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A Brief Note Concerning Hard Lefschetz
for Chow Groups

Robert Laterveer

Abstract. We formulate a conjectural hard Lefschetz property forChow groups and prove it in some
special cases, roughly speaking, for varietieswith ûnite-dimensional motive, and for varietieswhose
self-product has vanishing middle-dimensional Griõths group. An appendix includes related state-
ments that follow from results of Vial.

1 Introduction

_e Bloch–Beilinson conjectures can be seen as a formidable heuristic guide that pre-
dicts the structure of Chow groups of algebraic varieties and the precise way Chow
groups are in�uenced by singular cohomology (cf. [10, 16, 17,27]). To get a glimpse of
this heuristic, let us look at what the Bloch–Beilinson conjectures say concerning the
hard Lefschetz property on the level of Chow groups.

Let X be a smooth projective variety over C of dimension n, equipped with an
ample line bundle L. Let A jXQ denote the Chow group of codimension j algebraic
cycles with Q coeõcients. It is expected that A j

AJXQ (the subgroup of Abel–Jacobi
trivial cycles) only depends on the cohomology groups

H2 j−2(X ,Q), H2 j−3(X ,Q), . . . ,H j(X ,Q).
_is leads to the following expectation.

Conjecture 1.1 Let X be a smooth projective variety of dimension n and let L be an
ample line bundle. _en intersection induces maps

– ⋅ Ln−2 j+2∶A j
AJ(X)Q Ð→ An− j+2(X)Q

that are injective for 2 j − 2 ≤ n.

_is type of conjecture is formulated and studied in [5]. In particular, Conjec-
ture 1.1 implies a certain weak Lefschetz property for Chow groups: if Y ⊂ X is a
smooth ample hypersurface, restriction A j(X)Q → A j(Y)Q is injective in the range
j < n/2; such a weak Lefschetz property was conjectured in 1974 by Hartshorne [7].
Unlike cohomology, Chow groups get increasingly complicated in higher codimen-
sion (_is is attested to by the group An(X) of 0-cycles, which is in general “very
large” [16], [4]; precisely, using [4], one sees that – ⋅ L∶An−1(X)Q → An(X)Q cannot
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surject unless pg(X) = 0). For this reason, in general one cannot expect the surjec-
tivity part of the hard Lefschetz theorem to carry over from cohomology to Chow
groups. In the special case where X has a small Hodge diamond, however, one may
expect a surjectivity statement on the level of Chow groups–as we now proceed to
explain.
For simplicity, let us restrict to the case of 0-cycles. It is expected that if

Hn(X ,Q), . . . ,Hn+r−1(X ,Q)
are supported in codimension 1, then An(X)Q is determined by

H2n(X ,Q),H2n−1(X ,Q), . . . ,Hn+r(X ,Q) .

(_is expectation can be made more precise by introducing the conjectural Bloch–
Beilinson ûltration F∗ on An and stipulating that the various gradeds depend on the
various cohomology groups, cf. [10].) _us, one is led to the following expectation.

Conjecture 1.2 Let X be a smooth projective variety of dimension n and L an ample
line bundle. Suppose H i(X ,Q) = N 1H i(X ,Q) for n ≤ i < n + r. _en intersection
induces surjectivemaps

– ⋅ Lr ∶An−r(X)Q Ð→ An(X)Q .

(Here N∗ denotes the coniveau ûltration on cohomology (Deûnition 2.1).) In par-
ticular, Conjecture 1.2 implies a “weak Lefschetz-type” property: under the hypothe-
ses of Conjecture 1.2, An(X)Q is supported on a codimension r complete intersection
Y ⊂ X.

_e main result of this note shows that Conjectures 1.1 and 1.2 can be proved in
some special cases.

_eorem 3.1 Suppose the Voisin standard conjecture holds. Let X be a smooth pro-
jective variety of dimension n, and suppose the following hold:
(i) either themotive of X is ûnite-dimensional, or Griò n(X × X)Q = 0;
(ii) the Lefschetz standard conjecture B(X) holds;
(iii) H i(X ,Q) = N rH i(X ,Q) for all i ∈ [n − r + 1, n].
_en for any ample line bundle L, themap

– ⋅ Lr ∶A j
AJ(X)Q Ð→ A j+r

AJ (X)Q
is injective for j ≤ r + 1, and

– ⋅ Lr ∶A j(X)Q Ð→ A j+r(X)Q
is surjective for j > n − 2r.

_e Voisin standard conjecture [26] is explained in Conjecture 2.2 below. For the
notion of ûnite-dimensional motive (cf. [1,12]); let usmerely note that conjecturally all
varieties have ûnite-dimensional motive [12], and that there are quite a few varieties
known to have ûnite-dimensional motives (cf. Section 2).

In certain cases, some of the hypotheses are automatically satisûed and the state-
ment simpliûes somewhat; for instance, there are the following corollaries.
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Corollary 3.8 Let X be a smooth projective threefold, rationally dominated by a prod-
uct of curves. Suppose A3(X)Q is supported on a divisor. _en for any ample line bundle
L, themap

– ⋅ L∶ A2
AJ(X)Q Ð→ A3

AJ(X)Q
is an isomorphism.

(In particular, for any ample hypersurface Y ⊂ X, restriction A2
AJ(X)Q → A2(Y)Q

is injective, and push-forward A2(Y)Q → A3(X)Q is surjective.)

Corollary 3.10 Let X be a smooth projective variety of dimension n,which is a product
X = X1 × X2 × ⋅ ⋅ ⋅ × Xs ,

where each X j is either an abelian variety or a variety with Abel–Jacobi trivial Chow
groups. Suppose H i(X ,Q) = N rH i(X ,Q) for all i ∈ [n − r + 1, n]. _en for any ample
line bundle L on X,

– ⋅ Lr ∶A j
AJ(X)Q Ð→ A j+r

AJ (X)Q
is injective for j ≤ r + 1, and

– ⋅ Lr ∶A j(X)Q Ð→ A j+r(X)Q
is surjective for j > n − 2r.

As noted by an anonymous referee, there is some overlap with Vial’s work [22],
and Corollary 3.8 easily follows from results contained in [22]. Actually, using Vial’s
work one can prove a stronger statement; this is explained in an appendix. We are
very grateful to the referee for numerous valuable suggestions, and particularly for
pointing out the relevance of [22] and sketching the proof presented in the appendix.

Conventions In this note, the word variety will refer to a quasi-projective irre-
ducible algebraic variety over C. A subvariety is a (possibly reducible) reduced sub-
scheme that is equidimensional. _e Chow group of j-dimensional cycles on X is
denoted A jX; for X smooth of dimension n, the notations A jX and An− jX will be
used interchangeably. _e Griõths group Griò j is the group of codimension j cycles
that are homologically trivial modulo algebraic equivalence. In an eòort to lighten no-
tation, we will o�en write H jX or H jX to designate singular cohomology H j(X ,Q)
(resp. Borel–Moore homology H j(X ,Q)).

2 Preliminary

Deûnition 2.1 (Coniveau ûltration [3]) Let X be a quasi-projective variety. _e
coniveau ûltration on cohomology and on homology is deûned as

N cH i(X ,Q) =∑ Im(H i
Y(X ,Q)→ H i(X ,Q)) ,

N cH i(X ,Q) =∑ Im(H i(Z ,Q)→ H i(X ,Q)) ,
where Y runs over codimension ≥ c subvarieties of X, and Z over dimension ≤ i − c
subvarieties.

We recall the statement of the “Voisin standard conjecture” ([26, Conjecture 0.6]).
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Conjecture 2.2 (Voisin standard conjecture) Let X be a smooth projective variety,
and Y ⊂ X closed with complement U . _en the natural sequence

N iH2i(Y ,Q)Ð→ N iH2i(X ,Q)Ð→ N iH2i(U ,Q)Ð→ 0

is exact for any i.

Remark 2.3 Hodge theory gives an exact sequence

GrW
−2iH2iY ∩ F−i Ð→ H2iX ∩ F−i Ð→ GrW

−2iH2iU ∩ F−i Ð→ 0,

whereW denotesDeligne’sweight ûltration, and F theHodge ûltration on H∗( ⋅ ,C).
Hence, if the Hodge conjecture (that is, its homology version for singular varieties
[9]) is true, then Conjecture 2.2 is true.

What’s more, this conjecture ûts in very neatly with the classical standard conjec-
tures: Voisin shows that Conjecture 2.2 plus the algebraicity of the Künneth compo-
nents of the diagonal is equivalent to the Lefschetz standard conjecture [26, Proposi-
tion 1.6].

Remark 2.4 Conjecture 2.2 is obviously true for i ≤ 1 (this follows from the truth of
the Hodge conjecture for curve classes), and for i ≥ dimY − 1 (where it follows from
theHodge conjecture for divisors).

_emain ingredient we will use in this note is Kimura’s nilpotence theorem.

_eorem 2.5 (Kimura [12]) Let X be a smooth projective variety of dimension n with
ûnite-dimensional motive. Let Γ ∈ An(X × X)Q be a correspondence that is homologi-
cally trivial. _en there is N ∈ N such that

Γ○N = 0 ∈ An(X × X)Q .

We refer to [1,12,17] for the deûnition of ûnite-dimensional motive. Conjecturally,
any variety has ûnite-dimensional motive [12]. What mainly concerns us in the scope
of this note, is that there are quite a few examples that are known to have ûnite-
dimensional motive: varieties dominated by products of curves [12], K3 surfaceswith
Picard number 19 or 20 [18], surfaces not of general type with vanishing geometric
genus [6,_eorem 2.11],Godeaux surfaces [6], threefoldswith nef tangent bundle [8],
certain threefolds of general type [23, Section 8], varieties of dimension ≤ 3 rationally
dominated by products of curves [21, Example 3.15], varieties X withAbel–Jacobi triv-
ial Chow groups (i.e., Ai

AJXQ = 0 for all i) [20,_eorem 4], products of varieties with
ûnite-dimensional motive [12].

So far, all examples of ûnite-dimensional motives are in the tensor subcategory
generated by Chow motives of curves.

_ere exists another nilpotence result,which predates and preûguresKimura’s the-
orem.

_eorem 2.6 (Voisin [25], Voevodsky [24]) Let X be a smooth projective algebraic
variety of dimension n, and Γ ∈ An(X × X)Q a correspondence that is algebraically
trivial. _en there is N ∈ N such that Γ○N = 0 ∈ An(X × X)Q .
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3 Main

We proceed to prove the main result of this note. Note that we prove slightly more
than the statement given in the introduction; we also consider hard Lefschetz for the
Griõths groups.

_eorem 3.1 Suppose the Voisin standard conjecture holds. Let X be a smooth pro-
jective variety of dimension n, and suppose
(i) either themotive of X is ûnite-dimensional, or Griò n(X × X)Q = 0;
(ii) the Lefschetz standard conjecture B(X) holds;
(iii) H i(X ,Q) = N rH i(X ,Q) for all i ∈ [n − r + 1, n].
_en for any ample line bundle L, themaps

– ⋅ Lr ∶A j
AJ(X)Q Ð→ A j+r

AJ (X)Q , – ⋅ Lr ∶Griò j(X)Q Ð→ Griò j+r(X)Q
are injective for j ≤ r + 1, and

– ⋅ Lr ∶A j(X)Q Ð→ A j+r(X)Q , – ⋅ Lr ∶A j
AJ(X)Q Ð→ A j+r

AJ (X)Q ,
– ⋅ Lr ∶Griò j−1(X)Q Ð→ Griò j+r−1(X)Q

are surjective for j > n − 2r. (Moreover, Lr is injective on A j
hom(X)Q (resp. A j(X)Q)

provided j ≤ min(r + 1, n−r+1
2 ) resp. ( j ≤ min(r + 1, n−r

2 )).)

Proof We ûrst consider Chow groups, and prove the injectivity statement. Since by
hypothesis B(X) holds, the Künneth components

π i ∈ Im(H2n−iX ⊗H iX Ð→ H2n(X × X))
are algebraic [14]. Given an ample line bundle L and an integer ℓ ≥ 0, we have a
correspondence Lℓ ∈ An+ℓ(X×X)Q that acts as “cuppingwith Lℓ”. _ere is the relation

Lℓ = 1
d
Γτ ○ tΓτ ∈ An+ℓ(X × X)Q ,

where Γτ is the graph of the inclusion τ∶Y → X and Y is a complete intersection of
class [Y] = dLℓ ∈ AℓXQ. Moreover, since we suppose that B(X) holds, for any i ≤ n
there exist correspondences C i ∈ Ai(X × X)Q such that

C i ○ Ln−i = id∶H iX Ð→ H iX .

Applying hard Lefschetz, it follows from hypothesis (iii) that there exists some
closed codimension r subvariety Z ⊂ X supporting the cohomology groups

Hn−r+1X , . . . ,Hn+r−1X .

_at is, for i ∈ [n − r + 1, n + r − 1], the Künneth component π i is in the kernel of the
restriction homomorphism

H2n(X × X)Ð→ H2n((X × X) ∖ (Z × Z)) .
Using the Voisin standard conjecture (Conjecture 2.2), we ûnd there exists a cycle
P′i ∈ An(Z × Z)Q such that the push-forward Pi ∈ An(X × X) (of P′i to X × X) equals
the Künneth component π i :

Pi = π i ∈ H2n(X × X) ∀i ∈ [n − r + 1, n + r − 1].
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Lemma 3.2 Let i ∈ [n − r + 1, n + r − 1]. _en for j > n − r, we have
(Pi)∗A j(X)Q = 0.

For j ≤ r + 1, we have (Pi)∗A j
AJ(X)Q = 0. Moreover,

(Pi)∗Griò j(X)Q = 0 ∀ j ∈ [0, r + 1] ∪ [n − r, n].

Proof Let ψ∶ Z → X denote the inclusion, so Pi = (ψ × ψ)∗(P′i ). _ere is a factor-
ization

A j(X)Q

��

(Pi)∗ // A j(X)Q

A j(Z)Q
(P′i )∗ // A j−r(Z)Q

OO

_is implies the lemma for reasons of dimension. _e lower le� group vanishes for
j > n − r (since dim Z = n − r); the lower right group vanishes when restricted to
Abel–Jacobi trivial cycles for j ≤ r + 1.

For i ≤ n − r, we choose a rational equivalence class to represent the Künneth
component π i in the followingway. We take arbitrary li�s of π i andC i in An(X×X)Q
(resp. Ai(X × X)Q), and we deûne

Π i ∶= π i ○ tC i ○ Ln−i ∈ An(X × X)Q , i ≤ n − r.
For i ≥ n+ r, wemake the following choice to represent theKünneth component. We
deûne

Π i ∶= π i ○ L i−n ○ tC2n−i ∈ An(X × X)Q , i ≥ n + r.

Lemma 3.3 We have
Π i = π i ∈ H2n(X × X) ∀i ∈ [0, n − r] ∪ [n + r, 2n].

Proof First, consider the case i ≤ n − r. _e transpose of Π i is
tΠ i = t(π i ○ tC i ○ Ln−i) = Ln−i ○ C i ○ π2n−i ∈ H2n(X × X)

(as obviously, tLn−i = 1/d t(Γτ ○ tΓτ) = Ln−i). Hence, the action on cohomology is

(tΠ i)∗H jX =
⎧⎪⎪⎨⎪⎪⎩

id if j = 2n − i ,
0 if j /= 2n − i.

It follows that tΠ i = π2n−i ∈ H2n(X × X).
Next, suppose i ≥ n + r. _e argument is similar.
_e transpose of Π i is

tΠ i = t(π i ○ L i−n ○ tC2n−i) = C2n−i ○ L i−n ○ π2n−i ∈ H2n(X × X).
Hence, the action on cohomology is

(tΠ i)∗H jX =
⎧⎪⎪⎨⎪⎪⎩

id if j = 2n − i,
0 if j /= 2n − i.

It follows that tΠ i = π2n−i ∈ H2n(X × X).
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Lemma 3.4 Let i ≥ n + r. _en for j ≤ r + 1, we have

(Π i)∗A j
AJXQ = 0, (Π i)∗Griò j XQ = 0.

Proof Note that tC2n−i ∈ A2n−i(X × X)Q acts

(tC2n−i)∗∶A j
AJ(X)Q Ð→ A j+n−i

AJ (X)Q .

But since j + n − i ≤ 1, the group on the right vanishes.

_e above choices give us a decomposition of the diagonal

∆ =
n−r

∑
i=0

Π i +
n+r−1

∑
i=n−r+1

Pi +
2n

∑
i=n+r

Π i ∈ H2n(X × X ,Q).

_is is an equality of cycles modulo homological equivalence. Now, applying one of
the two nilpotence theorems (_eorem 2.5 if the motive is ûnite-dimensional, _e-
orem 2.6 in case the Griõths group vanishes), we get that there exists N ∈ N such
that

(∆ −
n−r

∑
i=1

Π i −
n+r−1

∑
i=n−r+1

Pi −
2n

∑
i=n+r

Π i)
○N

= 0 ∈ An(X × X)Q .

Developing this expression (and noting that ∆○N = ∆), we ûnd
∆ =∑

k
Qk ∈ An(X × X)Q ,

where each Qk is a composition of elements Π i and Pi′ . For each k, let Q0
k denote the

“tail element” of Qk ; i.e., we write

Qk = QN ′

k ○ QN ′
−1

k ○ ⋅ ⋅ ⋅ ○ Q0
k ∈ An(X × X)Q ,

with Q0
k /= ∆ (so that N ′ ≤ N).

Now let us consider the action of Qk on A j
AJ(X)Q, for j ≤ r + 1. In the case where

Q0
k is a Π i for some i ∈ [n + r, 2n], it follows from Lemma 3.4 that

(Qk)∗A j
AJ(X)Q = 0.

Likewise, if Q0
k is of the form Pi (for some i ∈ [n − r + 1, n + r − 1]), then applying

Lemma 3.2, we ûnd again
(Qk)∗A j

AJ(X)Q = 0.
It follows that the onlyQk acting non-trivially are thosewith a tail of typeΠ i , i ≤ n−r.
But then (looking at the deûnition of Π i for i ≤ n − r) it follows that

A j
AJ(X)Q = ∆∗A j

AJ(X)Q = ((something) ○ Lr)
∗
A j
AJ(X)Q ∀ j ≤ r + 1.

_e injectivity statement is now obvious.
We now proceed to prove the surjectivity statement; this is done by making one

small change in the above argument. We replace the correspondences Π i for i ≥ n+ r
by the following modiûcation:

Π′

i ∶= L i−n ○ tC2n−i ○ π i ∈ An(X × X)Q , i ≥ n + r.

_is deûnition implies the following lemma (cf. Lemma 3.3).

https://doi.org/10.4153/CMB-2015-046-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-046-x


A Brief Note Concerning Hard Lefschetz for Chow Groups 151

Lemma 3.5 For i ≥ n + r, we have Π′

i = π i ∈ H2n(X × X).

We need another lemma.

Lemma 3.6 Let i ≤ n − r. _en for j > n − r, we have

(Π i)∗A j(X)Q = 0, (Π i)∗Griò j−1 XQ = 0.

Proof _is is analogous to Lemma 3.4. Let Y ⊂ X be a dimension i complete inter-
section, of class [Y] = dLn−i . _en the action of Π i factors

(Π i)∗∶A j(X)Q Ð→ A j(Y)Q Ð→ A j(X)Q ,

from which the required vanishing follows.

Now, we have a decomposition of the diagonal in a sum of cycles

∆ =
n−r

∑
i=0

Π i +
n+r−1

∑
i=n−r+1

Pi +
2n

∑
i=n+r

Π′

i ∈ H2n(X × X).

Again applying one of the two nilpotence theorems, we know there exists N ∈ N such
that

(∆ −
n−r

∑
i=1

Π i −
n+r−1

∑
i=n−r+1

Pi −
2n

∑
i=n+r

Π′

i)
○N

= 0 ∈ An(X × X)Q .

Upon developing
∆ =∑

k
Qk ∈ An(X × X)Q ,

where each Qk is a composition of elements Π i , Pi′ , and Π′

i′′ . We now decompose
each Qk as

Qk = Q0
k ○ Q 1

k ○ ⋅ ⋅ ⋅ ○ QN ′

k ∈ An(X × X)Q ,
with Q0

k /= ∆ (and N ′ ≤ N).
We analyze the action of Qk on A j+r(X)Q for j > n − 2r. First, in the case where

Q0
k = Π i (for some i ≤ n − r) it follows from Lemma 3.6 that there is no action

(Qk)∗A j+r(X)Q = 0.

Likewise, in the case where Q0
k is of type Pi (for some i ∈ [n − r + 1, n + r − 1])

we ûnd from Lemma 3.2 that (Qk)∗A j+r(X)Q = 0 again. It follows that the only
correspondences Qk acting are those with “head” Q0

k of type Π′

i (for some i ≥ n + r).
_us, we can write

A j+r(X)Q = ∆∗A j+r(X)Q = (Lr ○ (something))
∗
A j+r(X)Q ∀ j > n − 2r,

and also

A j+r
AJ (X)Q = ∆∗A j+r

AJ (X)Q = (Lr ○ (something))
∗
A j+r
AJ (X)Q ∀ j > n − 2r.

_e surjectivity statement is now obvious.

https://doi.org/10.4153/CMB-2015-046-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-046-x


152 R. Laterveer

_e statements for the Griõths group are proved in the same way; details are le�
to the reader. As for the injectivity statement in parenthesis: the Abel–Jacobi maps ût
into a commutative diagram

A j
hom(X)Q

��

–⋅Lr
// A j+r

hom(X)Q

��
J j(X)Q –⋅Lr

// J j+r(X)Q ,
where J∗ denotes the intermediate Jacobian. Under the assumption 2 j− 1+ r ≤ n, one
can show (using hard Lefschetz for cohomology) that the bottom horizontal arrow is
injective. _e statement for A j is proven similarly, using the cycle class map.

Remark 3.7 _e assumption Griò n(X × X)Q = 0 in _eorem 3.1 is mainly of
theoretical interest, and not practically useful. Indeed, there are precise conjectures
(based on the Bloch–Beilinson conjectures) describing how the coniveau ûltration
on cohomology should in�uence Griõths groups [11]. Unfortunately, it seems that
these conjectures are not known in any non-trivial cases. For n = 2, it is conjectured
that if H1(X) = 0 then Griò 2(X × X)Q = 0. For n = 3, it is conjectured that if
h0,2(X) = h0,3(X) = 0 then Griò 3(X × X)Q = 0. For n = 4, if h2,0(X) = h3,0(X) =
h4,0(X) = h2,1(X) = 0 then Griò4(X × X)Q should vanish. _ese predictions are
particular instances of [11, Corollary 6.8].

In certain easy cases, some hypotheses can be eliminated from _eorem 3.1.

Corollary 3.8 Let X be a smooth projective threefold. Suppose
(i) A0(X)Q is supported on a divisor;
(ii) _emotive of X is ûnite-dimensional.
_en for any ample line bundle L, themap

– ⋅ L∶A2
AJ(X)Q Ð→ A3

AJ(X)Q
is an isomorphism. In particular, for any ample hypersurface Y ⊂ X, the restrictionmap

A2
AJ(X)Q Ð→ A2

AJ(Y)Q
is injective, and push-forward

A0(Y)Q Ð→ A0(X)Q
is surjective.

Proof First, as is well known [4], hypothesis (i) implies

H3X = N 1H3X .

Hypothesis (i) also implies B(X); this follows from [2] or [19,_eorem 7.1]. _us we
are in position to apply_eorem 3.1, oncewemanage to explainwhy Voisin’s standard
conjecture is not needed as an extra hypothesis. Looking at the proof, we see that this
conjecture is only used to obtain that a certain Hodge class in H6(Z ×Z) is algebraic,
where dim Z = 2; this is OK by theHodge conjecture for divisors.
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Corollary 3.9 Let X be a smooth projective variety of dimension n ≥ 4, dominated
by curves. Suppose Hn(X) = N⌈

n−1
2 ⌉Hn(X). _en for any ample L,

– ⋅ L∶A2
hom(X)Q Ð→ A3(X)Q

is injective, and
– ⋅ L∶An−1(X)Q Ð→ An(X)Q

is surjective.

Proof Just as in theproof of Corollary 3.8, theKünneth component πn is represented
by an algebraic cycle on something of dimension n+1 thanks to theHodge conjecture
for divisors. _is means that _eorem 3.1 applies unconditionally.

(Note that inCorollary 3.9, the assumption Hn(X) = N⌈
n−1
2 ⌉Hn(X) implies (using

B(X)) that H i(X) = N⌈
i−1
2 ⌉H i(X) for all i of the same parity as n. _at is, theHodge

structures Hn(X),Hn−2(X),Hn−4(X), . . . are of level ≤ 1.)

Corollary 3.10 Let X be a smooth projective variety of dimension n that is a product
X = X1 × X2 × ⋅ ⋅ ⋅ × Xs ,

where each X j is either an abelian variety, or a variety with Abel–Jacobi trivial Chow
groups. Suppose H i(X) = N rH i(X) for all i ∈ [n − r + 1, n].

_en for any ample line bundle L on X,

– ⋅ Lr ∶A j
AJ(X)Q Ð→ A j+r

AJ (X)Q
is injective for j ≤ r + 1, and – ⋅ Lr ∶A j(X)Q → A j+r(X)Q, is surjective for j > n − 2r.

Proof _e hypotheses imply that X has ûnite-dimensional motive, and that B(X)
is true ([13, 14] for abelian varieties, and [19, _eorem 7.1] or [2] for varieties with
AJ-trivial Chow groups). _e corollary now follows from _eorem 3.1, once we ex-
plain why Voisin’s standard conjecture is not needed as an extra hypothesis. Recall
that in the proof of_eorem 3.1, Voisin’s standard conjecture was only used to obtain
cycles P′i ∈ An(Z×Z) (for some Z ⊂ X of codimension r) such that the push-forward
Pi ∈ An(X × X)Q represents the Künneth component π i :

Pi = π i ∈ H2n(X × X)∀i ∈ [n − r + 1, n + r − 1].
But this is OK unconditionally, for the following reason: each π i can be expressed in
terms of Künneth components of the factors X j :

π i = ⊕
i1+i2+⋅⋅⋅+is=i

π1
i1 × π2

i2 × ⋅ ⋅ ⋅ × πs
is ∈ H2n(X × X),

where π j
i j ∈ H2n j−i j(X j)⊗H i j(X j) and n j = dimX j .

Given a Künneth component π i , for some i ∈ [n − r + 1, n + r − 1], consider its
summands π1

i1 × ⋅ ⋅ ⋅ × πs
is . Suppose a summand satisûes

π1
i1 × π2

i2 × ⋅ ⋅ ⋅ × πs
is ∈ N rH2n−iX ⊗ N rH iX ⊂ H2n(X × X).

_en in particular,

π1
i1 × π2

i2 × ⋅ ⋅ ⋅ × πs
is ∈ F

rH2n−iX ⊗ F rH iX ⊂ H2n(X × X)
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(where F∗ is theHodge ûltration), and hence (bymultiplicativity of theHodge ûltra-
tion)

π j
i j ∈ F

r jH2n j−i j(X j)⊗ F s jH i j(X j) ⊂ H2n j(X j × X j), j = 1, . . . , s,

with∑ j r j = ∑ j s j = r.
We need a lemma.

Lemma 3.11 Let X of dimension n be either an abelian variety or a smooth projective
varietywithAbel–Jacobi trivialChow groups. Suppose aKünneth component π i satisûes

π i ∈ F rH2n−iX ⊗ F sH iX ⊂ H2n(X × X).

_en there exist closed subvarieties V , W ⊂ X of codimension r (resp., s), and a cycle
P′i ∈ An(V ×W)Q such that

(τV × τW)∗(P′i ) = π i ∈ H2n(X × X)

(where τV , τW denote the inclusion morphisms).

Proof First, suppose X is an abelian variety. _en (r, s) must be (n − i , 0) (in the
casewhere i ≤ n) or (0, i−n) (in the casewhere i ≥ n). In either case, one can take V
(resp. W) to be a complete intersection; the existence of the cycle P′i is then ensured
by the validity of B(X).

Next, suppose X has AJ-trivial Chow groups. _en we may suppose s ≥ i−1
2 and

r ≥ 2n−i−1
2 , and the existence of the requisite V and W follows, since we know the

generalizedHodge conjecture holds for X [15]. FromHodge theory,we ûnd π i comes
from aHodge class onV ×W ; since dim(V ×W) ≤ n+1, thisHodge class is algebraic.

Applying Lemma 3.11 to the X j and taking the product, we obtain cycles P′i sup-
ported in the expected codimension and representing the Künneth components π i ;
this ends the proof.

Appendix A Vial’s work

As indicated by the anonymous referee, Vial’s work [22] is very relevant to the hard
Lefschetz conjectures stated in the introduction. Indeed, exploiting the construction
of speciûcChow–Künneth projectors in [22], it is easy to obtain hard Lefschetz results
for Chow groups.
An important diòerencewith our_eorem 3.1 is that there is no need for theVoisin

standard conjecture. _e “cost” for this is a switch from the coniveau ûltration N∗ to
a variant ûltration Ñ∗, called the niveau ûltration.

Deûnition A.1 (Vial [22]) Let X be a smooth projective variety. _e niveau ûltration
on homology is deûned as

Ñ jH i(X) = ∑
Γ∈A i− j(Z×X)Q

Im(H i−2 j(Z)Ð→ H i(X)) ,
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where the union runs over all smooth projective varieties Z of dimension i − 2 j, and
all correspondences Γ ∈ A i− j(Z × X)Q.

_e niveau ûltration is included in the coniveau ûltration:

Ñ jH i(X) ⊂ N jH i(X).
_ese two ûltrations are expected to coincide; indeed, Vial shows this is true if the
standard conjecture B is true for all varieties [22, Proposition 1.1].

Proposition A.2 Let X be a smooth projective variety of dimension n. Suppose the
following hold:
(i) n ≤ 5;
(ii) X has ûnite-dimensional motive;
(iii) B(X) is true;
(iv) H i(X) = Ñ 1H i(X) for all i ∈ [n − r + 1, n].
Let L be any ample line bundle. _en

– ⋅ Lr ∶An−r(X)Q Ð→ An(X)Q – ⋅ Lr ∶An−r
AJ (X)Q Ð→ An

AJ(X)Q
are surjective, and

Lr ∶A2
AJ(X)Q ∩ A2

a l g(X)Q Ð→ A2+r(X)Q
is injective. (Moreover, Lr ∶ A2

hom(X)Q → A2+r(X)Q is injective provided 2 + r < n.)

Proof (With thanks to the referee for pointing out this proof.) _e point is that
X veriûes conditions (∗) and (∗∗) of [22], so that [22, _eorems 1 and 2] apply.
From [22, _eorems 1 and 2], we get idempotents Π i ,k ∈ An(X × X)Q such that
∑k≥r(Π i ,k)∗H i(X) = Ñ rH i(X). Since the hard Lefschetz isomorphism respects the
niveau ûltration, we ûnd that there are isomorphisms

L i−n ∶ (Π i ,k)∗H i(X) ≅Ð→ (Π2n−i ,n−i+k)∗H2n−i(X) for all i − n ≥ 0.

By ûnite-dimensionality, it follows there are isomorphisms of Chow motives

L i−n ∶ (X ,Π i ,k)
≅Ð→ (X ,Π2n−i ,n−i+k , i − n) for all i − n ≥ 0.

Taking Chow groups, this implies there are isomorphisms (for any j)

L i−n ∶ (Π i ,k)∗A j(X)Q
≅Ð→ (Π2n−i ,n−i+k)∗A j+i−n(X)Q for all i − n ≥ 0.

First, let us prove surjectivity. Using [22,_eorem 2 point 1], we see that

An(X)Q =∑
i
(Π i ,0)∗An(X)Q .

_e hypothesis on H i(X) implies Π i ,0 = 0 ∀i > n − r by [22,_eorem 2 point 4], so
that

An(X)Q = ∑
i≤n−r

(Π i ,0)∗An(X)Q .

But from the above remarks, we ûnd that

∑
i≤n−r

Ln−i ∶ ⊕
i≤n−r

(Π2n−i , i−n)∗Ai(X)Q Ð→ ∑
i≤n−r

(Π i ,0)∗An(X)Q = An(X)Q
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is surjective, hence (by mapping Ai to An−r via Ln−r−i for i < n − r)
Lr ∶An−r(X)Q Ð→ An(X)Q

is surjective.
_e proof for An

AJ is the same.
It remains to prove injectivity. We ûnd from [22,_eorem 2 point 1] that

A2
AJ ,a l g(X)Q = ∑

k≤n−2
(Π i ,k)∗A2

AJ ,a l g(X)Q .

Now we are repeatedly going to apply the various points of [22,_eorem 2] to elimi-
nate certain projectors from this sum.

If k = 0, then i = n by [22,_eorem 2 points 1, 2, 3]. But Πn ,0 = 0 by the hypothesis
on Hn(X) and [22,_eorem 2 point 4].

_e projectors Π i ,1 can likewise be eliminated: Πn−1,1 and Πn ,1 do not act by
points 2 (resp. 3) from loc. cit., and Πn+1,1 = 0 by hypothesis, provided r ≥ 2 (since
Gr1ÑHn+1(X) = Gr0ÑHn−1(X) = 0).

Next, the projectors Π i ,2: for n ≤ 3 these don’t act (point 1 of loc. cit), while for
n = 4, 5we have thatΠn ,2 doesn’t act by point 5 (resp. point 6) of loc. cit. _e projector
Πn+1,2 does not act for n = 4 (point 6 of loc. cit.), nor for n = 5 (point 3 of loc.
cit.). _e projector Πn+2,2 is 0 by hypothesis, provided r ≥ 3 (since Gr2ÑHn+2(X) =
Gr0ÑHn−2(X) = 0).

_e last case we need to check is that of Π i ,3. _ese only act when n = 5. We have
i ≥ 6 (point 1 of loc. cit.), i /= 6 (point 3 of loc. cit.), i /= 7 (point 6 of loc. cit.). So the
only projector acting is Π8,3 (that is, provided r = 3).

Resuming this analysis, we ûnd that

A2
AJ ,a l g(X)Q = ∑

k≤n−2
i≥n+r

(Π i ,k)∗A2
AJ ,a l g(X)Q .

But from the above remarks, we ûnd that

Lr ∶ (Π i ,k)∗A2(X)Q Ð→ (Π i−2r ,n−i+k)∗A2+r(X)Q
is injective as soon as i ≥ n + r.
As for the injectivity statement in parentheses: looking at the above proof of injec-

tivity,we see that the hypothesis “Abel–Jacobi and algebraically trivial” is only used in
the extremal cases (n, r) = (4, 2) and (n, r) = (5, 3). _at is, as long as 2 + r < n, we
have

A2
hom(X)Q = ∑

k≤n−2
i≥n+r

(Π i ,k)∗A2
hom(X)Q ,

and injectivity follows.

Corollary A.3 Let X be a smooth projective variety of dimension n ≤ 5, dominated by
curves. Suppose An(X)Q is supported on a surface. _en for any ample line bundle L,

– ⋅ Ln−2∶A2
AJ(X)Q ∩ A2

a l g(X)Q Ð→ An(X)Q
is injective, and

– ⋅ Ln−2∶A2(X)Q Ð→ An(X)Q
is surjective.
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(In particular, An(X)Q is supported on a dimension 2 complete intersection.)

Proof _is follows from Proposition A.2, in combination with Lemma A.4.

Lemma A.4 Let X be a smooth projective variety of dimension n. Suppose An(X)Q
is supported on a surface. _en

H i(X) = Ñ 1H i(X) for all i > 2.

Proof (_is is the same argument as [22, Proposition 2.2], which is the case where
An(X)Q supported on a curve.) Using [4], one obtains a decomposition of the diag-
onal

∆ = ∆1 + ∆2 ∈ An(X × X)Q ,
with ∆1 supported on D × X for some divisor D, and ∆2 supported on X × S, for
S ⊂ X a surface. We consider the action of the ∆ i on Gr0ÑH i(X) (this is possible; see
[22, Proposition 1.2]). _e correspondence ∆1 does not act, as it factors over

H i−2(D̃)/Ñ0 = 0.

_e correspondence ∆2 does not act for i > 2, as it factors over

Gr0ÑH i(S) = Gr0NH i(S) = 0.

Note that Corollary A.3 is considerably stronger than our Corollary 3.8, just as
Proposition A.2 is more powerful than our _eorem 3.1. _is re�ects the fact that
Vial’s Chow–Künneth projectors are far more reûned than the “Künneth li�s” we
use in the proof of _eorem 3.1. For example, let X be a variety of dimension 5
dominated by curves. Proposition A.2 gives a hard Lefschetz statement as soon as
H5(X) = Ñ 1H5(X) (i.e., the Hodge level of H5 could be 3). _eorem 3.1 only works
without assuming the Voisin standard conjecture if H5(X) = N2H5(X) (i.e., the
Hodge level is 1).

It seems likely Corollary 3.9 can also be improved using themethods of [22].
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