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Abstract

Using some techniques of perturbation theory for Banach space complexes, we obtain necessary and
sufficient conditions for the stability of the topological index of an open linear relation under small (with
respect to the gap topology) perturbations with linear relations.

2000 Mathematics subject classification: primary 47A06; secondary 47A53.

Keywords and phrases: linear relations, topological index, Banach space complexes.

1. Introduction and the main result

Several papers (see, for example, [2–5, 9] and the references therein) have been
devoted to the study of the stability of the index of a linear relation under perturbations
with continuous linear relations having small norm. The aim of this paper is to
complete or extend some of these results. We prove a Kato-type result concerning the
behavior of the topological index of an open linear relation between normed spaces
under small perturbations with linear relations. The smallness is measured in the gap
topology (see [12]) and it seems that, even in the context of linear operators, our main
result is new because the perturbation is not necessarily continuous.

The paper is organized as follows. In Section 2 we introduce Banach space
complexes and state our main tool, the Albrecht–Vasilescu perturbation theorem for
complexes of Banach spaces [1, Theorem II.1.6]. We also prove some auxiliary results
concerning the duality theory in normed spaces. Section 3 contains the proof of our
main result.

We follow the notation and terminology of the monograph [9]. Let X and Y be
two normed spaces. We denote by B(X, Y ) the normed space of continuous linear
operators acting from X into Y . If T ∈ B(X, Y ), then R(T ) denotes the range of T ,
N (T ) denotes the kernel of T and T ′ ∈ B(Y ′, X ′) denotes the adjoint of T .

Following Arens [7], a linear subspace Z of X × Y is called a linear relation
between X and Y . If Z is a linear relation, then we associate with it the linear subspaces

D(Z)= {x ∈ X; ∃y ∈ Y, (x, y) ∈ Z}
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called the domain of Z ,

R(Z)= {y ∈ Y ; ∃x ∈ X, (x, y) ∈ Z}

called the range of Z , N (Z)= {x ∈ D(Z); (x, 0) ∈ Z} called the kernel of Z , and

M(Z)= {y ∈ R(Z); (0, y) ∈ Z}

its multivalued part. The set {y ∈ Y ; (x, y) ∈ Z} is denoted by Z(x). A linear
relation Z can also be identified with the graph of the multivalued linear operator
T : D(Z)→ P(Y ) \ {∅} defined by T x = Z(x) (x ∈ D(Z)), where P(Y ) denotes the
family of all subsets of Y .

A linear relation Z is said to be open if whenever U is a neighbourhood in D(Z),
the image Z(U ) :=

⋃
x∈U Z(x) is a neighbourhood in R(Z). Note that Z is open if

and only if there exists ρ > 0 such that

ρBY ∩ R(Z)⊂ Z(BX ∩ D(Z)),

where BX and BY denote the closed unit balls of X and Y respectively (see [9,
Propositions II.2.4 and II.3.2 (b)]). Assume that the linear relation Z satisfies

dim(N (Z)) <∞ or codim(R(Z)) <∞.

Then the quantity

ind(Z)= dim(N (Z))− codim(R(Z)),

is called the topological index of Z (see [9, 11]).
The importance of the investigation of linear relations is demonstrated by the

necessity of taking adjoints of operators with a nondense domain used in applications
to the theory of generalized differential equations [8], or by the need to consider the
inverse of certain linear operators, used, for example, in the study of some Cauchy
problems associated with parabolic type equations in Banach spaces [10].

In order to state our main result we need to introduce a notion of ‘distance’ between
two closed subspaces of a normed space. According to [6, Definition I.6.6] (see
also [12]), if M and N are closed subspaces of a normed space X , then the gap between
M and N is defined by

δ̂(M, N )=max{δ(M, N ), δ(N , M)},

where

δ(M, N )= sup
x∈M,‖x‖≤1

inf
y∈N
‖x − y‖.

The main result of this paper is as follows.
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THEOREM 1. Let X, Y be normed spaces and Z1 ⊂ X × Y be an open linear relation
satisfying

dim(N (Z1)) <∞ and codim(R(Z1)) <∞. (1)

There exists ε > 0 such that for any linear relation Z2 ⊂ X × Y with

M(Z1)= M(Z2) and δ̂(Z1, Z2) < ε,

the inequalities

dim(N (Z2))≤ dim(N (Z1)), codim(R(Z2))≤ codim(R(Z1)), (2)

and

ind(Z2)≤ ind(Z1) (3)

hold. Moreover, ind(Z2)= ind(Z1) if and only if Z2 is open.

Results of this type were initiated by Kato [12, Ch. IV, Sections 4 and 5]. It
is interesting to note that in the preceding theorem the linear relation Z2 is not
necessarily a perturbation of Z1 with a continuous linear relation. A very special case
of Theorem 1 is given in the following.

EXAMPLE 2. Let X, Y be normed spaces and T1 : D(T1)→ Y be a linear operator.
Assume that T1 is bijective and open, and consider a linear operator T2 : D(T2)→ Y
such that δ̂(G(T1), G(T2)) is sufficiently small. Using Theorem 1, it follows that T2 is
injective, has a dense range, is open and its topological index is zero. In particular, if
the range of T2 is closed, then T2 is bijective with a continuous inverse. Hence, if the
linear equation T1x = y has a unique solution x , for all y ∈ Y , depending continuously
upon the initial data y, then the same holds true for the linear equation T2x = y
provided that T2 has a closed range and the gap between the closures of the graphs
of T1 and T2 is sufficiently small.

The following corollary is a consequence of Theorem 1.

COROLLARY 3. Let X, Y be two normed spaces and Z ⊂ X × Y be an open linear
relation such that

dim(N (Z)) <∞ and codim(R(Z)) <∞.

There exists ε > 0 such that for every A ∈ B(D(A), Y ) with D(Z)⊂ D(A) and
‖A‖ ≤ ε, the inequalities

dim(N (Z + A))≤ dim(N (Z)), codim(R(Z + A))≤ codim(R(Z)),

and

ind(Z + A)≤ ind(Z)

hold. Moreover, ind(Z + A)= ind(Z) if and only if Z + A is open.
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In the preceding corollary, the linear relation Z + A is defined by

Z + A := {(x, y + Ax); (x, y) ∈ Z},

that is, (Z + A)(x)= Z(x)+ Ax for all x ∈ D(Z).
A result similar to Corollary 3 was obtained by Cross (see [9, Theorem V.15.6]), so

Theorem 1 completes the main result concerning the stability of the index given in [9].

2. Main tools and auxiliary results

Our main tool comes from the theory of complexes of Banach spaces (see [6]) and
will be stated in this section together with some well-known duality results necessary
for the proof of our main result.

Let X , Y be two normed spaces. A quotient morphism is a linear mapping
T : X/X0→ Y/Y0 where X0 ⊂ X ⊂X , Y0 ⊂ Y ⊂ Y are linear subspaces. In [13, 14]
Vasilescu introduced an important subspace of X × Y associated with T , namely the
lifted graph of T denoted by G0(T ) and defined by

G0(T ) := {(x, y) ∈ X × Y ; T (x + X0)= y + Y0}.

Let X1, X2, . . . , Xn be normed spaces, αi ∈ B(X i , X i+1) (i = 1, 2, . . . , n − 1) and
α0 : {0} → X1, αn : Xn→ {0} be the zero operators (which will be omitted in what
follows). The sequence

0→ X1
α1
−→ X2

α2
−→ · · ·

αn−2
−−→ Xn−1

αn−1
−−→ Xn→ 0 (α)

is called a complex of normed spaces if

R(αi )⊂ N (αi+1) (i = 1, . . . , n − 2).

The complex α is said to be Fredholm if the quantities

dim(N (αi+1)/R(αi )) (i = 0, . . . , n − 1)

are finite. In this case the index (or the Euler characteristic) of α is defined by

ind(α) :=
n−1∑
i=0

(−1)i dim(N (αi+1)/R(αi )).

The product of n normed spaces X i (i = 1, 2, . . . , n) will be endowed with the
norm

‖(x1, x2, . . . , xn)‖ =

n∑
i=1

‖xi‖.

Albrecht and Vasilescu in [1, Theorem 1.6] (see also [6, Theorem 2.7]) obtain,
roughly speaking, a stability result for the index of a complex of quotient Banach
spaces under ‘small’ perturbations. Their result is our main tool and is as follows.
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THEOREM 4. Let X be a Banach space and X i
0 ⊂ X i

⊂X (i = 1, 2, . . . , n) be
closed subspaces of X . Assume that the sequence of quotient Banach spaces

0→ X1/X1
0
σ1
−→ X2/X2

0
σ2
−→ · · ·

σn−2
−−→ Xn−1/Xn−1

0
σn−1
−−→ Xn/Xn

0 → 0 (σ )

is a Fredholm complex. There exists δσ > 0 such that every complex of quotient
Banach spaces

0→ X̃1/X̃1
0
σ̃1
−→ X̃2/X̃2

0
σ̃2
−→ · · ·

σ̃n−2
−−→ X̃n−1/X̃n−1

0
σ̃n−1
−−→ X̃n/X̃n

0 → 0 (̃σ )

which satisfies δ̂0(σ, σ̃ ) < δσ is Fredholm and ind(σ )= ind(̃σ ). Moreover,

dim(N (̃σi )/R(̃σi−1))≤ dim(N (σi )/R(σi−1)) (i = 1, 2, . . . , n).

In Theorem 4 the quantity δ̂0(σ, σ̃ ) measures the ‘distance’ between the complexes σ
and σ̃ and is defined as

δ̂0(σ, σ̃ ) := sup
i=0,...,n

δ̂(G0(σi ), G0(̃σi )).

In the next lemma we introduce some useful isometric isomorphisms.

LEMMA 5. Let X be a normed space and M, N be linear subspaces of X such that N
is closed in X and N ⊂ M.

(i) The mapping

ϕ : X ′/M⊥→ M ′, ϕ(x ′ + M⊥)= x ′|M

is an isometric isomorphism. We recall that M⊥ := {x ′ ∈ X ′; x ′|M = 0}.
(ii) If π : M→ M/N is the canonical surjection, then the mapping

ψ : (M/N )′→ N⊥/M⊥, ψ = ϕ−1
◦ π ′

is an isometric isomorphism.
(iii) If in addition M is closed in X, then δ(M, N )= δ(N⊥, M⊥).

PROOF. For the proof of (i) see [9, Proposition III.1.8 (a)] and for the proof of (ii) in
the case M = X see [9, Proposition III.1.8 (b)]. For the proofs of (ii) and (iii) in the
Banach space context see [6, Propositions 8.5 and 8.10]. 2

REMARK 6. Let X be a normed space and M, N be subspaces of X such that N is
closed in X and N ⊂ M . From the above lemma it follows that

dim(M/N )= dim((M/N )′)= dim(N⊥/M⊥).

In particular, if N is a linear subspace of X , then

dim(X/N )= dim(N⊥).
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The following lemma gives some duality results and is essential for the proof of the
main result of this paper.

LEMMA 7. Let X, Y be two normed spaces and T ∈ B(X, Y ). Then, we have the
following results.

(i) R(T ′)⊂ N (T )⊥ and R(T )⊥ = N (T ′).
(ii) The operator T is open if and only if R(T ′)= N (T )⊥.
(iii) codim(R(T ))= dim(N (T ′)) and dim(N (T ))≤ codim(R(T ′)).
(iv) If T is open then R(T ′) is closed and dim(N (T ))= codim(R(T ′)). Moreover, if

R(T ′) is closed and dim(N (T ))= codim(R(T ′)) <∞, then T is open.

PROOF. For the proofs of (i) and (ii) see, for example, [9, Propositions III.1.4 (a) and
III.4.6 (b)] (in the more general context of linear relations).

(iii) Using Remark 6 and (i), it follows that

codim(R(T ))= dim(Y/R(T ))= dim(R(T )⊥)= dim(N (T ′)).

Using Remark 6 and Lemma 5, we infer that

dim(N (T ))= dim(X ′/N (T )⊥). (4)

On the other hand, because R(T ′)⊂ N (T )⊥ ⊂ X ′, it follows that

X ′/N (T )⊥ ' [X ′/R(T ′)]/[N (T )⊥/R(T ′)],

which implies that

dim(X ′/N (T )⊥)+ dim(N (T )⊥/R(T ′))= dim(X ′/R(T ′)). (5)

Consequently, from (4) and (5) it follows that

dim(N (T ))≤ dim(X ′/R(T ′)).

(iv) Assume that T is open. Then, using (ii), (4) and (5), it follows that R(T ′) is
closed and

dim(N (T ))= dim(X ′/N (T )⊥)= dim(X ′/R(T ′)).

Now, assume that R(T ′) is closed and dim(N (T ))= codim(R(T ′)) <∞. Then,
using (4) and (5), we deduce that dim(N (T )⊥/R(T ′))= 0. This implies that
N (T )⊥ = R(T ′) and, using (ii), it follows that T is open. 2

3. Proof of the main result

The next lemma is the key ingredient in the proof of the main result of this paper.
If Z is a linear relation, then we associate with it a complex of normed spaces which
is strongly related to Z .
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LEMMA 8. Let X, Y be two normed spaces and let Z ⊂ X × Y be a linear relation.
Consider the short sequence

0→ M(Z)
iZ
−→ Z × M(Z)

jZ
−→ Y → 0, (6)

with

iZ (y0) = ((0, y0), y0), ∀y0 ∈ M(Z),

jZ ((x, y), y0) = y − y0, ∀((x, y), y0) ∈ Z × M(Z).

Then (6) is a complex of normed spaces satisfying

N (iZ )= {0}, R( jZ )= R(Z),

and

dim(N ( jZ )/R(iZ ))= dim(N (Z)).

Moreover, the relation Z is open if and only if the operator jZ is open. Finally, R(iZ )

is closed in Z × M(Z).

PROOF. A simple calculation shows that

N ( jZ )= {((x, y0), y0); x ∈ N (Z), y0 ∈ M(Z)}.

Indeed, consider x ∈ N (Z) and y0 ∈ M(Z). It follows that (x, 0) ∈ Z and (0, y0) ∈ Z .
This implies that (x, y0) ∈ Z , so ((x, y0), y0) ∈ Z × M(Z) and jZ ((x, y0), y0)= 0.
That is, ((x, y0), y0) ∈ N ( jZ ). Conversely, assume that ((x, y), y0) ∈ N ( jZ ). It
follows that y = y0 and, using (x, y − y0) ∈ Z , we deduce that (x, 0) ∈ Z . That is,
x ∈ N (Z) and the claim is proved.

It follows that R(iZ )⊂ N ( jZ ), so (6) is a complex (of vector spaces). Consider the
linear operator

ϕ : N ( jZ )→ X, ϕ((x, y0), y0)= x .

It follows that

D(ϕ)= N ( jZ ), N (ϕ)= R(iZ ), R(ϕ)= N (Z),

which together with

dim(D(ϕ)/N (ϕ))= dim(R(ϕ))

imply that

dim(N ( jZ )/R(iZ ))= dim(N (Z)).

The claims concerning N (iZ ) and R( jZ ) are now obvious.
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Now let us prove the continuity of iZ and jZ . It follows from

‖iZ (y0)‖ = ‖((0, y0), y0)‖ = 2‖y0‖, ∀y0 ∈ M(Z),

and

‖ jZ ((x, y), y0)‖ ≤ ‖y‖ + ‖y0‖

≤ ‖((x, y), y0)‖, ∀((x, y), y0) ∈ Z × M(Z),

that iZ and jZ are continuous, hence the short sequence (6) is a complex of normed
spaces.

Assume that Z is open. This implies that there exists a constant ρ > 0 such that

ρBY ∩ R(Z)⊂ Z(BX ∩ D(Z)). (7)

Consider y ∈ R( jZ )= R(Z) such that y 6= 0. This implies that ρ‖y‖−1 y ∈ ρBY ∩

R(Z). It follows that there exists x ∈ BX ∩ D(Z) such that ρ‖y‖−1 y ∈ Z(x), so that
y ∈ Z(ρ−1

‖y‖x). Hence,

((ρ−1
‖y‖x, y), 0) ∈ Z × M(Z)

and

‖((ρ−1
‖y‖x, y), 0)‖ ≤ k‖y‖,

where k = ρ−1
+ 1. Note that

jZ ((ρ
−1
‖y‖x, y), 0)= y.

Hence, if ‖y‖ ≤ k−1 then ‖((ρ−1
‖y‖x, y), 0)‖ ≤ 1. Consequently,

k−1 BY ∩ R( jZ )⊂ jZ (BZ×M(Z)),

that is, jZ is open.
Conversely, assume that there exists ρ > 0 such that

ρBY ∩ R( jZ )⊂ jZ (BZ×M(Z)).

Let y ∈ R(Z)= R( jZ ) be such that ‖y‖ ≤ ρ. It follows that there exists ((x, y1), y0) ∈

BZ×M(Z) (in particular, x ∈ BX ∩ D(Z)) such that

jZ ((x, y1), y0)= y1 − y0 = y.

Since (x, y1) ∈ Z and (0, y0) ∈ Z , then (x, y1 − y0) ∈ Z and y ∈ Z(x). Consequently,
(7) holds, so the relation Z is open.

Now, consider a sequence {((0, yn), yn)} ⊂ R(iZ ) converging to ((x, y), y0) such
that ((x, y), y0) ∈ Z × M(Z). It follows that x = 0, y = y0 and because y0 ∈ M(Z),
we deduce that ((x, y), y0)= ((0, y0), y0) ∈ R(iZ ). This implies that R(iZ ) is closed
in Z × M(Z). 2

In the next lemma we compute the adjoints of iZ and jZ .
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LEMMA 9. Let X, Y be two normed spaces, Z ⊂ X × Y be a linear relation and
iZ , jZ be the bounded operators associated with Z. Then i ′Z : Z

′
× M(Z)′→ M(Z)′

is given by

i ′Z (z
′, y′0)= z′ ◦ h1 + y′0, ∀(z′, y′0) ∈ Z ′ × M(Z)′, (8)

where

h1 : M(Z)→ {0} × M(Z), h1(y0)= (0, y0)

and j ′Z : Y
′
→ Z ′ × M(Z)′ is given by

j ′Z (y
′)= ((0, y′)|Z ,−y′|M(Z)), ∀y′ ∈ Y ′. (9)

PROOF. Consider y0 ∈ M(Z) and (z′, y′0) ∈ Z ′ × M(Z)′. Then

〈y0, i ′Z (z
′, y′0)〉 = 〈iZ (y0), (z

′, y′0)〉

= 〈((0, y0), y0), (z
′, y′0)〉

= z′(0, y0)+ y′0(y0),

which implies (8). On the other hand, consider ((x, y), y0) ∈ Z × M(Z) and y′ ∈ Y ′.
Then

〈((x, y), y0), j ′Z (y
′)〉 = 〈 jZ ((x, y), y0), y′〉

= 〈y − y0, y′〉

= y′(y)− y′(y0),

which implies (9). 2

In Lemma 8 we have shown that there exists a very useful relation between Z and
a certain complex of normed spaces. In order to apply the theory of complexes of
Banach spaces we consider the ‘adjoint’ complex and show in the next lemma that this
is also related to Z .

LEMMA 10. Let X, Y be two normed spaces and Z ⊂ X × Y be a linear relation.
Consider the complex (6) associated with Z. Then the short sequence

0→ Y ′
j ′Z
−→ Z ′ × M(Z)′

i ′Z
−→ M(Z)′→ 0, (10)

is a complex of Banach spaces satisfying

codim(R( jZ )) = dim(N ( j ′Z )),

dim(N ( jZ )/R(iZ )) ≤ dim(N (i ′Z )/R( j ′Z )),

and

dim(N (iZ ))= codim(R(i ′Z ))= 0.
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Moreover, if Z is open then R( j ′Z )= N ( jZ )
⊥,

dim(N ( jZ )/R(iZ ))= dim(N (i ′Z )/R( j ′Z )), (11)

and if dim(N (i ′Z )/R( j ′Z )) is finite and (11) holds, then Z is open.

PROOF. First of all we remark that i ′Z is surjective, so from Lemma 8 we deduce that
dim(N (iZ ))= codim(R(i ′Z ))= 0. On the other hand, we know that R(iZ )⊂ N ( jZ ),
which implies that N ( jZ )

⊥
⊂ R(iZ )

⊥, which together with (see Lemma 7 (i))

R(iZ )
⊥
= N (i ′Z ), R( j ′Z )⊂ N ( jZ )

⊥ (12)

imply that

R( j ′Z )⊂ N (i ′Z ), (13)

hence we have that (10) is a complex of Banach spaces. On the other hand, the equality
codim(R( jZ ))= dim(N ( j ′Z )) follows from Lemma 7(iii). Using (12), the fact that
R(iZ ) is closed in Z × M(Z) and Remark 6, we deduce that

dim(N ( jZ )/R(iZ ))= dim(R(iZ )
⊥/N ( jZ )

⊥)= dim(N (i ′Z )/N ( jZ )
⊥). (14)

From (13) we infer that

N (i ′Z )/N ( jZ )
⊥
' (N (i ′Z )/R( j ′Z ))/(N ( jZ )

⊥/R( j ′Z )),

which implies that

dim(N (i ′Z )/N ( jZ )
⊥)+ dim(N ( jZ )

⊥/R( j ′Z ))= dim(N (i ′Z )/R( j ′Z )). (15)

From (14) and (15) we deduce that

dim(N ( jZ )/R(iZ ))≤ dim(N (i ′Z )/R( j ′Z )).

If Z is open, then using Lemma 8 it follows that jZ is open, hence applying
Lemma 7(ii) we obtain that R( j ′Z )= N ( jZ )

⊥, which together with (14) imply (11).
Now, assume that dim(N (i ′Z )/R( j ′Z )) is finite and that (11) holds. This together

with (14) and (15) implies that dim(N ( jZ )
⊥/R( j ′Z ))= 0, hence we obtain that

R( j ′Z )= N ( jZ )
⊥, and, again applying Lemma 7(ii), we deduce that jZ is open. Now

the openness of Z follows from Lemma 8. 2

PROOF OF THEOREM 1. First of all we introduce some isometric isomorphisms (see
Lemma 5(i)) as follows:

k : {0} × Y ′ × {0} → Y ′, k(0, y′, 0)= y′,

l : M(Z1)
′
→ {0} × {0} × M(Z1)

′, l(y′0)= (0, 0, y′0),
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and

ϕZ1 : (X
′
× Y ′ × M(Z1)

′)/((Z1 × M(Z1))
⊥)→ Z ′1 × M(Z1)

′

defined by

ϕZ1((x
′, y′, y′0)+ (Z1 × M(Z1))

⊥)= ((x ′, y′)|Z1, y′0).

It follows that

ϕ−1
Z1
: Z ′1 × M(Z1)

′
→ (X ′ × Y ′ × M(Z1)

′)/((Z1 × M(Z1))
⊥)

is given by
ϕ−1

Z1
(z′, y′0)= (x

′, y′, y′0)+ (Z1 × M(Z1))
⊥

where (x ′, y′) ∈ X ′ × Y ′ is such that (x ′, y′)|Z1 = z′.
Consider the operators

ĩZ1 = l ◦ i ′Z1
◦ ϕZ1, j̃Z1 = ϕ

−1
Z1
◦ j ′Z1

◦ k

and the short sequence

0→ {0} × Y ′ × {0}
j̃Z1
−−→ (X ′ × Y ′ × M(Z1)

′)/((Z1 × M(Z1))
⊥)

ĩZ1
−→ {0} × {0} × M(Z1)

′
→ 0.

(16)

Note that

ϕZ1(R( j̃Z1))= R( j ′Z1
), ϕZ1(N (̃iZ1))= N (i ′Z1

), (17)

and

k(N ( j̃Z1))= N ( j ′Z1
). (18)

Using (1), Lemmas 5, 8, 10, Equations (17), (18) and the fact that Z1 is open, we
deduce that (16) is a complex of Banach spaces, ĩZ1 is surjective, R( j̃Z1) is closed and

dim(N (̃iZ1)/R( j̃Z1)) = dim(N (Z1)) <∞,

dim(N ( j̃Z1)) = codim(R(Z1)) <∞.
(19)

It follows that the complex (16) is Fredholm and

−ind(Z1)= ind((16)). (20)

Now, taking into account that M(Z1)= M(Z2) and replacing Z1 by Z2, we associate
with Z2 the complex of Banach spaces

0→ {0} × Y ′ × {0}
j̃Z2
−−→ (X ′ × Y ′ × M(Z1)

′)/((Z2 × M(Z1))
⊥)

ĩZ2
−→ {0} × {0} × M(Z1)

′
→ 0.

(21)
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We now characterize G0( j̃Z j ) for j = 1, 2. Consider

((0, y′, 0), (u′, v′, y′0)) ∈ G0( j̃Z j ).

It follows that

j̃Z j (0, y′, 0)= (u′, v′, y′0)+ (Z j × M(Z1))
⊥.

On the other hand, from Lemma 9,

j̃Z j (0, y′, 0)= (0, y′,−y′|M(Z1))+ (Z j × M(Z1))
⊥.

It follows that

(0, y′,−y′|M(Z1))|[Z j × M(Z1)] = (u
′, v′, y′0)|[Z j × M(Z1)],

that is,

y′(y)− y′(y0)= u′(x)+ v′(y)+ y′0(y0), ∀((x, y), y0) ∈ Z j × M(Z1).

Taking in the above relation ((x, y), y0)= ((0, 0), y0), it follows that

−y′(y0)= y′0(y0), ∀y0 ∈ M(Z1),

and

y′(y)= u′(x)+ v′(y), ∀(x, y) ∈ Z j .

We deduce that

((0, y′, 0), (u′, v′, y′0))= ((0, y′, 0), (u′, v′,−y′|M(Z1)))

where

(u′, v′)|Z j = (0, y′)|Z j . (22)

On the other hand, arguing as above,

((0, y′, 0), (u′, v′,−y′|M(Z1))) ∈ G0( j̃Z j )

for all u′ ∈ X ′ and y′, v′ ∈ Y ′ such that (22) is satisfied. Further, we characterize
G0(̃iZ j ) ( j = 1, 2). Actually, from Lemma 9 it follows immediately that
((x ′, y′, y′0), (0, 0, y′1)) ∈ G0(̃iZ j ) if and only if y′|M(Z1)+ y′0 = y′1. Therefore,

G0(̃iZ1)= G0(̃iZ2). (23)

Next we prove that

δ(G0( j̃Z1), G0( j̃Z2))≤ δ(Z
⊥

1 , Z⊥2 ),
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that is,

sup
s1∈G0( j̃Z1 ),‖s1‖≤1

inf
s2∈G0( j̃Z2 )

‖s1 − s2‖ ≤ sup
t1∈Z⊥1 ,‖t1‖≤1

inf
t2∈Z⊥2

‖t1 − t2‖. (24)

Let s1 ∈ G0( j̃Z1) be such that ‖s1‖ ≤ 1. Using the above characterization of G0( j̃Z1),
it follows that

s1 = ((0, y′, 0), (u′1, v
′

1,−y′|M(Z1)))

where u′1 ∈ X ′, y′, v′1 ∈ Y ′ and (u′1, v
′

1)|Z1 = (0, y′)|Z1. Hence, taking

t1 = (u
′

1, v
′

1)− (0, y′),

t1 ∈ Z⊥1 and ‖t1‖ ≤ 1. Let t2 ∈ Z⊥2 be fixed and consider

(u′2, v
′

2)= t2 + (0, y′).

It follows that

s2 := ((0, y′, 0), (u′2, v
′

2,−y′|M(Z1))) ∈ G0( j̃Z2)

and ‖s1 − s2‖ = ‖t1 − t2‖. Consequently, (24) holds. Interchanging Z1 and Z2, it
follows that

δ̂(G0( j̃Z1), G0( j̃Z2))≤ δ̂(Z
⊥

1 , Z⊥2 ),

which together with Lemma 5 (iii) imply that

δ̂(G0( j̃Z1), G0( j̃Z2))≤ δ̂(Z1, Z2). (25)

From (23) and (25) we deduce that

δ̂0((16), (21))≤ δ̂(Z1, Z2).

Hence, using Theorem 4, it follows that there exists ε > 0 such that if δ̂(Z1, Z2) < ε,
then the complex (21) is Fredholm,

dim(N ( j̃Z2))≤ dim(N ( j̃Z1)), codim(R(̃iZ2))= codim(R(̃iZ1))= 0, (26)

and

dim(N (̃iZ2)/R( j̃Z2))≤ dim(N (̃iZ1)/R( j̃Z1)). (27)

Moreover,

ind((16)) = ind((21)). (28)

From Lemmas 8 and 10 it follows that

dim(N (Z2))≤ dim(N (̃iZ2)/R( j̃Z2)), codim(R(Z2))= dim(N ( j̃Z2)). (29)
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Using (29), (27) and (19) it follows that

dim(N (Z2))≤ dim(N (̃iZ2)/R( j̃Z2))≤ dim(N (̃iZ1)/R( j̃Z1))= dim(N (Z1)),

and using (29), (26) and (19) it follows that

codim(R(Z2))= dim(N ( j̃Z2))≤ dim(N ( j̃Z1))= codim(R(Z1)),

hence (2) holds. On the other hand, from (29), (26), (28) and (20) we deduce that

ind(Z2) = dim(N (Z2))− codim(R(Z2))

≤ dim(N (̃iZ2)/R( j̃Z2)))− dim(N ( j̃Z2))

= −ind((21))=−ind((16))= ind(Z1),

(30)

hence (3) holds.
We prove now the last assertion of the theorem. Let us suppose that ind(Z2)=

ind(Z1). From (30) we infer that

dim(N (Z2))− codim(R(Z2))= dim(N (i ′Z2
)/R( j ′Z2

))− dim(N ( j ′Z2
)). (31)

On the other hand, from Lemma 10 we obtain that

codim(R(Z2))= dim(N ( j ′Z2
)), (32)

and from Lemma 8

dim(N (Z2))= dim(N ( jZ2)/R(iZ2)). (33)

Introduced in (31), relations (32) and (33) imply that

dim(N ( jZ2)/R(iZ2))= dim(N (i ′Z2
)/R( j ′Z2

)).

Using Lemma 10 again, we deduce that Z2 is open. Finally, similar arguments show
that condition ind(Z2)= ind(Z1) is also necessary to obtain that Z2 is open. The proof
is now complete. 2

REMARK 11. (i) In fact, in (24) we can prove that

δ(G0( j̃Z1), G0( j̃Z2))= δ(Z
⊥

1 , Z⊥2 ).

Indeed, let us consider t1 ∈ Z⊥1 such that ‖t1‖ ≤ 1 and define s1 ∈ G0( j̃Z1) with
‖s1‖ ≤ 1 by

s1 = ((0, 0, 0), (u′1, v
′

1, 0)) where (u′1, v
′

1) := t1.

Let
s2 = ((0, y′, 0), (u′2, v

′

2,−y′|M(Z1))) ∈ G0( j̃Z2)
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be fixed and t2 ∈ Z⊥2 given by t2 = (u′2, v
′

2)− (0, y′). Then

‖s1 − s2‖ = ‖y
′
‖ + ‖u′1 − u′2‖ + ‖v

′

1 − v
′

2‖ + ‖y
′
|M(Z1)‖,

‖t1 − t2‖ = ‖u
′

1 − u′2‖ + ‖v
′

1 − v
′

2 + y′‖ ≤ ‖u′1 − u′2‖ + ‖v
′

1 − v
′

2‖ + ‖y
′
‖,

hence ‖t1 − t2‖ ≤ ‖s1 − s2‖. Our claim is now proved.
Hence, interchanging Z1 and Z2 and applying Lemma 5(iii), it follows that

δ̂0((16), (21))= δ̂(Z1, Z2),

so, we can apply Albrecht–Vasilescu theorem to the complexes (16) and (21) if and
only if δ̂(Z1, Z2) is sufficiently small.

(ii) Let Z1 ⊂ X × Y be a linear relation, and let A ∈ B(D(A), Y ) be such that
D(Z1)⊂ D(A). Consider Z2 = Z1 + A. It is clear that M(Z1)= M(Z2). On the
other hand, one can show that

δ̂(G0( j̃Z1), G0( j̃Z2))≤ ‖A‖.

Indeed, let s1 ∈ G0( j̃Z1) be such that ‖s1‖ ≤ 1. Using the characterization of G0( j̃Z1),
it follows that s1 = ((0, y′, 0), (u′1, v

′

1,−y′|M(Z1))), where u′1 ∈ X ′, y′, v′1 ∈ Y ′ and
(u′1, v

′

1)|Z1 = (0, y′)|Z1. Let us introduce the notation

ξ1 = (u
′

1, v
′

1) ∈ X ′ × Y ′, γ = (0, y′) ∈ X ′ × Y ′.

Then

ξ1|Z1 = γ |Z1.

Consider

λ= γ |Z2 ∈ Z ′2.

For any (x, y) ∈ Z1,

|ξ1(x, y + Ax)− λ(x, y + Ax)| = |v′1(Ax)− y′(Ax)| ≤ ‖v′1 − y′‖‖A‖‖x‖,

and because ‖x‖ ≤ ‖(x, y + Ax)‖ and ‖v′1 − y′‖ ≤ ‖v′1‖ + ‖y
′
‖ ≤ 1, it follows that

‖ξ1|Z2 − λ‖ ≤ ‖A‖.

Using the Hahn–Banach theorem, we deduce that there exists ξ̃1 ∈ X ′ × Y ′ such that
ξ̃1|Z2 = ξ1|Z2 − λ and ‖̃ξ1‖ = ‖ξ1|Z2 − λ‖ ≤ ‖A‖. Consider ξ2 = (u′2, v

′

2) ∈ X ′ × Y ′

given by ξ2 = ξ1 − ξ̃1. It follows that

(u′2, v
′

2)|Z2 = (0, y′)|Z2,

hence

s2 = ((0, y′, 0), (u′2, v
′

2,−y′|M(Z1))) ∈ G0( j̃Z2)
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and

‖s1 − s2‖ = ‖̃ξ1‖ ≤ ‖A‖.

Hence, δ(G0( j̃Z1), G0( j̃Z2))≤ ‖A‖. Replacing Z1 by Z2, A by −A and using the
equality Z2 − A = Z1, we deduce that δ(G0( j̃Z2), G0( j̃Z1))≤ ‖A‖. Hence, our claim
is proved.

(iii) Taking (ii) into account, the proof of Corollary 3 is similar to that of Theorem 1.

REMARK 12. In Theorem 1, if we replace condition

codim(R(Z1)) <∞

by

codim(R(Z1))=∞,

from the proof of Theorem 1 and from the Albrecht–Vasilescu theorem in the semi-
Fredholm situation (see [1, Theorem 1.4], [6, Theorem 2.7]), it follows that

codim(R(Z2))=∞, dim(N (Z2))≤ dim(N (Z1)).

In particular,

ind(Z2)= ind(Z1)=−∞.

On the other hand, if we replace condition

dim(N (Z1)) <∞

by

dim(N (Z1))=∞,

from the proof of Theorem 1 and from the Albrecht–Vasilescu theorem in the semi-
Fredholm case it follows that

dim(N (Z2))≤ dim(N (Z1))

(with equality if Z2 is open) and

codim(R(Z2))≤ codim(R(Z1)).
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