) and, because an MICQ
holds, it follows that

Ki{6)C\K2 =0

for every 0 in a sufficiently small neighbourhood N(0*).
In the second part of the proof we separate K\ (9) and K-i. There exists a

nonzero vector a — a{9) G Ri(e')+1 and some scalar a = a(9) such that (we use
the inner product notation)

( a , y x ) > a > ( a , y 2 ) (3.4)

for all y1 G Ki{9) and all y2 G c\K2 (closure of K?). In particular, after
specification of y1 and y2, (3.4) yields

ao/(n<ao/°(z,0)+ £ aiP{x,e). (3.5)

Now we claim that ao > 0. Otherwise ao = 0 and

aif
i(x,6)>0 (3.6)

for every x G F=(9). In particular, (3.6) must hold for every

xe re l intF(0).

But for these points
/'CM) <0, i€^><{0). (3.7)

Now we use the fact that for every small perturbation in a path-connected region
of stability we must have ^><{6*) C &<{&); see [18] and [21]. So (3.7) implies

fi{x,6)<0, i€Ss<{9*)

which, together with the fact that not all Oj's are zero, contradicts (3.6). The
claim is proved.

Now, after division by ao and using the notation

U = {ui)&R«e'\ Ui = a,/a0, i

we can rewrite (3.5) as

The rest of the proof (i.e., establishing the fact that /(<?*) = L<(i{0*), U{6m); 0*)
and the left-hand side inequality in (3.3)), is standard and it is omitted here.
(See [22] and [25] for details.)

In view of Theorem 2.3 in [22], the existence of a saddle point (i(0*), U(0*)),
satisfying the inequalities (3.3) for every u e i?+ and every x G F=(0), is a
sufficient condition for an optimal input. This means that, in the presence of an
MICQ, Theorem 3.3 gives a characterisation of an optimal input.
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Note that, for a fixed 0 = 6*, the system (MC, 0) is inconsistent. In this very
special case, the above characterisation (as well as the previous two) recovers a
complete characterisation of an optimal solution x{0*) for the convex program
(P,0*) from the BBZ theory.

Finally, let us note that the set of Lagrange multipliers A(0) and U{0) are
comparable for 0 € N(0*) D S(0*), where N(0*) is some neighbourhood of 0*
and S(0*) is a path-connected region of stability. Since on such regions £P~{0) C
&>=(0m), it follows that Ff(0) C F=(0) and hence 17(0) C A{0).

4. Upper semicontinuity of the Lagrange multipliers

In this section we establish conditions for upper semicontinuity of the three
kinds of Lagrange multiplier functions appearing in the three necessary condi-
tions for an optimal input, namely A, ^ , and U. (Recall Theorems 2.3, 2.4, and
3.3.) We shall consider these multipliers as point-to-set mappings, that is

A: 0 -> A(0) = {\i(6): i e ^><{9*)}

etc. Following Berge [4] we recall that a point-to-set mapping A: Z —> X, be-
tween two topological vector spaces Z and X, is upper semicontinuous at 6* € Z
if for each open set j / c l , satisfying A(0*) C J / , there exists a neighbourhood
N{9") of 0* such that

A(0) C sf for each 0 e N{9").

The upper semicontinuity of our three mappings will follow from the two facts:
(i) uniform boundedness of A(0) for all 0's sufficiently close to 9* and (ii) the fact
that A is a closed mapping at 9* (that is, for every sequence 9k -* 0* and every
Afc € A(0fc), such that Xk converges to some A*, it follows that A* G A(0*)), by
the results of Hogan [10].

First we recall the result about the Lagrange multipliers A (appearing in
Theorem 2.2) for the sake of completeness.

4.1 THEOREM [19]. Consider the convex model (P, 0) with a realistic objective
function at a locally optimal input 0* £ I with respect to a path-connected region
of stability S{0m).

(i) Then, for an arbitrary sequence 9k 6 S{0*), 0k —* 0*, the sequence A(0k) =
{A,(0fc): i £&><{9*)} is uniformly bounded for all sufficiently large k's.

(ii) // the point-to-set mapping 7.: 9 —• F*= (9) is lower semicontinuous at 9*,
relative to S{9*), then for an arbitrary sequence 0k e 5(0*), 0k -» 0*, the set of
limit points of the sequence A(0fc) is nonempty and it is contained in A(0*).
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REMARK. The first statement of the theorem also holds for the other two La-
grange multiplier functions ^ and U. The proof is essentially the same as the
one used for A and it is based on the one recently given in [17] for particular
regions of stability. The second claim remains valid also for ^ and U, but with
minor modifications in the assumptions. In the case of % the assumption on
lower semicontinuity of the mapping 7* can be omitted, while this requirement
is replaced by the one on lower semicontinuity of the mapping 7: 9 —* F= (9) in
the case of U. Let us formalise these claims.

4.2 THEOREM. Consider the convex model (P, 9) with a realistic objective Junc-
tion at a locally optimal input 9* G I with respect to a region of stability S(9*).
Suppose that an input constraint qualification holds at 9* relative to S(9*). Then,
for an arbitrary sequence 0k € S(6*), 0k —* 9*, the set of limit points of the se-
quence %/(9k) is nonempty and it is contained in "2/(9*).

PROOF. The existence of limit points follows from the statement (i) in Theorem
4.1 and the above Remark. So, suppose that for some uk G %f(9k) we have
uk —> u, as 9k —* 9*. Clearly u G i?+ , so we can specify u — u in (2.2) to
obtain

L<{x{9'),u-X) < L<(x,^(9);9) (4.1)

for every x G F=(9*), whenever 9 € N(9*) C\ S{9*). We will use this inequality
later in the proof.

The inequalities (2.2) also give

after specification x = x{9*) € F{9*) C F={9*), and in the limit

9*),u;9*) (4.2)

for every u € R+ . It remains to prove that

L<{x(0')tu;0*)<L<(x,u;0*) (4.3)

for every x G F=(0*). If this was not true, we would have

Lf{x{e*),u;0')>L<{x,u;9*) (4.4)

for some x E F=(9*). This would further imply that

L<{x{6*),u;9*) > L<{x,uk;9k)

for all sufficiently large fc's in some sequences uk —> u and 9k —* 9*. But this
contradicts (4.1). The inequalities (4.2) and (4.3) show that (x(9*),u) is a saddle
point for 0 = 0*, which completes the proof.
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4.3 THEOREM. Consider the convex model {P,9) with a realistic objective func-
tion at a locally optimal input 0* G I with respect to a path-connected region of
stability S(0*). Suppose that a modified input constraint qualification holds at
0* relative to S(0*). Also, suppose that the point-to-set mapping 7: 0 —* F=(0)
is lower semicontinuous at 0* relative to S(0*). Then, for an arbitrary sequence
0k € S(0*), 6k —» 6*, the set of limit points of the sequence U(9k) is nonempty
and it is contained in U(0*).

PROOF. The existence of limit points follows by the same arguments as in the
proof of the preceding theorem. Also, using uk e U(0k) such that uk —> u, as
0k -> 0*, we find that the modified (4.1) holds:

Lf(x(9*),u;0*)<L<(x,U(O);O) (4-5)

for every x € F=(0), whenever 0 € N(0*)nS{6*). But the inequalities (3.3) also
give

L<{x{0*),u-X)<L<{xk,U{0k);0k)

for every xk E F(0k) C F={0k) and every u e RQ
+

{r). For those xk -> i{0*), as
0k —> 0*, this gives in the limit (4.2), which is one of the two required saddle-point
inequalities.

It is left to prove that also (4.3) holds for every x e F=(0*). If this was not
true, there would exist an x € F=(0") such that (4.4) holds. But, since the
mapping 7 is assumed lower semicontinuous (and hence open), we know that
the sequence 0k —> 0*, 0k E S{0*), for which uk —> u, generates some sequence

xk _ 2-fĉ fc) _> ^ xk e F=(9k). Hence it follows that the strict inequality (4.4)
implies

L?(i(O*),u;0*)>L?(xk,uk;0k)

for all fc's sufficiently large. But this contradicts (4.5).

5. Necessary conditions for differentiable functions

A major difficulty in obtaining necessary conditions for the model (P, 0) with
differentiable functions, from the saddle-point conditions, is that the Lagrange
multiplier functions are not generally continuous. This problem has been partly
resolved in the preceding section and we are now in a position to move towards
difFerentiable versions of the optimality conditions. The simplest result will again
be given for the models satisfying an ICQ. In this case no extra conditions will
be required. If no ICQ of any kind is required, or if an MICQ is required, the
results will be proved only on particular subsets of an arbitrary region of stability
S(0"), such as

Si(0*) = {0: F{9*) c F=(0)}nS(0*)

https://doi.org/10.1017/S0334270000006275 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006275


338 M. van Rooyen, M. Sears and S. Zlobec [13]

and

S2(6*) = {9: F{0*) c F={9)} n S{9*).

For other versions of optimality conditions for the bi-convex models, proven
under different assumptions (such as the "index condition") the reader is referred
to [25] and [27].

We need more notation. The conditions will be stated in terms of the polar
sets of points related to the unit ball, namely

and

We recall that the polar set of a set K is denned by

K+ = {u: (u,x) > 0 for every x € K}

where (u,x) = uTx is the Euclidean inner product. It is well known that the
polar is a closed convex cone regardless of the nature of if. In fact, we will use
the derived set of B(0*), that is the set of all limit points of B{9*), as 0 e S(9*),
0 ^ 6*, 0 -* 0*. We will denote this set by B'{0*). Also the derived sets of
Bi(6*) and B2(0*) will be used (with sequences taken from Si(0*) and S2(0*),
respectively).

First, for the sake of completeness, we recall a result (proven in [19]) for the
models that do not require any ICQ or MICQ.

5.1 THEOREM. Consider the convex model (P, 9) at some 0* € I with a realistic
objective function. Let {x(0*),A(0*)} be a unique corresponding saddle point and
let the functions f>(x{0*), •), j € {Q}\j30<{9*) be differentiable. Let Si{6*) be an
arbitrary path-connected region of stability at 9* and let the point-to-set mapping
7*: 9 —> F=(9) be lower semicontinuous at 9" relative to Si(9*). If 9* is a locally
optimal input with respect to Si(9m), then

;0)le=0- e {B[(9*)}+.

Essentially the same formula holds for the other two cases with the only change
that A(0*) and Bi(9*) are substituted by the appropriate terms. However, the
assumptions also change.
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5.2 THEOREM. Consider the convex model (P,0) at some 0* € / with a realistic
objective function. Suppose that 0* is a locally optimal input with respect to
a path-connected region of stability S2(0*) and suppose that a modified input
constraint qualification holds at 9' relative to S2(0*). Let {i(0*),U(0*)} be a
unique corresponding saddle point and let the functions f:'(x(0*),-), j € {0} U
&><(9*) be differentiable. Also assume that the point-to-set mapping 7: 9 —*•
F=(9) is lower semicontinuous at 0* relative to £2(0*)- Then

VeLf(x(0*),U(0*);9)\e=e- € {B'2(9*)}+.

PROOF. The proof is similar to the one given for Theorem 5.1. The basic
difference is that it uses Theorem 4.3 (rather than Theorem 4.1) and refers to 7
(instead of 7,).

It is interesting to observe that the simplest necessary condition is obtained
in the presence of an ICQ and that no assumptions on 7 or 7, are needed.

5.3 THEOREM. Consider the convex model (P, 9) at some 0* € / with a realistic
objective function. Suppose that 0* is a locally optimal input with respect to a
region of stability S(0") and suppose that an input constraint qualification holds
at 0* relative to S(0*). Let {x(0*), 1/(0*)} be a unique corresponding saddle point
and let the functions f(x(9*), •), j € {0} USS<(0*) be differentiable. Then

e=9- € {B'(0*)}+.

PROOF. Specify x = x(0*) in (2.2) to obtain

),*) (5-1)

for every 9 e N(9*) D S{9*), where N(9*) is some neighbourhood of 9*. After
adding the terms

to (5.1) and rearranging, we have

f°(x(o*),o)-f°(x(n,n + E &i
t6^a<(9-)

(5.2)
Let / be an arbitrary point from B'(0*). Then

l = !™~W^n (5-3)

for some sequence 0k G S(9*), 9k —• 0*. But we know that for this sequence (or
some subsequence) the limits

lim <%i{0k), ieSB<(0*) (5.4)
k—»oo
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exist, by Theorem 4.2. It remains to use the differentiability assumption in (5.2)
to write

After division by \\9 - 9*\\ > 0, setting 0 = 0k and letting k —> oo, using (5.3)
and (5.4), uniqueness of the saddle point, and the definition of the polar set, we
obtain the desired formula.

6. An example

Let us illustrate some of the above ideas on a classical program of Kuhn and
Tucker [13].

6.1 EXAMPLE. Consider the non-convex program

s.t.

f1 = (xX - I)3 + X2 < 0

f2 = - x i < 0

f3 = -X2 < 0.

The optimal solution is x\ = 1, x% — 0. A pecularity with this program is that
neither a CQ nor the KKT conditions hold at the optimal solution. In particular,
the classical Lagrange multipliers do not exist.

However, after the specification xt = 6, x2 = x, the above program can be
considered as the convex model

Min(x) f° = -6

s.t.
/ ! = (0 - 1)3 + x < 0

/2 = -e < o
/ 3 = -x < o.

The region of stability at 6* = 1 is S{9*) = [0,1]. We want to check whether
0* = 1 is an optimal input relative to S(8*), using the restricted saddle points.

First, we find that SB<{e*) = {2} and hence

L<(x,A;0) = -9[l + X2(0)}.

The point-to-set mapping 7,: 9 —* F,= (0) is here determined by

Fr(9) {x:0<x<(l8)3}
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The saddle-point characterisation from Theorem 2.2 reduces to

-1 <-0[l + \2{0)]

for every 0 < 6 < 1. This determines the Lagrange multiplier function

0 < A2(0) < (1 - 6)/6 (6.1)

for 6 < 1 and close to 6* = 1. In particular, one can specify

It is easy to verify that the Lagrange multiplier functions, satisfying the saddle-
point inequality of Theorem 2.2, do not exist at any other 6, so 6* = 1 is a unique
optimal input. Since both ICQ and MICQ are satisfied, the same conclusion also
follows using the results such as Theorems 2.3 and 3.3. Finally, using Theorem
4.1 and the remark that follows it, we conclude that the Lagrange multipliers
A2 = A2(0

fc) are uniformly bounded, as 6k G S(6*), 6k —* 6*, and the limit points
are contained in {A2(0*)}. Indeed, as 9k < 1, 6k -* 1, all sequences chosen from
the interval (6.1) are uniformly bounded sufficiently close to 6* — 1 and here
they have only one common limit point that in fact equals A2(0*) = 0.

Finally, let us note that in this situation one can also use the results for
differentiable functions from Section 5.

The results of this paper are applicable to every nonlinear program (P) which,
after an appropriate splitting of the variable z, can be identified as a convex
model. Using Theorems 2.3, 2.4, 3.3, 5.1, 5.2 and 5.3, necessary conditions for a
locally optimal solution can be formulated as necessary conditions for a locally
optimal input, of the corresponding convex models, with or without an input
constraint qualification.
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