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A Brief Note Concerning Hard Lefschetz
for Chow Groups

Robert Laterveer

Abstract. We formulate a conjectural hard Lefschetz property for Chow groups and prove it in some
special cases, roughly speaking, for varieties with ûnite-dimensional motive, and for varieties whose
self-product has vanishing middle-dimensional Griõths group. An appendix includes related state-
ments that follow from results of Vial.

1 Introduction

_eBloch–Beilinson conjectures can be seen as a formidable heuristic guide that pre-
dicts the structure of Chow groups of algebraic varieties and the precise way Chow
groups are in�uenced by singular cohomology (cf. [10, 16, 17, 27]). To get a glimpse of
this heuristic, let us look at what the Bloch–Beilinson conjectures say concerning the
hard Lefschetz property on the level of Chow groups.

Let X be a smooth projective variety over C of dimension n, equipped with an
ample line bundle L. Let A jXQ denote the Chow group of codimension j algebraic
cycles with Q coeõcients. It is expected that A j

AJXQ (the subgroup of Abel–Jacobi
trivial cycles) only depends on the cohomology groups

H2 j−2(X ,Q), H2 j−3(X ,Q), . . . ,H j(X ,Q).
_is leads to the following expectation.

Conjecture 1.1 Let X be a smooth projective variety of dimension n and let L be an
ample line bundle. _en intersection induces maps

– ⋅ Ln−2 j+2∶A j
AJ(X)Q Ð→ An− j+2(X)Q

that are injective for 2 j − 2 ≤ n.

_is type of conjecture is formulated and studied in [5]. In particular, Conjec-
ture 1.1 implies a certain weak Lefschetz property for Chow groups: if Y ⊂ X is a
smooth ample hypersurface, restriction A j(X)Q → A j(Y)Q is injective in the range
j < n/2; such a weak Lefschetz property was conjectured in 1974 by Hartshorne [7].
Unlike cohomology, Chow groups get increasingly complicated in higher codimen-
sion (_is is attested to by the group An(X) of 0-cycles, which is in general “very
large” [16], [4]; precisely, using [4], one sees that – ⋅ L∶An−1(X)Q → An(X)Q cannot
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surject unless pg(X) = 0). For this reason, in general one cannot expect the surjec-
tivity part of the hard Lefschetz theorem to carry over from cohomology to Chow
groups. In the special case where X has a small Hodge diamond, however, one may
expect a surjectivity statement on the level of Chow groups–as we now proceed to
explain.
For simplicity, let us restrict to the case of 0-cycles. It is expected that if

Hn(X ,Q), . . . ,Hn+r−1(X ,Q)
are supported in codimension 1, then An(X)Q is determined by

H2n(X ,Q),H2n−1(X ,Q), . . . ,Hn+r(X ,Q) .

(_is expectation can be made more precise by introducing the conjectural Bloch–
Beilinson ûltration F∗ on An and stipulating that the various gradeds depend on the
various cohomology groups, cf. [10].) _us, one is led to the following expectation.

Conjecture 1.2 Let X be a smooth projective variety of dimension n and L an ample
line bundle. Suppose H i(X ,Q) = N 1H i(X ,Q) for n ≤ i < n + r. _en intersection
induces surjective maps

– ⋅ Lr ∶An−r(X)Q Ð→ An(X)Q .

(Here N∗ denotes the coniveau ûltration on cohomology (Deûnition 2.1).) In par-
ticular, Conjecture 1.2 implies a “weak Lefschetz-type” property: under the hypothe-
ses of Conjecture 1.2, An(X)Q is supported on a codimension r complete intersection
Y ⊂ X.

_e main result of this note shows that Conjectures 1.1 and 1.2 can be proved in
some special cases.

_eorem 3.1 Suppose the Voisin standard conjecture holds. Let X be a smooth pro-
jective variety of dimension n, and suppose the following hold:
(i) either the motive of X is ûnite-dimensional, or Griò n(X × X)Q = 0;
(ii) the Lefschetz standard conjecture B(X) holds;
(iii) H i(X ,Q) = N rH i(X ,Q) for all i ∈ [n − r + 1, n].
_en for any ample line bundle L, the map

– ⋅ Lr ∶A j
AJ(X)Q Ð→ A j+r

AJ (X)Q
is injective for j ≤ r + 1, and

– ⋅ Lr ∶A j(X)Q Ð→ A j+r(X)Q
is surjective for j > n − 2r.

_e Voisin standard conjecture [26] is explained in Conjecture 2.2 below. For the
notion of ûnite-dimensionalmotive (cf. [1,12]); let usmerely note that conjecturally all
varieties have ûnite-dimensional motive [12], and that there are quite a few varieties
known to have ûnite-dimensional motives (cf. Section 2).

In certain cases, some of the hypotheses are automatically satisûed and the state-
ment simpliûes somewhat; for instance, there are the following corollaries.
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Corollary 3.8 Let X be a smooth projective threefold, rationally dominated by a prod-
uct of curves. Suppose A3(X)Q is supported on a divisor. _en for any ample line bundle
L, the map

– ⋅ L∶ A2
AJ(X)Q Ð→ A3

AJ(X)Q
is an isomorphism.

(In particular, for any ample hypersurface Y ⊂ X, restriction A2
AJ(X)Q → A2(Y)Q

is injective, and push-forward A2(Y)Q → A3(X)Q is surjective.)

Corollary 3.10 Let X be a smooth projective variety of dimension n, which is a product
X = X1 × X2 × ⋅ ⋅ ⋅ × Xs ,

where each X j is either an abelian variety or a variety with Abel–Jacobi trivial Chow
groups. Suppose H i(X ,Q) = N rH i(X ,Q) for all i ∈ [n − r + 1, n]. _en for any ample
line bundle L on X,

– ⋅ Lr ∶A j
AJ(X)Q Ð→ A j+r

AJ (X)Q
is injective for j ≤ r + 1, and

– ⋅ Lr ∶A j(X)Q Ð→ A j+r(X)Q
is surjective for j > n − 2r.

As noted by an anonymous referee, there is some overlap with Vial’s work [22],
and Corollary 3.8 easily follows from results contained in [22]. Actually, using Vial’s
work one can prove a stronger statement; this is explained in an appendix. We are
very grateful to the referee for numerous valuable suggestions, and particularly for
pointing out the relevance of [22] and sketching the proof presented in the appendix.

Conventions In this note, the word variety will refer to a quasi-projective irre-
ducible algebraic variety over C. A subvariety is a (possibly reducible) reduced sub-
scheme that is equidimensional. _e Chow group of j-dimensional cycles on X is
denoted A jX; for X smooth of dimension n, the notations A jX and An− jX will be
used interchangeably. _e Griõths group Griò j is the group of codimension j cycles
that are homologically trivialmodulo algebraic equivalence. In an eòort to lighten no-
tation, we will o�en write H jX or H jX to designate singular cohomology H j(X ,Q)
(resp. Borel–Moore homology H j(X ,Q)).

2 Preliminary

Deûnition 2.1 (Coniveau ûltration [3]) Let X be a quasi-projective variety. _e
coniveau ûltration on cohomology and on homology is deûned as

N cH i(X ,Q) = ∑ Im(H i
Y(X ,Q) → H i(X ,Q)) ,

N cH i(X ,Q) = ∑ Im(H i(Z ,Q) → H i(X ,Q)) ,
where Y runs over codimension ≥ c subvarieties of X, and Z over dimension ≤ i − c
subvarieties.

We recall the statement of the “Voisin standard conjecture” ([26, Conjecture 0.6]).
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Conjecture 2.2 (Voisin standard conjecture) Let X be a smooth projective variety,
and Y ⊂ X closed with complement U. _en the natural sequence

N iH2i(Y ,Q) Ð→ N iH2i(X ,Q) Ð→ N iH2i(U ,Q) Ð→ 0

is exact for any i.

Remark 2.3 Hodge theory gives an exact sequence

GrW
−2iH2iY ∩ F−i Ð→ H2iX ∩ F−i Ð→ GrW

−2iH2iU ∩ F−i Ð→ 0,

whereW denotes Deligne’s weight ûltration, and F the Hodge ûltration on H∗( ⋅ ,C).
Hence, if the Hodge conjecture (that is, its homology version for singular varieties
[9]) is true, then Conjecture 2.2 is true.

What’s more, this conjecture ûts in very neatly with the classical standard conjec-
tures: Voisin shows that Conjecture 2.2 plus the algebraicity of the Künneth compo-
nents of the diagonal is equivalent to the Lefschetz standard conjecture [26, Proposi-
tion 1.6].

Remark 2.4 Conjecture 2.2 is obviously true for i ≤ 1 (this follows from the truth of
the Hodge conjecture for curve classes), and for i ≥ dimY − 1 (where it follows from
the Hodge conjecture for divisors).

_e main ingredient we will use in this note is Kimura’s nilpotence theorem.

_eorem 2.5 (Kimura [12]) Let X be a smooth projective variety of dimension n with
ûnite-dimensional motive. Let Γ ∈ An(X × X)Q be a correspondence that is homologi-
cally trivial. _en there is N ∈ N such that

Γ○N = 0 ∈ An(X × X)Q .

We refer to [1,12,17] for the deûnition of ûnite-dimensional motive. Conjecturally,
any variety has ûnite-dimensional motive [12]. What mainly concerns us in the scope
of this note, is that there are quite a few examples that are known to have ûnite-
dimensional motive: varieties dominated by products of curves [12], K3 surfaces with
Picard number 19 or 20 [18], surfaces not of general type with vanishing geometric
genus [6,_eorem 2.11], Godeaux surfaces [6], threefolds with nef tangent bundle [8],
certain threefolds of general type [23, Section 8], varieties of dimension ≤ 3 rationally
dominated by products of curves [21, Example 3.15], varieties X withAbel–Jacobi triv-
ial Chow groups (i.e., Ai

AJXQ = 0 for all i) [20,_eorem 4], products of varieties with
ûnite-dimensional motive [12].

So far, all examples of ûnite-dimensional motives are in the tensor subcategory
generated by Chow motives of curves.

_ere exists another nilpotence result, which predates and preûgures Kimura’s the-
orem.

_eorem 2.6 (Voisin [25], Voevodsky [24]) Let X be a smooth projective algebraic
variety of dimension n, and Γ ∈ An(X × X)Q a correspondence that is algebraically
trivial. _en there is N ∈ N such that Γ○N = 0 ∈ An(X × X)Q .
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3 Main

We proceed to prove the main result of this note. Note that we prove slightly more
than the statement given in the introduction; we also consider hard Lefschetz for the
Griõths groups.

_eorem 3.1 Suppose the Voisin standard conjecture holds. Let X be a smooth pro-
jective variety of dimension n, and suppose
(i) either the motive of X is ûnite-dimensional, or Griò n(X × X)Q = 0;
(ii) the Lefschetz standard conjecture B(X) holds;
(iii) H i(X ,Q) = N rH i(X ,Q) for all i ∈ [n − r + 1, n].
_en for any ample line bundle L, the maps

– ⋅ Lr ∶A j
AJ(X)Q Ð→ A j+r

AJ (X)Q , – ⋅ Lr ∶Griò j(X)Q Ð→ Griò j+r(X)Q
are injective for j ≤ r + 1, and

– ⋅ Lr ∶A j(X)Q Ð→ A j+r(X)Q , – ⋅ Lr ∶A j
AJ(X)Q Ð→ A j+r

AJ (X)Q ,
– ⋅ Lr ∶Griò j−1(X)Q Ð→ Griò j+r−1(X)Q

are surjective for j > n − 2r. (Moreover, Lr is injective on A j
hom(X)Q (resp. A j(X)Q)

provided j ≤ min(r + 1, n−r+1
2 ) resp. ( j ≤ min(r + 1, n−r

2 )).)

Proof We ûrst consider Chow groups, and prove the injectivity statement. Since by
hypothesis B(X) holds, the Künneth components

π i ∈ Im(H2n−iX ⊗H iX Ð→ H2n(X × X))
are algebraic [14]. Given an ample line bundle L and an integer ℓ ≥ 0, we have a
correspondence Lℓ ∈ An+ℓ(X×X)Q that acts as “cuppingwith Lℓ”. _ere is the relation

Lℓ = 1
d
Γτ ○ tΓτ ∈ An+ℓ(X × X)Q ,

where Γτ is the graph of the inclusion τ∶Y → X and Y is a complete intersection of
class [Y] = dLℓ ∈ AℓXQ. Moreover, since we suppose that B(X) holds, for any i ≤ n
there exist correspondences C i ∈ Ai(X × X)Q such that

C i ○ Ln−i = id∶H iX Ð→ H iX .

Applying hard Lefschetz, it follows from hypothesis (iii) that there exists some
closed codimension r subvariety Z ⊂ X supporting the cohomology groups

Hn−r+1X , . . . ,Hn+r−1X .

_at is, for i ∈ [n − r + 1, n + r − 1], the Künneth component π i is in the kernel of the
restriction homomorphism

H2n(X × X) Ð→ H2n((X × X) ∖ (Z × Z)) .
Using the Voisin standard conjecture (Conjecture 2.2), we ûnd there exists a cycle
P′i ∈ An(Z × Z)Q such that the push-forward Pi ∈ An(X × X) (of P′i to X × X) equals
the Künneth component π i :

Pi = π i ∈ H2n(X × X) ∀i ∈ [n − r + 1, n + r − 1].
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Lemma 3.2 Let i ∈ [n − r + 1, n + r − 1]. _en for j > n − r, we have
(Pi)∗A j(X)Q = 0.

For j ≤ r + 1, we have (Pi)∗A j
AJ(X)Q = 0. Moreover,

(Pi)∗Griò j(X)Q = 0 ∀ j ∈ [0, r + 1] ∪ [n − r, n].

Proof Let ψ∶ Z → X denote the inclusion, so Pi = (ψ × ψ)∗(P′i ). _ere is a factor-
ization

A j(X)Q

��

(Pi)∗ // A j(X)Q

A j(Z)Q
(P′i )∗ // A j−r(Z)Q

OO

_is implies the lemma for reasons of dimension. _e lower le� group vanishes for
j > n − r (since dim Z = n − r); the lower right group vanishes when restricted to
Abel–Jacobi trivial cycles for j ≤ r + 1.

For i ≤ n − r, we choose a rational equivalence class to represent the Künneth
component π i in the following way. We take arbitrary li�s of π i andC i in An(X×X)Q
(resp. Ai(X × X)Q), and we deûne

Π i ∶= π i ○ tC i ○ Ln−i ∈ An(X × X)Q , i ≤ n − r.
For i ≥ n+ r, we make the following choice to represent the Künneth component. We
deûne

Π i ∶= π i ○ L i−n ○ tC2n−i ∈ An(X × X)Q , i ≥ n + r.

Lemma 3.3 We have
Π i = π i ∈ H2n(X × X) ∀i ∈ [0, n − r] ∪ [n + r, 2n].

Proof First, consider the case i ≤ n − r. _e transpose of Π i is
tΠ i = t(π i ○ tC i ○ Ln−i) = Ln−i ○ C i ○ π2n−i ∈ H2n(X × X)

(as obviously, tLn−i = 1/d t(Γτ ○ tΓτ) = Ln−i). Hence, the action on cohomology is

(tΠ i)∗H jX =
⎧⎪⎪⎨⎪⎪⎩

id if j = 2n − i ,
0 if j /= 2n − i.

It follows that tΠ i = π2n−i ∈ H2n(X × X).
Next, suppose i ≥ n + r. _e argument is similar.
_e transpose of Π i is

tΠ i = t(π i ○ L i−n ○ tC2n−i) = C2n−i ○ L i−n ○ π2n−i ∈ H2n(X × X).
Hence, the action on cohomology is

(tΠ i)∗H jX =
⎧⎪⎪⎨⎪⎪⎩

id if j = 2n − i,
0 if j /= 2n − i.

It follows that tΠ i = π2n−i ∈ H2n(X × X).
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Lemma 3.4 Let i ≥ n + r. _en for j ≤ r + 1, we have

(Π i)∗A j
AJXQ = 0, (Π i)∗Griò j XQ = 0.

Proof Note that tC2n−i ∈ A2n−i(X × X)Q acts

(tC2n−i)∗∶A j
AJ(X)Q Ð→ A j+n−i

AJ (X)Q .

But since j + n − i ≤ 1, the group on the right vanishes.

_e above choices give us a decomposition of the diagonal

∆ =
n−r

∑
i=0

Π i +
n+r−1

∑
i=n−r+1

Pi +
2n

∑
i=n+r

Π i ∈ H2n(X × X ,Q).

_is is an equality of cycles modulo homological equivalence. Now, applying one of
the two nilpotence theorems (_eorem 2.5 if the motive is ûnite-dimensional, _e-
orem 2.6 in case the Griõths group vanishes), we get that there exists N ∈ N such
that

(∆ −
n−r

∑
i=1

Π i −
n+r−1

∑
i=n−r+1

Pi −
2n

∑
i=n+r

Π i)
○N

= 0 ∈ An(X × X)Q .

Developing this expression (and noting that ∆○N = ∆), we ûnd
∆ = ∑

k
Qk ∈ An(X × X)Q ,

where each Qk is a composition of elements Π i and Pi′ . For each k, let Q0
k denote the

“tail element” of Qk ; i.e., we write

Qk = QN ′

k ○ QN ′
−1

k ○ ⋅ ⋅ ⋅ ○ Q0
k ∈ An(X × X)Q ,

with Q0
k /= ∆ (so that N ′ ≤ N).

Now let us consider the action of Qk on A j
AJ(X)Q, for j ≤ r + 1. In the case where

Q0
k is a Π i for some i ∈ [n + r, 2n], it follows from Lemma 3.4 that

(Qk)∗A j
AJ(X)Q = 0.

Likewise, if Q0
k is of the form Pi (for some i ∈ [n − r + 1, n + r − 1]), then applying

Lemma 3.2, we ûnd again
(Qk)∗A j

AJ(X)Q = 0.
It follows that the onlyQk acting non-trivially are those with a tail of type Π i , i ≤ n−r.
But then (looking at the deûnition of Π i for i ≤ n − r) it follows that

A j
AJ(X)Q = ∆∗A j

AJ(X)Q = ((something) ○ Lr)
∗
A j
AJ(X)Q ∀ j ≤ r + 1.

_e injectivity statement is now obvious.
We now proceed to prove the surjectivity statement; this is done by making one

small change in the above argument. We replace the correspondences Π i for i ≥ n+ r
by the following modiûcation:

Π′

i ∶= L i−n ○ tC2n−i ○ π i ∈ An(X × X)Q , i ≥ n + r.

_is deûnition implies the following lemma (cf. Lemma 3.3).
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Lemma 3.5 For i ≥ n + r, we have Π′

i = π i ∈ H2n(X × X).

We need another lemma.

Lemma 3.6 Let i ≤ n − r. _en for j > n − r, we have

(Π i)∗A j(X)Q = 0, (Π i)∗Griò j−1 XQ = 0.

Proof _is is analogous to Lemma 3.4. Let Y ⊂ X be a dimension i complete inter-
section, of class [Y] = dLn−i . _en the action of Π i factors

(Π i)∗∶A j(X)Q Ð→ A j(Y)Q Ð→ A j(X)Q ,

from which the required vanishing follows.

Now, we have a decomposition of the diagonal in a sum of cycles

∆ =
n−r

∑
i=0

Π i +
n+r−1

∑
i=n−r+1

Pi +
2n

∑
i=n+r

Π′

i ∈ H2n(X × X).

Again applying one of the two nilpotence theorems, we know there exists N ∈ N such
that

(∆ −
n−r

∑
i=1

Π i −
n+r−1

∑
i=n−r+1

Pi −
2n

∑
i=n+r

Π′

i)
○N

= 0 ∈ An(X × X)Q .

Upon developing
∆ = ∑

k
Qk ∈ An(X × X)Q ,

where each Qk is a composition of elements Π i , Pi′ , and Π′

i′′ . We now decompose
each Qk as

Qk = Q0
k ○ Q 1

k ○ ⋅ ⋅ ⋅ ○ QN ′

k ∈ An(X × X)Q ,
with Q0

k /= ∆ (and N ′ ≤ N).
We analyze the action of Qk on A j+r(X)Q for j > n − 2r. First, in the case where

Q0
k = Π i (for some i ≤ n − r) it follows from Lemma 3.6 that there is no action

(Qk)∗A j+r(X)Q = 0.

Likewise, in the case where Q0
k is of type Pi (for some i ∈ [n − r + 1, n + r − 1])

we ûnd from Lemma 3.2 that (Qk)∗A j+r(X)Q = 0 again. It follows that the only
correspondences Qk acting are those with “head” Q0

k of type Π′

i (for some i ≥ n + r).
_us, we can write

A j+r(X)Q = ∆∗A j+r(X)Q = (Lr ○ (something))
∗
A j+r(X)Q ∀ j > n − 2r,

and also

A j+r
AJ (X)Q = ∆∗A j+r

AJ (X)Q = (Lr ○ (something))
∗
A j+r
AJ (X)Q ∀ j > n − 2r.

_e surjectivity statement is now obvious.
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_e statements for the Griõths group are proved in the same way; details are le�
to the reader. As for the injectivity statement in parenthesis: the Abel–Jacobi maps ût
into a commutative diagram

A j
hom(X)Q

��

–⋅Lr
// A j+r

hom(X)Q

��
J j(X)Q –⋅Lr

// J j+r(X)Q ,
where J∗ denotes the intermediate Jacobian. Under the assumption 2 j− 1+ r ≤ n, one
can show (using hard Lefschetz for cohomology) that the bottom horizontal arrow is
injective. _e statement for A j is proven similarly, using the cycle class map.

Remark 3.7 _e assumption Griò n(X × X)Q = 0 in _eorem 3.1 is mainly of
theoretical interest, and not practically useful. Indeed, there are precise conjectures
(based on the Bloch–Beilinson conjectures) describing how the coniveau ûltration
on cohomology should in�uence Griõths groups [11]. Unfortunately, it seems that
these conjectures are not known in any non-trivial cases. For n = 2, it is conjectured
that if H1(X) = 0 then Griò 2(X × X)Q = 0. For n = 3, it is conjectured that if
h0,2(X) = h0,3(X) = 0 then Griò 3(X × X)Q = 0. For n = 4, if h2,0(X) = h3,0(X) =
h4,0(X) = h2,1(X) = 0 then Griò4(X × X)Q should vanish. _ese predictions are
particular instances of [11, Corollary 6.8].

In certain easy cases, some hypotheses can be eliminated from _eorem 3.1.

Corollary 3.8 Let X be a smooth projective threefold. Suppose
(i) A0(X)Q is supported on a divisor;
(ii) _e motive of X is ûnite-dimensional.
_en for any ample line bundle L, the map

– ⋅ L∶A2
AJ(X)Q Ð→ A3

AJ(X)Q
is an isomorphism. In particular, for any ample hypersurface Y ⊂ X, the restrictionmap

A2
AJ(X)Q Ð→ A2

AJ(Y)Q
is injective, and push-forward

A0(Y)Q Ð→ A0(X)Q
is surjective.

Proof First, as is well known [4], hypothesis (i) implies

H3X = N 1H3X .

Hypothesis (i) also implies B(X); this follows from [2] or [19, _eorem 7.1]. _us we
are in position to apply_eorem 3.1, once wemanage to explain whyVoisin’s standard
conjecture is not needed as an extra hypothesis. Looking at the proof, we see that this
conjecture is only used to obtain that a certain Hodge class in H6(Z ×Z) is algebraic,
where dim Z = 2; this is OK by the Hodge conjecture for divisors.
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Corollary 3.9 Let X be a smooth projective variety of dimension n ≥ 4, dominated
by curves. Suppose Hn(X) = N⌈

n−1
2 ⌉Hn(X). _en for any ample L,

– ⋅ L∶A2
hom(X)Q Ð→ A3(X)Q

is injective, and
– ⋅ L∶An−1(X)Q Ð→ An(X)Q

is surjective.

Proof Just as in the proof ofCorollary 3.8, theKünneth component πn is represented
by an algebraic cycle on something of dimension n+1 thanks to the Hodge conjecture
for divisors. _is means that _eorem 3.1 applies unconditionally.

(Note that in Corollary 3.9, the assumption Hn(X) = N⌈
n−1
2 ⌉Hn(X) implies (using

B(X)) that H i(X) = N⌈
i−1
2 ⌉H i(X) for all i of the same parity as n. _at is, the Hodge

structures Hn(X),Hn−2(X),Hn−4(X), . . . are of level ≤ 1.)

Corollary 3.10 Let X be a smooth projective variety of dimension n that is a product
X = X1 × X2 × ⋅ ⋅ ⋅ × Xs ,

where each X j is either an abelian variety, or a variety with Abel–Jacobi trivial Chow
groups. Suppose H i(X) = N rH i(X) for all i ∈ [n − r + 1, n].

_en for any ample line bundle L on X,

– ⋅ Lr ∶A j
AJ(X)Q Ð→ A j+r

AJ (X)Q
is injective for j ≤ r + 1, and – ⋅ Lr ∶A j(X)Q → A j+r(X)Q, is surjective for j > n − 2r.

Proof _e hypotheses imply that X has ûnite-dimensional motive, and that B(X)
is true ([13, 14] for abelian varieties, and [19, _eorem 7.1] or [2] for varieties with
AJ-trivial Chow groups). _e corollary now follows from _eorem 3.1, once we ex-
plain why Voisin’s standard conjecture is not needed as an extra hypothesis. Recall
that in the proof of_eorem 3.1, Voisin’s standard conjecture was only used to obtain
cycles P′i ∈ An(Z×Z) (for some Z ⊂ X of codimension r) such that the push-forward
Pi ∈ An(X × X)Q represents the Künneth component π i :

Pi = π i ∈ H2n(X × X)∀i ∈ [n − r + 1, n + r − 1].
But this is OK unconditionally, for the following reason: each π i can be expressed in
terms of Künneth components of the factors X j :

π i = ⊕
i1+i2+⋅⋅⋅+is=i

π1
i1 × π2

i2 × ⋅ ⋅ ⋅ × πs
is ∈ H2n(X × X),

where π j
i j ∈ H2n j−i j(X j) ⊗H i j(X j) and n j = dimX j .

Given a Künneth component π i , for some i ∈ [n − r + 1, n + r − 1], consider its
summands π1

i1 × ⋅ ⋅ ⋅ × πs
is . Suppose a summand satisûes

π1
i1 × π2

i2 × ⋅ ⋅ ⋅ × πs
is ∈ N rH2n−iX ⊗ N rH iX ⊂ H2n(X × X).

_en in particular,

π1
i1 × π2

i2 × ⋅ ⋅ ⋅ × πs
is ∈ F

rH2n−iX ⊗ F rH iX ⊂ H2n(X × X)
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(where F∗ is the Hodge ûltration), and hence (by multiplicativity of the Hodge ûltra-
tion)

π j
i j ∈ F

r jH2n j−i j(X j) ⊗ F s jH i j(X j) ⊂ H2n j(X j × X j), j = 1, . . . , s,

with∑ j r j = ∑ j s j = r.
We need a lemma.

Lemma 3.11 Let X of dimension n be either an abelian variety or a smooth projective
variety withAbel–Jacobi trivial Chow groups. Suppose aKünneth component π i satisûes

π i ∈ F rH2n−iX ⊗ F sH iX ⊂ H2n(X × X).

_en there exist closed subvarieties V, W ⊂ X of codimension r (resp., s), and a cycle
P′i ∈ An(V ×W)Q such that

(τV × τW)∗(P′i ) = π i ∈ H2n(X × X)

(where τV , τW denote the inclusion morphisms).

Proof First, suppose X is an abelian variety. _en (r, s) must be (n − i , 0) (in the
case where i ≤ n) or (0, i−n) (in the case where i ≥ n). In either case, one can take V
(resp. W) to be a complete intersection; the existence of the cycle P′i is then ensured
by the validity of B(X).

Next, suppose X has AJ-trivial Chow groups. _en we may suppose s ≥ i−1
2 and

r ≥ 2n−i−1
2 , and the existence of the requisite V and W follows, since we know the

generalized Hodge conjecture holds for X [15]. FromHodge theory, we ûnd π i comes
from aHodge class onV ×W ; since dim(V ×W) ≤ n+1, this Hodge class is algebraic.

Applying Lemma 3.11 to the X j and taking the product, we obtain cycles P′i sup-
ported in the expected codimension and representing the Künneth components π i ;
this ends the proof.

Appendix A Vial’s work

As indicated by the anonymous referee, Vial’s work [22] is very relevant to the hard
Lefschetz conjectures stated in the introduction. Indeed, exploiting the construction
of speciûc Chow–Künneth projectors in [22], it is easy to obtain hard Lefschetz results
for Chow groups.
An important diòerencewith our_eorem 3.1 is that there is no need for theVoisin

standard conjecture. _e “cost” for this is a switch from the coniveau ûltration N∗ to
a variant ûltration Ñ∗, called the niveau ûltration.

Deûnition A.1 (Vial [22]) Let X be a smooth projective variety. _e niveau ûltration
on homology is deûned as

Ñ jH i(X) = ∑
Γ∈A i− j(Z×X)Q

Im(H i−2 j(Z) Ð→ H i(X)) ,
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where the union runs over all smooth projective varieties Z of dimension i − 2 j, and
all correspondences Γ ∈ A i− j(Z × X)Q.

_e niveau ûltration is included in the coniveau ûltration:

Ñ jH i(X) ⊂ N jH i(X).
_ese two ûltrations are expected to coincide; indeed, Vial shows this is true if the
standard conjecture B is true for all varieties [22, Proposition 1.1].

Proposition A.2 Let X be a smooth projective variety of dimension n. Suppose the
following hold:
(i) n ≤ 5;
(ii) X has ûnite-dimensional motive;
(iii) B(X) is true;
(iv) H i(X) = Ñ 1H i(X) for all i ∈ [n − r + 1, n].
Let L be any ample line bundle. _en

– ⋅ Lr ∶An−r(X)Q Ð→ An(X)Q – ⋅ Lr ∶An−r
AJ (X)Q Ð→ An

AJ(X)Q
are surjective, and

Lr ∶A2
AJ(X)Q ∩ A2

al g(X)Q Ð→ A2+r(X)Q
is injective. (Moreover, Lr ∶ A2

hom(X)Q → A2+r(X)Q is injective provided 2 + r < n.)

Proof (With thanks to the referee for pointing out this proof.) _e point is that
X veriûes conditions (∗) and (∗∗) of [22], so that [22, _eorems 1 and 2] apply.
From [22, _eorems 1 and 2], we get idempotents Π i ,k ∈ An(X × X)Q such that
∑k≥r(Π i ,k)∗H i(X) = Ñ rH i(X). Since the hard Lefschetz isomorphism respects the
niveau ûltration, we ûnd that there are isomorphisms

L i−n ∶ (Π i ,k)∗H i(X) ≅Ð→ (Π2n−i ,n−i+k)∗H2n−i(X) for all i − n ≥ 0.

By ûnite-dimensionality, it follows there are isomorphisms of Chow motives

L i−n ∶ (X , Π i ,k)
≅Ð→ (X , Π2n−i ,n−i+k , i − n) for all i − n ≥ 0.

Taking Chow groups, this implies there are isomorphisms (for any j)

L i−n ∶ (Π i ,k)∗A j(X)Q
≅Ð→ (Π2n−i ,n−i+k)∗A j+i−n(X)Q for all i − n ≥ 0.

First, let us prove surjectivity. Using [22, _eorem 2 point 1], we see that

An(X)Q = ∑
i
(Π i ,0)∗An(X)Q .

_e hypothesis on H i(X) implies Π i ,0 = 0 ∀i > n − r by [22, _eorem 2 point 4], so
that

An(X)Q = ∑
i≤n−r

(Π i ,0)∗An(X)Q .

But from the above remarks, we ûnd that

∑
i≤n−r

Ln−i ∶ ⊕
i≤n−r

(Π2n−i , i−n)∗Ai(X)Q Ð→ ∑
i≤n−r

(Π i ,0)∗An(X)Q = An(X)Q
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is surjective, hence (by mapping Ai to An−r via Ln−r−i for i < n − r)
Lr ∶An−r(X)Q Ð→ An(X)Q

is surjective.
_e proof for An

AJ is the same.
It remains to prove injectivity. We ûnd from [22, _eorem 2 point 1] that

A2
AJ ,al g(X)Q = ∑

k≤n−2
(Π i ,k)∗A2

AJ ,al g(X)Q .

Now we are repeatedly going to apply the various points of [22, _eorem 2] to elimi-
nate certain projectors from this sum.

If k = 0, then i = n by [22,_eorem 2 points 1, 2, 3]. But Πn ,0 = 0 by the hypothesis
on Hn(X) and [22, _eorem 2 point 4].

_e projectors Π i ,1 can likewise be eliminated: Πn−1,1 and Πn ,1 do not act by
points 2 (resp. 3) from loc. cit., and Πn+1,1 = 0 by hypothesis, provided r ≥ 2 (since
Gr1ÑHn+1(X) = Gr0ÑHn−1(X) = 0).

Next, the projectors Π i ,2: for n ≤ 3 these don’t act (point 1 of loc. cit), while for
n = 4, 5 we have that Πn ,2 doesn’t act by point 5 (resp. point 6) of loc. cit. _e projector
Πn+1,2 does not act for n = 4 (point 6 of loc. cit.), nor for n = 5 (point 3 of loc.
cit.). _e projector Πn+2,2 is 0 by hypothesis, provided r ≥ 3 (since Gr2ÑHn+2(X) =
Gr0ÑHn−2(X) = 0).

_e last case we need to check is that of Π i ,3. _ese only act when n = 5. We have
i ≥ 6 (point 1 of loc. cit.), i /= 6 (point 3 of loc. cit.), i /= 7 (point 6 of loc. cit.). So the
only projector acting is Π8,3 (that is, provided r = 3).

Resuming this analysis, we ûnd that

A2
AJ ,al g(X)Q = ∑

k≤n−2
i≥n+r

(Π i ,k)∗A2
AJ ,al g(X)Q .

But from the above remarks, we ûnd that

Lr ∶ (Π i ,k)∗A2(X)Q Ð→ (Π i−2r ,n−i+k)∗A2+r(X)Q
is injective as soon as i ≥ n + r.
As for the injectivity statement in parentheses: looking at the above proof of injec-

tivity, we see that the hypothesis “Abel–Jacobi and algebraically trivial” is only used in
the extremal cases (n, r) = (4, 2) and (n, r) = (5, 3). _at is, as long as 2 + r < n, we
have

A2
hom(X)Q = ∑

k≤n−2
i≥n+r

(Π i ,k)∗A2
hom(X)Q ,

and injectivity follows.

Corollary A.3 Let X be a smooth projective variety of dimension n ≤ 5, dominated by
curves. Suppose An(X)Q is supported on a surface. _en for any ample line bundle L,

– ⋅ Ln−2∶A2
AJ(X)Q ∩ A2

al g(X)Q Ð→ An(X)Q
is injective, and

– ⋅ Ln−2∶A2(X)Q Ð→ An(X)Q
is surjective.
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(In particular, An(X)Q is supported on a dimension 2 complete intersection.)

Proof _is follows from Proposition A.2, in combination with Lemma A.4.

Lemma A.4 Let X be a smooth projective variety of dimension n. Suppose An(X)Q
is supported on a surface. _en

H i(X) = Ñ 1H i(X) for all i > 2.

Proof (_is is the same argument as [22, Proposition 2.2], which is the case where
An(X)Q supported on a curve.) Using [4], one obtains a decomposition of the diag-
onal

∆ = ∆1 + ∆2 ∈ An(X × X)Q ,
with ∆1 supported on D × X for some divisor D, and ∆2 supported on X × S, for
S ⊂ X a surface. We consider the action of the ∆ i on Gr0ÑH i(X) (this is possible; see
[22, Proposition 1.2]). _e correspondence ∆1 does not act, as it factors over

H i−2(D̃)/Ñ0 = 0.

_e correspondence ∆2 does not act for i > 2, as it factors over

Gr0ÑH i(S) = Gr0NH i(S) = 0.

Note that Corollary A.3 is considerably stronger than our Corollary 3.8, just as
Proposition A.2 is more powerful than our _eorem 3.1. _is re�ects the fact that
Vial’s Chow–Künneth projectors are far more reûned than the “Künneth li�s” we
use in the proof of _eorem 3.1. For example, let X be a variety of dimension 5
dominated by curves. Proposition A.2 gives a hard Lefschetz statement as soon as
H5(X) = Ñ 1H5(X) (i.e., the Hodge level of H5 could be 3). _eorem 3.1 only works
without assuming the Voisin standard conjecture if H5(X) = N2H5(X) (i.e., the
Hodge level is 1).

It seems likely Corollary 3.9 can also be improved using the methods of [22].
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