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Abstract We consider a non-local filtration equation of the form

ut = ∆K(u) + λf(u)
( ∫

Ω
f(u) dx

)−p

and a porous medium equation, in this case K(u) = um, with some boundary and initial data u0, where
0 < p < 1 and f, f ′, f ′′ > 0. We prove blow-up of solutions for sufficiently large values of the parameter
λ > 0 and for any u0 > 0, or for sufficiently large values of u0 > 0 and for any λ > 0.
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1. Introduction

In this work we prove existence, uniqueness and blow-up of solutions of the following
non-local initial boundary-value problem:

ut = ∆K(u) +
λf(u)

(
∫

Ω
f(u) dx)p

, x ∈ Ω, t > 0, (1.1 a)

B(u) :=
∂K(u)

∂n̂
+ β(x)K(u) = 0, x ∈ ∂Ω, t > 0, (1.1 b)

u(x, 0) = u0(x) > 0, x ∈ Ω, (1.1 c)

where n̂ is the outward-pointing unit normal vector field and Ω is a bounded domain
of R

N with sufficiently smooth boundary ∂Ω. We impose positive initial data in order
to avoid degeneration of solutions of (1.1). Also, it is sufficient for the classical solution
u0 ∈ L∞(Ω). We introduce boundary conditions of the form B(u). These types of condi-
tions are a consequence of Fourier’s law for diffusion and conservation of mass, or heat
conduction and conservation of energy. The usual type of boundary condition of the form
∂u/∂n̂ + β(x)u = 0 seems not to have any physical significance. Here 0 � β = β(x) � ∞
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is C1+α(∂Ω), α > 0, whenever it is bounded (β ≡ 0, β ≡ ∞ and 0 < β < ∞ mean Neu-
mann, Dirichlet and Robin boundary conditions, respectively; we may also have mixed
boundary conditions). λ and p are positive parameters with p ∈ (0, 1) and f satisfies

f(s) > 0, f ′(s) > 0, f ′′(s) > 0 for s � 0, (1.2 a)∫ ∞

b

ds

f1−p(s)
< ∞, (1.2 b)

for some b � 0, e.g. f(s) = (1 + s)1+k for k > p/(1 − p) or f(s) = es. The function
K = K(s) ∈ C3(R+) satisfies either

K(s), K ′(s), K ′′(s) > 0 for s � 0 (1.3 a)

or

K(s), K ′(s), K ′′(s) > 0 for s > 0 with K(0) = K ′(0) = K ′′(0) = 0; (1.3 b)

examples of such functions are K(s) = es or K(s) = sm, respectively (see also [10], [14,
Chapter VI] and [18]). Condition (1.3), together with positive initial data and the use of
comparison, implies positive classical solutions (see § 2).

Problem (1.1) is the so-called non-local filtration (or generalized porous medium) prob-
lem. If K(u) = um, m > 1, m ∈ R, then (1.1) becomes the non-local porous medium
problem:

ut = ∆um +
λf(u)

(
∫

Ω
f(u) dx)p

, x ∈ Ω, t > 0, (1.4 a)

B(u) =
∂um

∂n̂
+ β(x)um = 0, x ∈ ∂Ω, t > 0, (1.4 b)

u(x, 0) = u0(x) > 0, x ∈ Ω. (1.4 c)

Our motivation to address (1.4), concerning the conduction term ∆um (or ∇·um−1∇u),
comes from [19]. In [19], the plasma-heating equation

ut = (u3ux)x + λf(u)
( ∫ 1

−1
f(u) dx

)−2

is used; more precisely, the conduction term (u4)xx or (u3ux)x is introduced, where
the term u3 accounts for heat transport dominated by thermal radiation by assuming
the Stefan–Boltzmann law for emission of thermal radiation. Actually, (1.4 a) is a gen-
eralization of the plasma-heating equation. Problem (1.1) can also be considered as a
generalization of (1.4).

On the other hand, if u represents the fluid density of a compressible fluid through a
porous medium, then Darcy’s law can lead to the equation

ut = ∇ · σ(u)∇u, σ(u) = K ′(u), (1.5)
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which is again the filtration equation. For the latter equation, specializing to an isother-
mal perfect gas, we can obtain the porous medium equation:

ut = ∇ · (um∇u), m > 0 or ut = ∆um, m > 1. (1.6)

Equation (1.6) also models the thickness u of a viscous drop spreading under gravity over
a horizontal surface as well as the horizontal spreading of highly fissured volcanos (for
more details see [17, p. 256]).

Concerning the non-local reaction term of problem (1.1), this comes from modelling
ohmic heating phenomena, as well as phenomena which occur in shear bands of metals
which are being deformed at high strain rates [4–6], in the theory of gravitational equi-
librium of polytropic stars [12], in the investigation of the fully turbulent behaviour of
flows, using invariant measures for the Euler equation [7] and in modelling aggregation of
cells via interaction with a chemical substance (chemotaxis) [21]. It is worth mentioning
that Galaktionov and Levine [8] and, later on, Afanas’eva and Tedeev [1] treated, among
other problems, a non-local porous medium problem with critical Fujita exponent and
proved, for the Cauchy problem, global existence and blow-up of solutions.

This paper is organized as follows: in § 2 we prove existence and uniqueness; in § 3 we
prove blow-up of solutions of the porous medium problem for sufficiently large λ > 0 and
for any positive initial data; in § 4, we show blow-up for sufficiently large initial data;
finally, in § 5, we prove blow-up for the filtration problem. Note that for the proof of
blow-up for the Dirichlet and Robin problems we require Ω to be convex.

2. Existence and uniqueness via a lower–upper solution pair

In contrast to the decreasing case where a maximum principle holds, when f(s) is an
increasing function, the existence of an upper solution and a lower solution in the classical
sense does not guarantee the existence of a solution of problem (1.1) lying between them.
In order to use similar comparison arguments, we introduce the concept of the lower–
upper solution pair.

At this point, we just outline some steps of the procedure of the proof by using com-
parison methods [2, 6, 10, 13]. More precisely, we introduce a system of two iteration
schemes and, using a lower–upper solution pair, we get two monotonic sequences of func-
tions which are solutions to the system. Then, taking a weak form (integral formulation)
of the system and using the monotone convergence theorem as well as regularity argu-
ments, we obtain that the limits of the two sequences, u, ū (u � ū), are classical solutions
to the system. Finally, by the maximum principle we prove that u � ū, which implies
that the system coincides with (1.1 a) and gives us existence and uniqueness.

In order to obtain existence we introduce the concept of lower–upper solution pairs.

Definition 2.1. Let two functions be z = z(x, t), v = v(x, t) ∈ C2+α,1+α/2(ΩT ; R) ∩
Cα,0(Ω̄T ; R), 0 < α < 1, ΩT = Ω × (0, T ). Then (z, v) is called a lower–upper solution
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pair for problem (1.1) if it satisfies z(x, t) � v(x, t) for (x, t) ∈ Ω̄T and

S(z; v) � 0 � S(v; z), x ∈ Ω, 0 < t < T,

B(z) � 0 � B(v), x ∈ ∂Ω, 0 < t < T,

0 � z(x, 0) � u0(x) � v(x, 0), x ∈ Ω.

Here the operator S is defined by

S(z; v) ≡ zt − ∆K(z) − λf(z)
( ∫

Ω

f(v) dx

)−p

.

If all the above inequalities are strict, then (z, v) is a strict lower–upper solution pair [3,6].

Lemma 2.2. Let (z, v) be a lower–upper solution pair of (1.1). Then z � u � v.

Proof. We prove the lemma in two steps.

Step 1. Let (z, v) be a strict lower–upper solution pair of (1.1). We shall show that
z < u < v. First, we give the proof for the pair (u, v). Let d(x, t) = v(x, t) − u(x, t) [2].
We assume that the conclusion is false; that is, there exists a first t̄ such that d(x̄, t̄) = 0
for some x̄ ∈ Ω. Also, we have that d(x, t) > 0 for (x, t) ∈ Ω̄ × (0, t̄), and dt(x̄, t̄) � 0.
Moreover, d(x̄, t̄) attains its minimum at x = x̄, so ∇d(x̄, t̄) = ∇v(x̄, t̄) − ∇u(x̄, t̄) = 0
and ∆d(x̄, t̄) � 0. Thus, at (x̄, t̄), we have

0 � dt(x̄, t̄)

= vt(x̄, t̄) − ut(x̄, t̄)

= K ′(v)∆v + K ′′(v)|∇v|2 − K ′(u)∆u − K ′′(u)|∇u|2 + NLTs

= K ′(u)∆d(x̄, t̄) + K ′′(v)(|∇v|2 − |∇u|2)

+ λ

(
f(v(x̄, t̄))

(
∫

Ω
f(u(x, t̄)) dx)p

− f(u(x̄, t̄))
(
∫

Ω
f(v(x, t̄)) dx)p

)

� f(u(x̄, t̄))
(
∫

Ω
f(v(x, t̄)) dx)p − (

∫
Ω

f(u(x, t̄)) dx)p

(
∫

Ω
f(v(x, t̄)) dx)p(

∫
Ω

f(u(x, t̄)) dx)p

> 0,

where ‘NLTs’ is the difference in the non-local terms, the term with the Laplacian is
non-negative, the term with the gradient is zero and the difference in the non-local terms
is strictly positive due to the monotonicity of f . Hence, 0 � dt(x̄, t̄) > 0, which is a
contradiction.

Step 2. Let us now assume that (u, v) is a lower–upper solution pair of (1.1). We shall
show that z � u � v. Since f is a convex function, it is Lipschitz continuous and also
one-side Lipschitz continuous, i.e. f(a + b) − f(b) � La, where L is a positive constant
and 0 < a < R for some R. Let vε = v + εeσt > v for some ε > 0 (we define zε similarly).
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Actually, we use 0 < ε � 1, εeσt < εeσT = R and L fixed. Then we have [2]

S(vε; u) = vε
t − ∆K(vε) − λ

f(vε)
(
∫

Ω
f(u) dx)p

= vt + εσeσt − K ′′(vε)|∇v|2 − K ′(vε)∆v − λ
f(vε)

(
∫

Ω
f(u) dx)p

� vt − ∆K(v) − λ
f(v) + Lεeσt

(
∫

Ω
f(u) dx)p

+ εσeσt

+ (K ′′(v) − K ′′(vε))|∇(v)|2 + (K ′(v) − K ′(vε))∆v

= S(v; u) + εeσt

[
σ − λ

L

(
∫

Ω
f(u) dx)p

− K ′′′(v)|∇v|2 − K ′′(v)∆v

]
+ O(ε2)

> S(v; u) � S(u; v).

The last inequality is due to the fact that σ can be taken to be sufficiently large (σ � 1),
while R and L are fixed. The function v is bounded in C2,1(Ω̄T ). From the first step we
derive v > u and vε > u for ε � 1. Now we have vε = v + εeσt > u for any 0 < ε � 1
and, taking ε → 0, we get v � u.

The other pair, (z, u), is treated similarly. This completes the proof. �
Now, we show that at least such a lower–upper pair (z, v) exists.

Lemma 2.3. Let Z = Z(t), V = V (t) � b < ∞ satisfy the inequalities

Zt − Λf(Z) � 0 � Vt − Λ̄f(V ), 0 < t < T̂ < ∞, (2.1 a)

Z(0) = Z0 = 0 < u0(x) � V (0) = V0, (2.1 b)

where Λ̄ = λ/fp(0)|Ω|p > Λ = λ/fp(b)|Ω|p for some b � 1. Then 0 � Z(t) � V (t) and
(Z, V ) is a lower–upper solution pair of problem (1.1) with

0 � Z(t) < u(x, t) � V (t). (2.2)

Proof. It is obvious that the time T̂ depends on b, i.e. T̂ = T̂ (b), with b = V (T̂ ), T̂ <

Tmax, where Tmax is the maximal existence time of V , (V (t) → ∞ as t → Tmax−). The
fact that 0 � Z � V comes from direct integration of (2.1 a), i.e.

∫ Z(t)

0

ds

f(s)
� Λt < Λ̄t �

∫ V (t)

V0

ds

f(s)
�

∫ V (t)

0

ds

f(s)
<

∫ ∞

0

ds

f(s)
< ∞, (2.3)

the last inequality of (2.3) is a consequence of (1.2 b). Moreover, due to the choice of Λ, Λ̄,
we get that (Z, V ) is a lower–upper solution pair of problem (1.1).

Now by using the maximum principle we get (2.2). Actually, using similar methods to
those in Lemma 2.2, we have D = D(x, t) = u(x, t) − Z(t), with D(x, 0) > 0. Assuming
now that D � 0, there exists t̄ > 0 such that D(x̄, t̄) = 0 for some x̄ ∈ Ω, while D > 0
for (x, t) ∈ Ω̄ × [0, t̄) and Dt(x̄, t̄) � 0. Then at (x̄, t̄) we have ∇D = 0, ∆D � 0 and

0 � Dt(x̄, t̄) > K ′′(u)|∇D|2 + K ′(u)∆D + Λ[f(u(x̄, t̄)) − f(Z(t̄))] = K ′(u)∆D � 0,
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which is a contradiction, i.e. 0 � Dt > 0. Similarly, we obtain that V (t) � u(x, t). This
completes the proof. �

Now let (z, v) be a lower–upper solution pair and an iterative scheme starting with
ū0 = v, u0 = z and proceeding according to

In = I(un; ūn) := unt − ∆(K(un)) −
λf(un−1)

(
∫

Ω
f(ūn−1) dx)p

= 0, x ∈ Ω, t > 0, (2.4)

Īn = I(ūn; un) := ūnt − ∆(K(ūn)) − λf(ūn−1)
(
∫

Ω
f(un−1) dx)p

= 0, x ∈ Ω, t > 0, (2.5)

and

B(un) = B(ūn) = 0, x ∈ ∂Ω, t > 0, (2.6)

un(x, 0) = ūn(x, 0) = u0(x), x ∈ Ω, (2.7)

for n = 1, 2, . . . .

Remark 2.4. We may also define the iterative scheme (2.4) and (2.5) by

S(un; ūn−1) = S(ūn; un−1) = 0,

respectively. But in that case we use a generalized maximum principle instead of the
simple one we use here.

Now, we prove that if we have a lower–upper solution pair, we can construct a mono-
tonic sequence which converges to the solution of problem (1.1).

Proposition 2.5. Let (z, v) be a lower–upper solution pair of (1.1 a) and un, ūn sat-
isfy (2.4), (2.6), (2.7) and (2.5)–(2.7), respectively, for n = 1, 2, 3, . . . , with u0 = Z and
ū0 = V . Then we have

u0 < u1 < · · · < un−1 < un < · · · < ūn < ūn−1 < · · · < ū1 < ū0.

Proof. We prove the proposition by induction. Firstly, we show that un−1 < un and
ūn < ūn−1. Indeed,

I1 = I1(u1; ū1) = u1t − ∆K(u1) − λf(u0)
(
∫

Ω
f(ū0) dx)p

= 0 � u0t − ∆K(u0) − λf(u0)
(
∫

Ω
f(ū0) dx)p

and by using the maximum principle for the filtration problem we get u1 � u0. Similarly,
ū1 � ū0. Now, for the n-step, we have

In = unt − ∆K(un) −
λf(un−1)

(
∫

Ω
f(ūn−1) dx)p

= 0

= u(n−1)t − ∆K(un−1) −
λf(un−2)

(
∫

Ω
f(ūn−2) dx)p

.
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The latter implies

[unt − ∆K(un)] − [u(n−1)t − ∆K(un−1)] =
λf(un−1)

(
∫

Ω
f(ūn−1) dx)p

−
λf(un−2)

(
∫

Ω
f(ūn−2) dx)p

� 0,

since un−1 � un−2 and ūn−1 � ūn−2. Again, by using the maximum principle for the
filtration problem, we get that un > un−1 and ūn < ūn−1 for n = 1, 2, . . . .

Secondly, we show that un < ūn, again by induction:

In = unt − ∆K(un) −
λf(un−1)

(
∫

Ω
f(ūn−1) dx)p

= 0

= ūnt − ∆K(ūn) − λf(ūn−1)
(
∫

Ω
f(un−1) dx)p

.

Thus,

[unt − ∆K(un)] − [ūnt − ∆K(ūn)] =
λf(un−1)

(
∫

Ω
f(ūn−1) dx)p

− λf(ūn−1)
(
∫

Ω
f(un−1) dx)p

� 0,

since un−1 � ūn−1, which holds for n = 1, 2, . . . (for n = 1 see Lemma 2.2). This
completes the proof. �

Corollary 2.6. For the iterative schemes of problems (2.4)–(2.7) we have un ↗ u,
ūn ↘ ū pointwise as n → ∞ and u � ū.

Proof. This is an immediate consequence of Proposition 2.5 and the boundedness of
the pair (Z, V ). �

Next we show the following result.

Proposition 2.7. The functions u, ū are classical solutions of

S(u; ū) = S(ū; u) = 0, x ∈ Ω, t > 0, (2.8)

B(u) = B(ū) = 0, x ∈ ∂Ω, t > 0, (2.9)

u0(x, 0) = ū0(x, 0) = u0(x), x ∈ Ω, (2.10)

with u, ū ∈ C2,1(ΩT ).

Proof. We write (2.4), (2.6), (2.7) and (2.5)–(2.7) under a (very) weak formulation
[14,20]. Actually, we define the following:

N(z) ≡
∫

Ω

[z(x, s)η(x, s)]τ0 dx −
∫ τ

0

∫
Ω

z(x, s)ηt(x, s) dxds −
∫ τ

0

∫
Ω

K(z)∆η dxds

= λ

∫ τ

0

∫
Ω

F (z; u)η dxds, (2.11)
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where

F (z; u) = f(z)
( ∫

Ω

f(u) dx

)−p

∈ L2(ΩT )

and

u ∈ L2(ΩT ), K(u) ∈ V̇2(ΩT ) = L∞((0, T ); L2(ΩT )) ∩ L2((0, T ); L2
loc(Ω)).

The function η ∈ W 2,1
c (ΩT ) (η can also be taken in C∞

c (ΩT )), η(x, t) � 0 with ∆η < 0
(or ∆η � 0). (For the definitions of V -spaces, see [14, p. 419] and [15].)

Problem (2.4), (2.6), (2.7) under a (very) weak formulation is written as

N(un) = λ

∫ τ

0

∫
Ω

F (un−1, ūn−1)η dxds.

Now, passing to the limit as n → ∞, using the monotonicity of un, ūn, the monotone
convergence theorem (due to the boundedness of (z, v) we may also use the dominated
convergence theorem) and the fact that τ < T̂ , with T̂ as in Lemma 2.3 (we only need
that ūn is uniformly bounded), we get

N(u) = λ

∫ τ

0

∫
Ω

F (u, ū)η dxds

and, similarly,

N(ū) = λ

∫ τ

0

∫
Ω

F (ū, u)η dxds.

Equivalently, we have (in the distributional sense)

S(ū, u) = S(u, ū) = 0 in D′(ΩT ). (2.12)

Regularity. In fact, the solution found above is classical. By using standard regu-
larity theory [14, p. 419], we see that any bounded (very) weak solution belongs to
Cα,α/2(ΩT ) for some 0 < α � 1 (Sobolev embedding lemma). By bounded (very)
weak solutions u, ū, we mean functions which satisfy (2.12) and ‖u‖L∞(ΩT ) < ∞,
‖ū‖L∞(ΩT ) < ∞. Now, by bootstrapping arguments and Schauder-type estimates, we
obtain that u, ū ∈ C2+α,1+α/2(ΩT ). Finally, u and ū are classical solutions, i.e. they sat-
isfy (2.8)–(2.10) and u, ū ∈ C2,1(ΩT ). This completes the proof. �

So far we have proved that u � ū. We now prove that u = ū.

Lemma 2.8. Let f be Lipschitz continuous (actually we only need one side Lipschitz:
f(a + b) − f(b) � La, where L is a positive constant and 0 < a < R for some R) and
u, ū ∈ C2,1(ΩT ). Then we have u � ū.
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Proof. Let uε = u + εeσt > u for some ε > 0 (we define ūε similarly). Actually, we
use 0 < ε � 1, εeσt < εeσT = R and L fixed. Then we have (see also Lemma 2.2 and [2])

S(uε; ū) = uε
t − ∆K(uε) − λ

f(uε)
(
∫

Ω
f(ū) dx)p

= ut + εσeσt − K ′′(uε)|∇u|2 − K ′(uε)∆u − λ
f(uε)

(
∫

Ω
f(ū) dx)p

� ut − ∆K(u) − λ
f(u) + Lεeσt

(
∫

Ω
f(ū) dx)p

+ εσeσt

+ (K ′′(u) − K ′′(uε))|∇(u)|2 + (K ′(u) − K ′(uε))∆u

= S(u; ū) + εeσt

[
σ − λ

L

(
∫

Ω
f(ū) dx)p

− K ′′′(u)|∇u|2 − K ′′(u)∆u

]
+ O(ε2)

> S(u; ū) = S(ū; u).

The last inequality is due to the fact that σ is taken sufficiently large, u is bounded
in C2,1(Ω̄T ), and u � ū and uε � ū for ε � 1. Now, by using Lemma 2.2, we have
uε = u + εeσt > ū for any 0 < ε � 1 and, taking ε → 0, we get u � ū. This completes
the proof. �

Remark 2.9. From the above analysis we obtain that the solution u to (1.1) continues
to exist as long as it remains less than or equal to b = V (T̂ ) � sup v(x, t). This argument
implies that if u ceases to exist, then this will occur only by blow-up, which means
that there exists a sequence (xn, tn) → (x∗, t∗) as n → ∞, with t∗ < ∞ such that
u(xn, tn) → ∞ as n → ∞. Actually, we shall see at the end of the proof of Theorem 3.1
that the blow-up of u implies ‖u(· , t)‖ = supΩ |u(· , t)| → ∞ as t → t∗− < ∞.

The following theorem guarantees the local existence and uniqueness.

Theorem 2.10. Problem (1.1) has a unique classical solution u in C2,1(ΩT ) for some
T > 0.

Proof. The proof is a consequence of the previous lemmas, corollary and propositions.
For the uniqueness result in particular, see Corollary 2.6 and Lemma 2.8. �

In the next section we prove blow-up.

3. Blow-up of solutions for the non-local porous medium equation

We now come to the main aim of this work. In what follows, we show under which
conditions blow-up of the solution u occurs for any u0(x) > 0.

3.1. The Neumann problem

We assume that β ≡ 0 i.e. the Neumann problem. We now state our result.

Theorem 3.1. Let Ω be a bounded domain of R
N , f(s) is taken to satisfy (1.2). Then

the solution u(x, t) of (1.4) blows up in finite time for all values of the parameter λ > 0.
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Proof. We assume the initial-value problem:

θ′(t) = cf1−p(θ(t)), t ∈ (0, T ), θ(0) = θ0, (3.1)

where c = λ|Ω|1−p is a constant, for some T = T (θ0) > 0.
Setting

B(t) =
1

|Ω|

∫
Ω

u(x, t) dx,

integrating (1.4 a) over Ω and using Green’s identity we get

Ḃ(t) =
1

|Ω|

∫
∂Ω

∂um

∂n̂
dS(x) + λ

1
|Ω|

( ∫
Ω

f(u) dx

)1−p

.

The first integral is equal to zero, due to the Neumann boundary condition. Now, using
Jensen’s inequality we derive

Ḃ(t) � λ|Ω|−pf1−p(B), t > 0, B0 = B(0), (3.2)

which implies

λ|Ω|−pt �
∫ B(t)

B(0)

ds

f1−p(s)
<

∫ ∞

B0�b

ds

f1−p(s)
= T (B0) < T (θ0) < ∞, θ0 < B0.

Taking θ0 < B0 < ‖u0‖ and from a standard comparison between (3.1) and (3.2), we
have

θ(t) � B(t) =
1

|Ω|

∫
Ω

u(x, t) dx � ‖u(· , t)‖,

where

‖u(· , t)‖ and B(t) → ∞ as t → T ∗− =
|Ω|p
λ

T (B0)−,

since θ(t) → ∞ as t → T (θ0)−. Hence ‖u(· , t)‖ → ∞ as t → t∗ � T ∗ < ∞, which
implies that u blows up in finite time (see also Remark 2.9; the non-extendability implies
blow-up). �

3.2. The Dirichlet and Robin problems

Here we have that 0 < β(x) � ∞ on ∂Ω. Moreover, we make the following assumption:

Ω is convex. (3.3)

Also we consider the following auxiliary eigenvalue problem:

∆φ + µφ = 0, x ∈ Ω, (3.4 a)
∂φ

∂n̂
+ β(x)φ = 0, x on ∂Ω. (3.4 b)

Then, for the eigenpair (µ, φ), we have that the first eigenvalue µ > 0 and φ = φ(x) is
positive and bounded, i.e. 0 � minΩ φ(x) � φ � k̄ = maxΩ φ(x). We take∫

Ω

φ(x) dx = 1

for our version of Jensen’s inequality to hold.
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Theorem 3.2. Let (1.2), (3.3) hold and, in addition,
∫

Ω

(f1−p(u(x, t)) − um(x, t))φ(x) dx > 0. (3.5)

Then, for sufficiently large λ (λ > λ0 = µ|Ω|p[(γ + 1)/k]p > 0), there exists a t∗ < ∞
such that the solution of (1.4) blows up in finite time.

Proof. In order to prove blow-up we use Kaplan’s method. We begin by multiplying
(1.4 a) by eigenfunction φ, integrating over Ω and setting

A(t) =
∫

Ω

φ(x)u(x, t) dx.

We obtain

Ȧ(t) =
∂

∂t

∫
Ω

φu dx =
∫

Ω

φ∆um dx + λ

∫
Ω

φf(u) dx

(
∫

Ω
f(u) dx)p

.

Assuming that u is global in time, applying Green’s identity and problem (3.4), we
have

Ȧ(t) = −µ

∫
Ω

umφ dx + λ

∫
Ω

φf(u) dx

(
∫

Ω
f(u) dx)p

. (3.6)

Here is where the convexity of Ω is used. Due to the convexity of Ω and the fact that
f is positive and increasing, by using the method of moving parallel planes [9,11,16], a
relative compact set Ω0 ⊂ Ω(Ω̄0 ⊂ Ω) can be constructed, so that

∫
Ω

f(u) dx � (γ + 1)
∫

Ω0

f(u) dx (3.7)

for some γ = γ(Ω) ∈ N
∗. Let k = infx∈Ω0 φ(x). Then, by using the fact that Ω̄0 ⊂ Ω and

the maximum principle for problem (3.4), we have k > 0; thus, (3.7) implies that
∫

Ω

f(u) dx � γ + 1
k

∫
Ω0

f(u)φ(x) dx � γ + 1
k

∫
Ω

f(u)φ(x) dx

and so
( ∫

Ω

f(u)φ(x) dx

)( ∫
Ω

f(u) dx

)−p

�
(

k

γ + 1

)p( ∫
Ω

f(u)φ(x) dx

)1−p

. (3.8)

Now, on using (3.5), (3.6), (3.8), we get

Ȧ(t) � −µ|Ω|
∮

Ω

f1−p(u)φ(x) dx + λ

(
k

γ + 1

)p

|Ω|1−p

( ∮
Ω

f(u)φ(x) dx

)1−p

,

where
∮

=
(

1
|Ω|

) ∫
.

https://doi.org/10.1017/S0013091508000163 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508000163


206 E. A. Latos and D. E. Tzanetis

Applying Jensen’s inequality, then taking sufficiently large λ (λ > λ0) and again using
Jensen, we derive

Ȧ(t) �
[
λ

(
k

γ + 1

)p

|Ω|1−p − µ|Ω|
]( ∮

Ω

f(u)φ(x) dx

)1−p

�
[
λ

(
k

γ + 1

)p

|Ω|1−p − µ|Ω|
]
f1−p(A).

The previous relation with the help of (1.2), as in Theorem 3.1, implies blow-up. �

4. Blow-up for sufficiently large initial data

Blow-up also occurs for sufficiently large initial data. The following results are valid for
any λ > 0.

Theorem 4.1. Let (1.2), (3.3) and
∫

Ω

(f1−q(u(x, t)) − um(x, t))φ(x) dx > 0 for 0 < p < q < 1 (4.1)

hold. Then the solution u(x, t) of (1.4), with 0 < β(x) � ∞, i.e. the Dirichlet or Robin
problem, blows up in finite time for sufficiently large initial data u0:

∫
Ω

u0φ dx = A0 � A∗ > max{0, max{δ : g(δ) = 0}},

where g is defined in (4.2).

Proof. Following the steps in the proof of Theorem 3.2, we get (3.6) and using (4.1)
and Jensen’s inequality again, we get

dA(t)
dt

� λ

(
k

γ + 1

)p

|Ω|1−pf1−p(A) − µ|Ω|f1−q(A) := g(A), t > 0, A0 = A(0). (4.2)

Let δ0 > 0 be the largest root (otherwise g(s) > 0 for any s > 0) of the equation

g(s) = |Ω|f1−p(s)
{

λ

[
k

(γ + 1)|Ω|

]p

− µfp−q(s)
}

= 0.

Then g(s) � 0 for all s � δ0. Furthermore, on taking g(s) � Λf1−p(s), we have

t �
∫ A(t)

A0

ds

g(s)
<

∫ ∞

A0

ds

g(s)
� 1

Λ

∫ ∞

A0

ds

f1−p(s)
< ∞,

provided that

0 < Λ = |Ω|
{

λ

[
k

(1 + γ)|Ω|

]p

− µfp−q(A∗)
}

< ∞.
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Now, for positive initial data u0(x) ∈ L1(Ω) such that

A0 =
∫

Ω

u0(x)φ(x) dx � A∗,

relations (1.2 b) and (4.2) imply that the solution of (1.4) blows up at finite time

t∗ � T ∗ �
∫ ∞

A0

ds

g(s)
< ∞.

�

Remark 4.2. For β(x) ≡ 0, i.e. the Neumann problem, Theorem 3.1 holds for any
initial data and for any λ > 0.

Remark 4.3. The same results hold for the filtration equation. The proofs are similar.

5. Blow-up for the non-local filtration equation, λ � 1

5.1. The Neumann problem

Here we have the same result as in the porous medium equation, for any positive initial
data, so we can state a similar theorem.

Theorem 5.1. Let Ω be a bounded domain of R
N . f(s) is taken to satisfy (1.2). Then

the solution u(x, t) of (1.1) blows up in finite time for all values of the parameter λ > 0.

The proof is as for the porous medium problem (Theorem 3.1).

5.2. The Dirichlet and Robin problem

Again with the same method used in the porous medium problem we state the following
theorem.

Theorem 5.2. Let (1.2), (3.3) hold and let
∫

Ω

(f1−p(u(x, t)) − K(u(x, t)))φ(x) dx > 0 for 0 < p < 1. (5.1)

On taking sufficiently large values of λ,

λ > λ0 = µ

(
γ + 1

k

)p

|Ω|p > 0,

there exists a t∗ < ∞ such that the solution of (1.1) blows up in finite time t∗.

Remark 5.3. Condition (5.1) holds, for instance, for any f(u) > (K(u))1/(1−p), u > 0
(this also implies (1.2 b) for some K(u)). Similarly, condition (3.5) holds, for instance,
for any function such that f(u) > um/(1−p), u > 0; the latter also implies the validity
of (1.2 b).
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6. Discussion

In this work, we firstly prove local existence and uniqueness of some non-local initial
boundary-value problems for a porous medium equation (see (1.4)) and filtration equa-
tion (see (1.1)). We consider positive initial data (u0(x) > 0 in Ω), in order to avoid
degenerating solutions. For both problems we prove blow-up of solutions either for λ � 1
and any u0(x) > 0 or for large—in some sense (A0 � 1)—initial data u0(x) and any
λ > 0. The method we use is Kaplan’s method. For the proofs of Theorems 3.2, 4.1
and 5.2, we restrict Ω to be a convex domain.

In the case where we allow u0 � 0 in Ω, we have to work with the very weak formulation
of solutions, i.e.

N(u) = λ

∫ τ

0

∫
Ω

F (u; u)η dxds

(see (2.11)) and, again, on using comparison methods, we obtain similar existence and
uniqueness results to those for the case when u0 > 0 in Ω.

We propose some very interesting open questions for future work, such as

(a) the study of the blow-up, but now for u0(x) � 0 in Ω, which results in the appear-
ance of degeneracy of the solutions,

(b) showing the blow-up of solutions for any λ > λ∗ (while there are no steady-state
solutions for λ > λ∗, for 0 < λ < λ∗ there are classical steady-state solutions), and

(c) finding the rate of the growth of solution in some special cases, for instance, in the
radial symmetric case, when the blow-up takes place at the origin, for f(s) = es

and by using formal asymptotics for proper dimensions N (e.g. N = 1, 2).

Finally, we point out that the existence and uniqueness results are valid for any p > 0.
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