Theorems connecting different classes of Self-Reciprocal Functions

By Brij Mohan Mehrotra.

(Received 4th October, 1933; and in revised form 26th February, 1934. Read 3rd March, 1934.)

1. The question, "How, from a given function which is selfreciprocal for a transform of a particular order, can we construct other functions which are self-reciprocal for transforms of different orders?" was first raised by Hardy and Titchmarsh¹ who gave some rules for constructing such functions. Following their method, I have shown, in a recent paper,² that there are certain general theorems of the following type:—

If f(x) is its own J_{μ} transform, g(x) is its own J_{ν} transform. In this note I add a few more such theorems, the interest lying mainly in the results themselves and not in a rigorous proof thereof; and hence only the formal procedure is given here.

For his constant guidance in my work I wish to express my thanks to Prof. E. C. Titchmarsh at whose suggestion I started the investigation.

2. Following Hardy and Titchmarsh I will say that a function is R_{ν} if it is self-reciprocal for J_{ν} transforms, and it is $-R_{\nu}$ if it is skew-reciprocal for J_{ν} transforms. Also, for $R_{\frac{1}{2}}$ and $R_{-\frac{1}{2}}$ I will write R_{s} and R_{c} respectively.

I will make use of the following result of Hardy and Titchmarsh.³

A necessary and sufficient condition that a function f(x) should be R_{μ} is that it should be of the form

$$f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{2^{\frac{1}{2}s}}{\Gamma(\frac{1}{4} + \frac{1}{2}\mu + \frac{1}{2}s)} \psi(s) x^{-s} ds, \qquad (2.1)$$

where 0 < c < 1, and

$$\psi(s) = \psi(1-s).$$
 (2.2)

¹ Hardy and Titchmarsh IV.

² Mehrotra V.

³ Hardy and Titchmarsh III, Theorem 8.

3. Theorem I. If f(x) is R_1 , the function

$$g(x) = x^{-\frac{1}{2}\nu} \int_0^\infty y^{-\frac{1}{2}\nu} H_{\frac{1}{2}(\nu-1)}(xy) f(y) dy,$$

where $H_{\nu}(x)$ is Struve's function of order¹ ν , is R_{ν} .

This theorem can be proved on the lines of a similar theorem of Hardy and Titchmarsh², or it can be derived from a more general theorem proved in my paper referred to above³, with the help of a formula given by Watson⁴.

4. Theorem II. If f(x) is R_{μ} , the function

$$g(x) = \frac{1}{x} \int_0^x Q\left(\log \frac{x}{y}\right) f(y) \, dy$$

is R_{ν} , provided that

$$Q(x) = \frac{1}{2\pi i} \int_{k-i\infty}^{k+i\infty} \left(\frac{1}{4} + \frac{1}{2}\mu + \frac{1}{2}s \right) \Gamma\left(\frac{3}{4} + \frac{1}{2}\nu - \frac{1}{2}s \right) \chi(s) e^{xs} ds \quad (x > 0)$$

= 0 (x < 0), (4.1)

where k is any positive number, and $\chi(s)$ satisfies (2.2).

By (2.1) we have

$$g(x) = \frac{1}{2\pi i x} \int_0^x Q\left(\log \frac{x}{y}\right) dy \int_{c-i\infty}^{c+i\infty} 2^{\frac{1}{2}s} \Gamma\left(\frac{1}{4} + \frac{1}{2}\mu + \frac{1}{2}s\right) \psi(s) y^{-s} ds,$$

where $\psi(s) = \psi(1-s)$. Hence

$$g(x) = \frac{1}{2\pi i x} \int_{c-i\infty}^{c+i\infty} 2^{\frac{1}{2}s} \Gamma\left(\frac{1}{4} + \frac{1}{2}\mu + \frac{1}{2}s\right) \psi(s) \, ds \int_{0}^{x} Q\left(\log\frac{x}{y}\right) \, y^{-s} \, dy$$
$$= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma\left(\frac{1}{4} + \frac{1}{2}\mu + \frac{1}{2}s\right) \psi(s) \, x^{-s} \, ds \int_{0}^{\infty} e^{(s-1)u} \, Q(u) \, du.$$

Now, using a form of Mellin's Inversion Formula⁵, from (4.1) we have

$$\int_{0}^{\infty} e^{-xs} Q(x) \, dx = \Gamma \left(\frac{1}{4} + \frac{1}{2}\mu + \frac{1}{2}s \right) \, \Gamma \left(\frac{3}{4} + \frac{1}{2}\nu - \frac{1}{2}s \right) \, \chi(s),$$

where $\chi(s) = \chi(1-s)$. Changing s into 1-s, we get

$$\int_{0}^{\infty} e^{(s-1)x} Q(x) dx = \Gamma\left(\frac{3}{4} + \frac{1}{2}\mu - \frac{1}{2}s\right) \Gamma\left(\frac{1}{4} + \frac{1}{2}\nu + \frac{1}{2}s\right) \chi(s).$$

- ¹ Watson VII, § 10.4(2).
- ² Hardy and Titchmarsh IV, §2.
- ³ Mehrotra V, §8.

- - - -

- ⁴ Watson VII, §13.24(2).
- ⁵ See Bateman I, Hardy II and Pincherle VI.

 $\mathbf{54}$

Hence

$$g(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{1}{2^{\frac{1}{2}s}} \Gamma\left(\frac{1}{4} + \frac{1}{2}\mu + \frac{1}{2}s\right) \Gamma\left(\frac{3}{4} + \frac{1}{2}\mu - \frac{1}{2}s\right) \Gamma\left(\frac{1}{4} + \frac{1}{2}\nu + \frac{1}{2}s\right) \chi(s)\psi(s)x^{-s}ds$$
$$= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{1}{2^{\frac{1}{2}s}} \Gamma\left(\frac{1}{4} + \frac{1}{2}\nu + \frac{1}{2}s\right) \psi_1(s)x^{-s}ds,$$

where $\psi_1(s) = \Gamma(\frac{1}{4} + \frac{1}{2}\mu + \frac{1}{2}s) \Gamma(\frac{3}{4} + \frac{1}{2}\mu - \frac{1}{2}s) \chi(s)\psi(s)$.

As $\psi_1(s)$ satisfies the equation

$$\psi_1(s) = \psi_1(1 - s),$$

it follows from (2.1) that g(x) is R_{ν} .

5. If, in Theorem II, we put $\mu = \nu$, we get a corollary. If f(x) is R_{ν} , the function

$$g(x) = \frac{1}{x} \int_0^x Q\left(\log \frac{x}{y}\right) f(y) \, dy$$

is R_{ν} provided that

where $\lambda(s) = \lambda(1-s)$.

6. Theorem III. If f(x) is R_{μ} , the function

$$g(x) = \int_0^{1/x} Q\left(\log \frac{1}{xy}\right) f(y) \, dy$$

is R_{ν} , provided that

$$Q(x) = \frac{1}{2\pi i} \int_{k-i\infty}^{k+i\infty} \Gamma(\frac{1}{4} + \frac{1}{2}\mu + \frac{1}{2}s) \Gamma(\frac{1}{4} + \frac{1}{2}\nu + \frac{1}{2}s) \chi(s) e^{xs} ds \quad (x > 0) \\= 0 \qquad (x < 0),$$
(6.1)

where $\chi(s)$ satisfies (2.2).

The proof of this theorem is similiar to that of Theorem II.

The symmetry of the integral in (6.1) shows that if f(x) is R_{ν} , g(x) is R_{μ} .

7. For the particular case $\mu = \mp \frac{1}{2}$, $\nu = \pm \frac{1}{2}$, the above theorem takes the simpler form:

If f(x) is R_c (or R_s), the function

$$g(x) = \int_0^{1/x} Q\left(\log \frac{1}{xy}\right) f(y) \, dy$$

is R_s (or R_c) provided that

$$Q(x) = \frac{1}{2\pi i} \int_{k-i\infty}^{k+i\infty} \Gamma(s) \chi(s) e^{xs} ds \qquad (x > 0)$$
$$= 0 \qquad (x < 0),$$

where $\chi(s)$ satisfies (2.2).

REFERENCES.

- 1. H. Bateman. "Report on the history and present state of the theory of Integral Equations." Reports of the British Assoc. (Sheffield, 1910), 61.
- 2. G. H. Hardy. "Further notes on Mellin's Inversion Formula." Messenger of Math., 50 (1921), 165-171.
- 3. G. H. Hardy and E. C. Titchmarsh. "Self-Reciprocal Functions." Quart. Journal of Math., Oxford Series 1 (1930), 196-231.
- 4. G. H. Hardy and E. C. Titchmarsh. "Formulae connecting different classes of Self-Reciprocal Functions." Proc. London Math. Soc., II (33) (1931), 225-232.
- B. M. Mehrotra. "Some Theorems on Self-Reciprocal Functions." Proc. London Math. Soc., II (34) (1932), 231-240.
- S. Pincherle. "Studi sopra alcune operazioni funzionali." Mem. di Bologna (4), 7 (1886), 393-442.
- 7. G. N. Watson. Theory of Bessel Functions. Cambridge 1922.