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Abstract

We study the Schur and (weak) Dunford-Pettis properties in Banach lattices. We show that £i, c0 and
loo are the only Banach symmetric sequence spaces with the weak Dunford-Pettis property. We also
characterize a large class of Banach lattices without the (weak) Dunford-Pettis property. In Musielak-
Orlicz sequence spaces we give some necessary and sufficient conditions for the Schur property, extending
the Yamamuro result. We also present a number of results on the Schur property in weighted Orlicz
sequence spaces, and, in particular, we find a complete characterization of this property for weights
belonging to class A. We also present examples of weighted Orlicz spaces with the Schur property which
are not S£\ -spaces. Finally, as an application of the results in sequence spaces, we provide a description
of the weak Dunford-Pettis and the positive Schur properties in Orlicz spaces over an infinite non-atomic
measure space.

2000 Mathematics subject classification: primary 46B20,46E30,46B42,46B45.

1. Introduction

A Banach space X is said to have the Dunford-Pettis property, shortly (DP)-property

or X € (DP), if for all weakly null sequences (jcn) in X and (/„) in X* (topological

dual), we have/„(*„) -*• 0, or equivalently, if every weakly compact operator from X

into an arbitrary Banach space Y is a Dunford-Pettis operator. Recall that an operator

T : X - * Y between two Banach spaces is a Dunford-Pettis operator, whenever T

maps weakly null sequences into norm null sequences. A continuous operator T

mapping a Banach lattice E into a Banach space Y is called almost Dunford-Pettis

if || 7*,, || -» 0 for every weakly null sequence (xn) consisting of pairwise disjoint
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elements. We will say that a Banach lattice E has the weak Dunford-Pettis property
(shortly (wDP)-property or £ € (wDP)) (respectively, positive Schur property) if
every weakly compact operator on E is almost Dunford-Pettis (respectively, every
weakly null sequence with positive terms is norm null). It is clear that every Banach
space X with the Schur property (X e (SP)), that is, weak null sequences in X are
norm null, (respectively, positive Schur property), has the (DP)-property (respectively,
the (wDP)-property). For equivalent definitions and various characterizations of the
(weak) Dunford-Pettis and the (positive) Schur properties we refer to [2,6,33,34] and
[30,34], respectively.

In [15], a complete description of symmetric spaces with the Dunford-Pettis prop-
erty on N as well as on (0, a), 0 < a < oo has been given (see also [28] for symmetric
function spaces on [0,1]). In the case of symmetric spaces on (0, a) there are only six
(respectively, two) symmetric spaces with the (DP)-property whenever a = oo (re-
spectively, a < oo). If a < oo then the only symmetric spaces with the (DP)-property
are L\ and Loo. It is known that there are more symmetric spaces with (wDP)-property,
for example Orlicz and Lorentz spaces on the interval (0,1) (see [20,33,34]).

In the case of Banach function spaces without symmetry the situation seems to
be more complicated, however a few results are already known for example a char-
acterization of the Schur and Dunford-Pettis properties in Nakano sequence spaces
(see [8,32]). It appears that almost without modifications in proofs (see [32]), the
Nakano space 1&.) has (wDP)-property if and only if it has (DP)-property, that is, the
only accumulation points of (pn) are 1 or oo. Further objects of investigation in that
direction are Musielak-Orlicz spaces. Only a little has been known about the Schur
property for these spaces (see Yamamuro results [36]). In this paper, among others,
we give an extension of the Yamamuro results finding more accurate conditions which
assure the Schur property for some class of Musielak-Orlicz sequence spaces.

The article is divided into 6 sections. After introductory Section 1, in Section 2,
we collect definitions, notations and some auxiliary results used in the sequel.

In Section 3 we study (DP)- and (wDP)-properties in Banach lattices. Applying
the well known construction of Davis-Figiel-Johnson-Pekzynski [5] we characterize
a large class of Banach lattices without the Dunford-Pettis property and in the case of
sequence spaces also without the weak Dunford-Pettis property. Employing then this
result we show that (DP)- and (wDP)- properties coincide in the class of symmetric
sequence spaces. We finish this section with a corollary on the Schur property in the
so called symmetrization of Banach spaces with a basis.

Section 4 consists of a number of results on the Schur property of the sequence
Musielak-Orlicz spaces. Some sufficient conditions are presented in Theorem 4.4
with its corollary Theorem 4.8, as well as in Theorem 4.7, representing two different
approaches to the problem. We also state some necessary conditions and we recover
the results obtained by Halperin and Nakano in [8], and Yamamuro in [36]. We also
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show, by providing examples, that our results are sharper. We were not able, however,
to find a complete description of the Schur property in these spaces, which should
not be surprising in view of the attempts we pursue in Section 5, where we study
weighted Orlicz sequence spaces, a particular class of Musielak-Orlicz spaces. Even
for this comparatively narrow class of Musielak-Orlicz spaces the description of (SP)
is a quite complicated task, which can be seen in Theorem 5.3, where we characterize
completely the Schur property for the weights belonging to the class A, in terms of the
Orlicz functions from the class C£° (see [9,23,27]). For weights belonging to classes
A, and Aoo, we obtain some partial results too.

Finally, in short Section 6, applying the results from Section 5, we characterize
the positive (SP) and the (wDP)-property in Orlicz spaces L0(/z) over infinite and
non-atomic measure spaces.

2. Definitions and notations

We follow throughout standard Banach space terminology. For unexplained no-
tation the reader is referred to [2] and [23]. However, we want to explain some
frequently used terms and agree on some notations. Let further E denote a Banach
lattice and E+ = {x G E : x > 0} its positive cone. Recall that E is said to have
the Fatou property if whenever (xn) is a norm bounded sequence in E such that
0 < xn t x = sup*n, then x e E and limn ||xn|| = ||JC||. An element x e E is said
to have an order continuous norm if for every sequence xn \ 0 in E with xn < x,
we have \\xn\\ -*• 0. The norm in a Banach lattice E is called order continuous if
every element in E has order continuous norm and the largest ideal consisting of all
elements with order continuous norms will be denoted by Ea.

Let (£2, 8), fi) (or shortly (£2, /x)) be a cr-finite measure space. Throughout the
paper \x will be always either non-atomic or purely atomic, that is, Q = N and
ix({n}) = 1 for each n € N. By L° = L°(ix) denote a vector lattice of all (equiv-
alence classes) of /n-measurable real-valued functions defined on £2, equipped with
the topology of convergence in measure on /i-finite sets. A Banach space E is said
to be a Banach lattice on (£2, /z) if E is a subspace in L° with the following two
properties:

(i) 1*1 < \y\,y 6 £ implies* e Eand||jc|| < \\y\\;
(ii) there exists u e E such that u > 0 on £2.

In what follows a Banach lattice on N will be called a Banach sequence space. The
elements of a Banach sequence space will be further denoted as usual by x = (xn), but
occasionally we will also use the notation x = (x(n)), where x{n) € K and n € N.
The Kothe dual E' of a Banach lattice E is then defined as

E' = \x 6 L° : \\x\\E, = sup / \xy\dfi < ooj ,
I WE<I Jn J
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and E' is a Banach lattice under the norm || • ||£'. The space E* of order bounded
and order continuous functional on E is lattice isometric to the Kothe dual E' ([16]),
which will be further denoted by E* ~ E'. In particular, if E has order continuous
norm then the dual space E* can be naturally identified with E'.

A Banach lattice on (ft, ii) is said to be symmetric if whenever x e E, y e L°,
and x and y are equimeasurable, then y e E and ||JC||£ = \\y\\E- Recall that x and
y are equimeasurable if they have identical distributions, that is, fix(k) = n([t e ft :
\x(t)\ > A.}) = /*y (A.) for all A > 0. Given an* € L°, by** we denote its nonincresing
rearrangement, that is, x*(t) = inf{A. > 0 : /^(A) < t},t > 0, under the convention
inf 0 = 0. Obviously x* is a Lebesgue measurable function defined on the interval
(0, /x(ft)), and x and x* are equimeasurable in the sense that fix(k) = mx.(X) for all
A. > 0, where m is the Lebesgue measure on (0, oo).

Given a non-atomic measure space (ft, /x) with fi(Q) < oo, we define Rademacher
functions (/•„) on ft as a sequence of independent random variables with fi({s e ft :
rn(s) = 1}) = M({* e ft : rn(s) = -1}) = fi(Q)/2 for all n e N.

In what follows we agree on some notations and provide auxiliary facts from in-
terpolation theory (see [4,19]). A pair X = (Xo, X{) of Banach spaces is called a
Banach couple if Xo and Xi are both continuously embedded in a Hausdorff topo-
logical vector space X. For a Banach couple X = (Xo, Xy), the algebraic sum
Xo + Xi and the intersection Xo n Xi will be denoted by £ (X) and A(X), respec-
tively. They are both Banach spaces with the norms ||*||E(x) = K(l,x;X) and
\\x\\Mx) = max{||;t||Xo, | |x | |X l}, respectively, where

t > 0.

If (Xo, X i ) is a Banach couple and O < 0 < l , l < / ? < o o , then the real method
Lions-Peetre space

£ Ao + Ai . ||*||e,p — I 2^, vAU ,X,A.)/l ) I < OO
\n=-oo /

is an intermediate Banach space between Xo and X^

3. Dunford-Pettis and weak Dunford-Pettis properties in Banach lattices

In this section we show that a quite large class of Banach lattices fail the Dunford-
Pettis property. At first we shall consider Banach lattices defined on non-atomic
measure spaces and next we will investigate Banach sequence spaces.

Further we shall employ the following well known construction of Davis-Figiel-
Johnson-Pelczynski [5]. Let X be a Banach space and W be a convex, circled, norm
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bounded subset of X. For each n € N, set Un = W + 2~"BX, where Bx is the unit
ball of X, and denote by pn the Minkowski functional of Un, that is,

pn{x) = i n f { X > 0 : x € XUn}.

For 0 < 6 < 1 and 1 < q < oo, let

Y = Ye,q := \ <oo

It was shown in [5] that Y\/1<2 is reflexive if and only if W is a relatively weakly
compact subset of X. Note that if X is a Banach lattice and W is also a solid set, then
the Banach space Y9,p is itself a Banach lattice (see [2, page 297]).

In what follows we will also need the well-known result of Levy [21] which says
that if (Xo, Xi) is a non-trivial Banach couple, that is, A(X) is a non-closed subspace
of £(X), then for any 0 < 0 < 1 and 1 < q < oo the Lions-Peetre interpolation
space (Xo, X\)9,q contains a complemented subspace isomorphic to £q.

It is easy to see that if Xo <->• X1? then the Lions-Peetre space (Xo, Xi)s,q with 1 <
q < oo coincides with the Davis-Figiel-Johnson-Pelczynski space Ye<q constructed
under X = X, and W = BXo.

In the sequel we will need the following technical result.

PROPOSITION 3.1. Let X be a Banach lattice on non-atomic measure space (SI, fi).
Assume that there existx € Xaandy € (X')a such that fi(suppxDsuppy) > 0. Then
X does not have the Dunford-Pettis property.

PROOF. Let A = suppx fl supp y with /x(A) > 0 and let us consider a Banach
lattice E = X\A defined on an induced non-atomic measure space (A, H\A, v) with
v = /x|A. We have u = XXA € Ea,v = yxA € (E')a, and suppu = suppu = A.
Now, since Ea has order continuous norm, order interval W = [—u, u] is a weakly
compact set in Ea and thus in E. By the Davis et all construction in [5], there exists a
reflexive Banach lattice Y continuously imbedded into E. Similarly, we conclude that
there exists a reflexive Banach lattice Z such that Z ^* £". Hence E" «̂->- Z' with Z'
being reflexive. Since E «-> E", we have y n f H Z ' . For a Banach lattice YDZ,
we have supp(F D Z) = A. Thus, it follows by [16, Corollary 2, page 95], that there
exists a sequence (An) of pairwise disjoint sets in E|A such that U^li ^« = ^ and
XAn € Y n Z. Since K H Z ^ - £ a n d K n Z ^ + Z", we clearly obtain that for some
measurable set B with 0 < n(B) < oo, L J B <^ Y\B <-+ £|B <̂-> Z'\B <̂ - Li|B.
Now if we assume that X e (DP), then E\B € (DP) as a complemented subspace
of X. Since Y\B and Z'|B are reflexive spaces, we obtain that the inclusion map
^ooIs °->- i l l s is compact, which is a contradiction. Indeed, since \i is atomless
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we can construct on B a sequence (rn) of Rademacher functions. Of course, (rn) is
bounded in Loo|B and rn -*• 0 weakly in Li\B but \\rn\\Ll •/* 0. This finishes the
proof. •

REMARK. Let us observe that the assumption /x(supp;c n suppy) > 0 is essential
in the above proposition. In fact, let

X = {x € L°((0, 2), m) : ||x|| = ||xx(ai)llt,<p.i) + ll*X<i.2)lli.<i,2) < oo}.

Then we have Xa = L,(0,1) and (X')a = L , ( l ,2 ) . Since X is isomorphic to
Li(0,1) ©i Loo(l. 2), X has the Dunford-Pettis property.

Note that in general, if X is a Banach lattice such that Xa = (X')a = {0} then this
does not imply that X has the Dunford-Pettis property. To see this let us recall that if
E and F are two Banach lattices defined on (Q\, fii) and (£22.1x2) respectively, then a
space with mixed norm ES[F,] (respectively, F,[ES]) is defined to be a Banach lattice
of x e L0(S2t ® J22. Mi ® M2) with the norm \\x\\ = \\\\x(s, / ) | |F, , | |E. / (respectively,
11*11 = llll*(*, 0IIE.,IIF.S) (see [16, page 310]).

PROPOSITION 3.2. For any 1 < p < oo //tere exifto a Banach lattice X =
Xa = (X')a = {0} and X (respectively, X') contains a complemented

subspace isomorphic to lp (respectively, to tq), with l/p + \/q = 1.

PROOF. For any couple (E, F) of Banach lattices we have (see [25, Theorem 3.1])

, F)e,p)' = (£ ' , F')e,q

for any 0 < 9 < 1 and 1 < p < oo, where l/p + \/q = 1. It is easily seen
that if (E, F) is a nontrivial couple then also (£ ' , F') is a nontrivial couple. Thus,
if (E, F) is nontrivial, it follows from the Levy's result that (£ , F)9<p (respectively,
((£, F)eiP)') contains a complemented subspace isomorphic to tp (respectively, to
tq). In order to finish the proof it suffices to take X = (E, F)e%p, where (£ , F) is
a nontrivial couple of Banach lattices such that E «̂ -> F and (£")„ = Fa = {0}. In
fact by E <-+ (E, F)0iP = X ^ F , it follows that X' <̂-»- F.'. Thus we obtain that
Xa = (X')a = {0}.

Let (fly, fij), (j = 1, 2) be non-atomic probability measure spaces. Take E =
L\[Lf] and F = L™[L\]. Then by [31], we have that E ^ F and (£')« = Fo = {0}.
It is easily seen that (F-, F) forms a nontrivial couple of Banach lattices. This
completes the proof. •

S i n c e f o r n o n t r i v i a l B a n a c h c o u p l e s (Xo, X \ ) , {(Xo, Xi)e^p : 0 < 6 < l , l < p <oo]
forms a family of different spaces for different parameters 0, p (see [12]), we obtain
the following.
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COROLLARY 3.3. There exists uncountable family {Xg : 6 e (0, 1)} of Banach
lattices on non-atomic probability measure space such that (Xe)a = (Xe)'a = {0}
and Xg, (Xe)' contain complemented copies of Hilbert space £2> so Xg & (DP) and
(Xg)' i (DP), for any 0 < 9 < 1.

PROPOSITION 3.4. Let E be a Banach sequence space such that l\ C E, E' C c0

and E" C c0. Then E does not have the weak Dunford-Pettis property and in con-
sequence it fails the Dunford-Pettis property.

PROOF. Assume for a contrary that E € (wDP). By the closed graph theorem,
it follows that the imposed inclusions are continuous. Since l\ «->• Ea and the dual
space (Ea)* can be identified with (Ea)' — E', we conclude that en —> 0 weakly in
E, by E' C c0. Since E c E" C Co, SO E C C0 and en ->• 0 weakly in £". By the
Krein-Smulian theorem, we have that the convex circled hull of (en)^=i is a relatively
weakly compact subset in E'. Thus, by the Davis et all construction [5] there exists a
reflexive Banach sequence space Y such that lx *-> Y '->• E'. Hence

E c_> E" ^ Y ^ too

which implies that the inclusion map E =->• ^ is weakly compact. Now by the
(wDP)-property of E and the fact that en ->• 0 in E, \\en\\too -+ 0, which is a
contradiction. D

THEOREM 3.5. A symmetric sequence space E has the weak Dunford-Pettis prop-
erty if and only if it has the Dunford-Pettis property, that is, E coincides up to
equivalence of norms with either £i or CQ or i^.

PROOF. Suppose that limn_>oo^£.(«) = C < oo, where <px(n) = \\x\i njll is a
fundamental function of a symmetric space X. Then, we have supn>1 ||;cn||£< < C,
where xn = £ " = 1 ej. Since E' has the Fatou property and 0 < xn t XN, we get
Xs € E'. This yields £" = t^ and thus E - tx.

If <PE'(n) —>• oo, as n —*• oo, then by an obvious inequality true for any symmetric
sequence space X

<Px(n)x*(n)<\\x\\x, x = (x(n))eX

we have E' °-> c0. Since E e (wDP), we conclude by Proposition 3.4 that E" is not
contained in c0. This, in particular implies that limn_oo <PE"(n) < oo. Now similarly
as in part one, we get E" = t x , which implies that £" = lx and so E = c0 or E = lx.
Since tuc0 and loo have the Dunford-Pettis property the proof is finished. •
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Now we present some consequences of the above results. Given a Banach space

(X, || • ||) with basis (*„), we define a norm ||| • ||| on the finitely supported elements
x = £ „ a»xn of X by

= sup C*(n)

where Fl is the family of all permutations of N. Then S(X), the so called sym-
metrization of X with respect to (*„), is the ||| • ||| completion of the space {x 6 X :
x is finitely supported}. Note that the vectors (xn) form a symmetric basis for S(X)
with symmetric basis constant 1.

COROLLARY 3.6. Let E be a Banach sequence space with semi-normalized basis
(en) of the unit standard basis vectors. If E has the Schur property, then its sym-
metrization S(E) with respect to (en) coincides up to equivalence of norms with l\.

PROOF. By the assumption that (en) is semi-normalized, ly c-^- E '-*• c0, and
hence lx <^* S(E) <̂ > E. The Schur property of E implies that E" = E (otherwise
E would contain an isomorphic copy of c0), and thus E" <L-> c0. If S{E) were not
equal to l\, then S(E)' ^ t^, and thus S(E)' <-+ c0. In consequence, we would get
E' ^+ S(E)' <^-+ c0 and E" <-+ c0. Since E € (SP), we obtain a contradiction by
Proposition 3.4. •

REMARK. Corollary 5.7 in Section 5 shows that in the above corollary the assump-
tion that (en) is a semi-normalized basis is essential.

4. Schur property in Musielak-Orlicz sequence spaces

A function 4> : U.+ —*• [0, +00] is said to be an Orliczfunction if <j> (0) = 0, <f> is not
identically equal to zero, and (f> is convex and continuous at zero. By <j>* we denote its
conjugate function in the sense of Young, that is,

4>*(u) = sup{«i> - <f>(v)}, u > 0,

and we notice that 4>* is again an Orlicz function. A sequence <£ = (<pn) of Orlicz
functions </>„ is called a Musielak-Orlicz function and its Young's conjugate is a function
<J>* = (</>*). A Musielak-Orlicz space £* is a collection of all sequences x = (xn) of
real numbers such that for some k > 0
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It is well known that £<t> equipped with the Luxemburg norm

||*|U = inf{A. > 0 :

is a Banach sequence space with the Fatou property and its Kothe dual t9 coincides
with £*.. If for all n e N, <j>n = </>, where 4> is an Orlicz function, then 1$ is a sequence
Orlicz space. In particular, (.$ coincides with l^ up to equivalence in norms whenever
4> vanishes in a neighbourhood of zero.

It is said that a Musielak-Orlicz function <J> = (<pn) satisfies condition S2 (in short
<J> € (<52)) if there exist K, fi > 0 and a sequence (cn) 6 l\ such that

cf>n{2u) < K(j>n{u) + cn

for every u e 1+ and n € N if 4>n(u) < p.
Recall also that given Musielak-Orlicz functions 4> = (</>„) and * = (i/fn), the

spaces l9 and lv coincide with equivalence of norms if and only if 4> is equivalent to
* (we write $ ~ * ) , that is, for some K, S > 0 and (cn) € £+ it holds

(t>n{Ku) < fn(u) + cn and ^n(Ku) < <t>n{u) + cn,

for every u e R+ and n e N such that the first inequality is satisfied if \lrn(u) < S and
the second one holds if <£„(«) 5 &• More information on Musielak-Orlicz sequence
spaces we can find in [11,17,26,35] and [23, vol. I].

Following the idea of Matuszewska and Orlicz for Orlicz functions (see [24]) and
the ideas contained in papers [14,17] for Musielak-Orlicz functions, we define indices
associated with sequence Musielak-Orlicz spaces.

Given 1 < p < oo and <I> = (<!>„), it is said that <J> satisfies condition Sp (respec-
tively, S*p) [17] if for some K, 8 > 0 and (cn) € i^

4>n(ku) < KXp((Pn(u) + cn), (respectively, 4>n(ku) > KX"(<pn(u) - cn),)

for all A. > 1, n € N and u 6 R+ if <j>n{ku) < S. Then the lower and upper indices
and P(Q>) are defined as follows

= sup{p > 1 : 4> € S*p], /3(<D) = inf{p > 1 : 4> € Sp}.

We observe that both conditions Sp and S*p are preserved under equivalence of func-
tions and moreover /S(<J>) < oo (respectively, a(<J>) > 1) if and only if <I> 6 (<52)
(respectively, <J>* € (<52)) [17].

Given an Orlicz function <p such that <p is finite, vanishes only at zero and its
derivative </>' exists, define

= mf , fc(0) = sup
0 o o (p(U)

mf , fc(0) = sup ,
0<u<oo (p(U) 0<u<oo 4>{U)
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known in the literature (see for example [23,24]) as lower and upper Simonenko
indices respectively. The folowing equalities hold true

1 1 1 1

a(<P)
In the sequel we will need a number of technical results. For the proof of (i) and (ii)
of the next result see also [36].

THEOREM 4.1. Let 4> = (4>n) be an arbitrary Musielak-Orlicz function. Then the
following hold true:

(i) l\ C 1$ if and only if supn <f>n{b) < oo for some b > 0;
(ii) l<t C £<» if and only if infn 4>n(b) > 0 for some b > 0;

(iii) 1$ C C0 if and only i/liminfn 0n(fc) > 0 for all b > 0.

PROOF, (i) By the conditions on inclusions between Musielak-Orlicz spaces, lx Ct<*
whenever for some K > 0 and (cn) e tf, <f>n(Ku) < u + cn for all n e N, u € R+
such that u < S. Letting b = KS it follows that supn <j>n(b) < 8 + supn cn < oo.
Now, if sup, <pn(b) < oo for some b > 0 and x = (xn) € l\ with \\x\\lt = 1, then by
convexity of </>„, I*(bx) < supn (f>n(b), which implies that x € £*.

(ii) If infn (f>n(b) > 0 then <j>n{b) > B > 0 for all n € N and some B > 0. Given
any * = 0tn) e £4,, for some A. > 0 and sufficiently large n, 0n(A.|jcn|) < B < 4>n(B).
Hence x € £<».

Now if we suppose that inf„</>„(«) = 0 for all u € R+, then for any sequence
0 < xk -*• 00 there exists a subsequence (nt) such that J2T=i 0nt(**) < 00: Setting
;t = (*„) with xn = xk for n — nk and xn = 0 otherwise, x £ i ^ while x e £*.

(iii) Assuming that liminfn </>n(b) > 0 for all b > 0 and letting x be in £*, suppose
that x is not an element of c0. Hence limn 4>n(k\xn|) = 0 for some k > 0.

On the other hand, |jcn, | > e > 0 for a subsequence (nk), which implies that

liminf (pKk(X.\xnA) > liminf 0n.(A.e) > liminf <pn(X.e) > 0,
* k n

which is a contradiction. Let now 1$ c c0 and yet for some ft > 0, lim infn <pn(b) — 0.
Then for some subsequence (nk), Yl7L\ <Pnt(b) < 00. Hence x = (xn) with xnt = b
and zero otherwise, belongs to €* but it is not an element of c0. D

In many cases it is convenient to deal with Musielak-Orlicz spaces generated by the
functions 4> = (<f>n) such that each <\>n and its conjugate <p* are finite, and 0n(l) = 1
for all n € N. The next result shows that up to isomorphism, it is a general situation.

PROPOSITION 4.2. Given an arbitrary Musielak-Orlicz function <I> = (</>„), there
exists a function * = (ijrn) such that £* and I* are isomorphic and for all n € N,
both \jrn and \/f* are finite valued functions and rlrn(l) — 1.
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PROOF. Let an = sup{n € R+ : <pn(u) < 1} and let 0 < A. < 1. Define V = ( y j as
follows

</>„(«), if 0 < u<Xan;

bnu + cn, ifXan <u<an;

Knu
2, if u>an,

where bn = (1 - cf>n(Xan))/(an - Xan), cn = (<t>n(Xan) - A)/(l - X) and Kn = bn/2.
Obviously yn{an) = 1 and yn are finite. Since lim^oo yn(u)/u = oo, so y* are
also finite. Moreover, if ||x||<t> = 1 then /*(*) = ^2™=l <l>n(\Xn\) < 1 and hence
X\xn\ < Xan. So Ir(Xx) — I$(Xx) < 1, which implies that ||jc||r < A"1!!*!!*.
Analogously we can show that ||J<C||<•> < A"1!!*^. Hence 1$ and lr coincide and
4> ~ F. Finally, define * = (\jsn) with isn(u) = y(anu), and notice that ly is
isometric to lr, and so isomorphic to 1$. D

LEMMA 4.3. Assume that <pn(l) — 1 for every n € N and that limn (f)*(a) = Ofor
some a > 0. Then there exist C > 0 and a nonnegative sequence (an) € c0 JMC/I

that Cu < </>„(") 5 u< for all n € M and an < u < 1. In consequence there exists a
subsequence (4>nt) of((pn) such that i^) = l\.

PROOF. Let pn be a right-hand derivative of (/>„ and qn be a right-hand deriva-
tive of 0*. It is well known that pn(gn(«)) > «, M > 0 (see [18]). In view of
the inequality (a/2)qn(a/2) < </>*(a), l imnon(a/2) = 0. Denoting bn = qn(a/2),
pn(bn) = pn{qn(a/2)) > a/2. Then for all u > 2bn,

<t>n(u)> I pn(s)ds>Pn(bn)(u-bn)>au/4.

Setting an = 2bn and C = a/4, we are done by (j>n(u) < u for every 0 < u < 1 and
n e N.

To complete the proof take any subsequence (nt) C N such that (at) € I*. Then,
we obtain Cu < <pntM < Mforalljfc e Nanda^ < » < 1 . It follows that ($nj(w)) ~ M,
which yields £(0,t) = £,. •

Now we are in a position to give a characterization of the Schur property for some
class of Musielak-Orlicz sequence spaces I®. Before we state this result we introduce
the following notation.

Given a Musielak-Orlicz function Q> — ($„), a sequence of convex functions
defined on [0,1] by (^"=^.+1 <t>j(t<*i))°°=l is called a ^-convex block (respectively,
^-convex c0-block) of (</>„) if (n,)°^i is an increasing subsequence of No = N U {0}
with ni = 0 and (o^) is a sequence of positive numbers (respectively, (an) € cj) , such
that E"=if+i 4>j («;) = ! f o r e a c h ' e N-
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In what follows a Musielak-Orlicz function <t> = ( 0 J is called normalized whenever

0n( l ) = 1 for every n e N.

THEOREM 4.4. Let <I> = (</>„) be an arbitrary Musielak-Orlicz function. Consider
the following conditions.

(i) $ is normalized with 4> € (<52), limH</>*(a) = 0 /o r some a > 0 and each
^-convex c0-block of (<f>n) contains a subsequence equivalent to a linear function.

(ii) 4> € (82) and any ^-convex block of (<pn) contains a subsequence equivalent
to a linear function.

(iii) 1$ has the Schur property.

Then (i) implies (ii), and (ii) is equivalent to (iii).

PROOF, (i) implies (ii). Let (^/(O) = ( 5Z"=i,+i #/ ( / a ; ) ) b e a n arbitrary <i>-convex
block of (<f>n). If (otj) e c0, the proof is finished. Otherwise, aJi > e for some
increasing sequence (/,) m N and e > 0. By passing to a subsequence of (x/ft),
we may assume, by Lemma 4.3, that for each i € N there exists j , such that_/,- e
{n, + 1 , . . . , n,+i} and the sequence of basis vectors (e ; i )~, in I* is equivalent
to the unit vector basis (e,) of tx. Define a block basic sequence (*,-) of (en) by
xt = D"^ . + i a ; ej, i e N. Then there exists A > 0 such that

for any finite sequence (£,-) in R", n e N. Thus we conclude that (*,) is equivalent to
the unit vector basis (e,) of lx. Since (*,-) in £* is equivalent to the unit vector basis
(et) in I* with * = (Vo), we conclude that (Vo) is equivalent to a linear function.

(ii) implies (iii). Assume that 1$ fails the Schur property. Thus there exists a
normalized weakly null sequence (*;) in 1$. By the Bessaga and Pelczynski principle,
(x,) contains a subsequence which is equivalent to a block basic sequence of (en).
Thus without loss of generality, we may assume that (*,) is a normalized weakly null
block basic sequence of (en) in l9, that is, ||x,||<j> = 1 and xt = E;=i-+i aieh ' e N>
0 = ni < n2 < • • •, ay 6 R. Since $ e (52), E"=if+i <t>i (\aj I) = ^ ^ ^ Wi) w i t n

^,(f) = E"=n,+i ^/ (^la; D' ^ > 0, is a 4>-convex block of (</>,). Hence by (ii), we get
l^.^ = t\ for some subsequence (VoJ of (^i)- Since a block basic sequence (xit)
in £* is equivalent to a unit vector basis (ek) in £(^,(), we obtain a contradiction with
Xi -> 0 weakly.

(iii) implies (ii). Let (^ , (0) = (EJ=i,+i 0;(ayO) be any <J>-convex block of
(</»„). Since I* 6 (SP), <J> € (S2). Hence («,•) with M, = E " = i j + i a ; g ; ' ' e N, is a
normalized block basic sequence in £*. Since ||«n — «m|U > 1 for all n ^ m, («„)
does not contain a weak Cauchy subsequence, by the Schur property of I*. This
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yields by the Rosenthal £rtheorem that («;) contains a subsequence (M,J which is
equivalent to the unit vector basis of t\. It is easy to see that («,,) is equivalent to
the unit vector basis (ek) of £(i,.t). Hence l{i,k) = lu and in consequence (VOtii is
equivalent to a linear function. The proof is complete. •

Note that the proof of the implication from (i) to (ii) yields the following corollary.

COROLLARY 4.5. Let <t> = (<£„) be an arbitrary normalized Musielak-Orlicz func-
tion such that 0 e (<52) and limn 4>*(a) = Ofor some a > 0. Then the following
statements are true.

(i) The continuous inclusion map 1$ <-+ c0 is almost Dunford-Pettis operator.
(ii) Any block basic sequence (X™=i,+x a, e,) / = 0 of (e,) with (a ; ) ^ c0 contains a

subsequence equivalent to the unit vector basis of l\.

The next theorem gives the sufficient conditions for 1$ to have the Schur property.
Although it is not a necessary condition (see Proposition 5.6 and Example before), it
is sharper than that one given by Yamamuro in [36] (see Remark after Theorem 5.1).
Before we state this result we need to introduce another growth condition for a
Musielak-Orlicz function and prove a technical lemma.

We say that a Musielak-Orlicz function <I> = (<pn) satisfies condition (S) (shortly
<J> e (S)) if there exist 8 > 0, 0 < A. < 1 and (A,-) G l^, (n,) C N such that

00

V Y\ sup {0,(AH) - Ajfriu)} < oo.

Notice that property (S) is preserved under equivalence of Musielak-Orlicz func-
tions. Indeed, if <J> e (S) then for some S > 0, 0 < X < 1, (A;) € l+, (n}) C N and
(Cy) c K+ such that £ ° l j £,•>„. cy < oo it holds

0,(X«) < A; </>,(«) + Cy

for all i > n; and M € IR+ such that </>,(M) < 8. By the conditions on equivalence
of <J> and * it follows that tyiiXKu) < Ajir^K^u) + (A, + l)c, + c,y if i > nh

fi{K~xu) < S and </>,(«) < 6. Let now kj and m be such that X!,>t c< < ! / 2 J

and c, < 5/2 for / > m. Observe that if i > m and V.(«) < 5/2, then <pi(Ku) <
8/2 + c, < 8. Thus setting /J = max{n,, kj, m} and dtj = (Aj + l)c, + Cy we have

for i > m} and V(") < 5/2, where J^JLi H,>m ^y < °°- T r i i s shows that * € (S).

LEMMA 4.6. Let <t> = (0n) be a normalized Musielak-Orlicz function. If for some

8 > 0 an<i a// n € N, (f>*(bn) = 8, then 0 < infn bn < supn bn < oo.
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PROOF. By Theorem 4 . U i C < » c C Hence the Kothe dual 1'9 = £*. has the
similar property, that is lx C t*. <Zloo- Thus applying Theorem 4.1 again, there exist
0 < a < b < oo such that 0 < infn<p*(a) < supn4>*(b) < oo. Now, assume for
a contrary that infn bn = 0. Without loss of generality let bn -> 0 as n - • oo. By
convexity of </>* we have for sufficently large n e N,

b-bn ~ bn '

which yields that <p*(b) > 8b/bn, but it is a contradiction, since Sb/bn -> oo.
Analogously assume that limnbn = oo. Thus 4>*(bn) / bn > <j>*(a)/a for sufficiently

large n, and hence 0 < infn 0*(a)/a < S/bn -*• 0 which completes the proof. D

THEOREM 4.7. Let <P = (<pn) be a normalized Musielak-Orlicz function such that
all <j>* are finite valued functions. If$> satisfies condition 82 and <t>* fulfils condition (S)
then £<t, has the Schur property.

PROOF. Assume for a contrary that condition (S) is fulfilled but there exists a
sequence xn = (x n (0)~ , = (xn(0) e i9 which converges weakly but not strongly.
We assume without loss of generality that xn are nonnegative with disjoint supports Sn

and ||jcR|U = 1 for every n € N. By the assumed condition S2 on 4>, we have
l<t>(xn) = 1, n € N. Let bt be such that <t>*(bi) = 8, where 8 is a constant in
condition (S). It follows that <p*(kbi) < AjS + cy for all j e N and n > n ; .
Given e > 0, fix _/ with Ay < e and then choose n0 > nj such that ctj < e for
all i > n0. Thus ^*(^.*i) < €(8 + 1) for all i > n0, and lim,0'(AA) = 0. By
Lemma 4.6, inf, fc, = i > 0 and thus 0 = lim; <t>*(kbj) > lim, <j>*(kb), which implies
that lim, 4>*(a) = 0 where a = kb.

Define now for every n e N, vn(i) = 0,'(jc,,(i)), i e Sn. Let's choose 0 < A <
min(/>, 1,5/^T), where /?, T̂ are constants in condition 82, and i is a constant in (S).
By Lemma 4.6, we obtain that || jcn U/̂  -> 0. This implies that there exists n^ € N such
that for all n > nA and all n € M, *„(/) < A, and hence </>,(*„(/)) < A0,(1) = A < )8.
Let JA be such that c, < A for i > iA. It follows by applying the Young's equality that
for every n>nA and i > iA,

Ci - <pi(xn(0) < ( K

Now modifying xn if necessary we assume that <f>*(yn(i)) < 8 and ^n (i) < A for every
i, n € N. Applying then condition (S), 0;(XyB(i)) < Aj(p*(yn(i)) + cy for all i>nj.
Since min 5n ; > n ; ,
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Thus for every j e N,

E tifrynj (0) < Aj E #(#(*», ('))) + E C'J

(i) - 4>,(xHj (/
i>rtj

- D0,(^ (0) + ct)

oo

< Aj (K - l)h(xnj) + AjJ2 ci + J2 Ci> - MA' + 12
1 = 1 i>Hj i>Hj

where M = K - 1 + YlZi c<- Therefore

00 00

E E #(**> («•)) < M E A> + E EE E
= l i=nj

Defining y(i) = ynj(i) for i e Snj,j e N, and v(i) = 0 otherwise, we obtain that
< oo, and so y 6 £*.. However, for every j 6 N,

which yields that (xn) does not converge to zero weakly in £*. This contradiction
completes the proof. •

Our next result also states sufficient conditions for the Schur property of £$. Al-
though it may be less general than the previous one (see Remark after Theorem 5.1),
it has some advantages. The conditions are stated directly in terms of 4>n and are more
convenient for verification in particular situations.

In what follows for a given finite valued and vanishing only at zero Orlicz function </>
we define on [0, oo) a function 4> by

We recall that Orlicz functions <j> and rfr are equivalent on A C K+ (0 x \}r on A),
whenever <j>(C\u) < \j/(u) < <p(C2u) for all u € A.

THEOREM 4.8. Let <t> — (</>„) be a normalized Musielak-Orlicz function such that
all (pn are finite and vanish only at zero. Assume that one of the following conditions
holds true.
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(i) <$> € (S2), limn 0*(a) = Ofor some a > 0 and for any positive sequence (an)

in the unit ball ofc0 a sequence (0n(ornO/'<j>n(an)) converges uniformly to 0 ( 0 x t on

[0, 1].
(ii) $ € (£2) and for any positive sequence (an) in the unit ball ofl^ a sequence

(<f>n(,ctnt)/<pn(an)) converges uniformly to 0 ( 0 x t on [0, 1].

(iii) (0n) converges uniformly to t on [0, 1].

Then Musielak-Orlicz space I* has the Schur property.

PROOF. We shall apply here Theorem 4.4. Assume at first that (i) is satisfied. Let
then (^,(0) = ( E"=i,+i $} (aJ')) be any O-convex c0-blockof (</>„). Since (a,) € 4
and Yl?=n +1 ^j (°0) = I- without loss of generality we may assume that a, > 0 for
a l l ; € N. In view of the assumption supo<r;£l \<j>n(ant)/<f>n(an) — <f>(t)\ -> 0, we have

sup \ft(t) -<p(01 = sup
0<r<l

1/+1

," («;))
— y=n,-+i

ni+i

< sup Y | (0(0 - 0, (a; 0/0, (a; ))0, (a,) |

< max sup \<j){t)- (j)j (or, f)/0; (a ; ) | - • 0
" + l<J<n 1

as 1 —> 00. Thus ^ ( 0 ~^ 0 ( 0 uniformly on [0, 1]. Given e > 0, there exists a
subsequence (ik) such that for every t e [0,1] 1^,(0 - <P0)\ < e/2k, k € N. This
easily implies that l ^ = 1$, or equivalently that (^ iJ t l i is equivalent to <p and
hence to a linear function, by <j>{t) x f on [0,1].

If (ii) holds, the proof is similar. In order to prove (iii) observe that if 0n(O
converges uniformly to 0 ( 0 x f on [0, 1], then for sufficiently large n € N and some
e > 0 we have (t - e)<j>n(u) < <t>n(tu) for t, u e [0,1]. This clearly implies that
0 € (62). Moreover,

sup r - < sup |f - 0,(

for any positive sequence (a,) in the unit ball of l^. This shows that the condition
(iii) implies (ii), and thus I* € (SP). •

Below we provide some necessary conditions for the Schur property of £$.

PROPOSITION 4.9. Let® = (0n) be an arbitary Musielak-Orlicz function. If1$ has
the Schur property then <I> € (<52) and a(<l>) = 1.
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PROOF. If <t> ^ (<52), then 1$, contains an isomorphic copy of t^ and so I* £ (SP).
Ifa(<J>) > 1 then £(<!>*) < oo, and hence <J>* e (<52)(see[17]). But then 1$ is reflexive
(both <t> and <I>* satisfy condition <52), which is impossible since l& € (SP). •

PROPOSITION 4.10. Let <f> = (<j>n) be a nondecreasing sequence of normalized
Orlicz functions. If 1$ has the Schur property then there exists an Orlicz function <f>
such that<f>n(u) —• <p(u) uniformly for u € [0, 1] and<f)(u) x u.

PROOF. Since <pn(u) < l fora l lu € [0, l ] ,n e N, and (</>„) is a monotone sequence
of functions, by the Dini's theorem there exists a function </> such that <f>n(u) —• <j>{u)
uniformly on [0, 1]. By Theorem 4.4, there exist (nk) C N, C > 0 and (ak) e 1+ such
that Cu < (f>nt(u) < u for all k e N and ak < u < 1. It follows that for all u > 0,
Cu < 0(M) < M, that is, <f>(u) x u. D

The Yamamuro characterization of the Schur property of I* is a corollary from our
results.

COROLLARY 4.11 (see [36]). Let <t> = (0n) be a Musielak-Orliczfunction such that
each 4>n is finite, vanishes only at zero and <j>'n exists for all n € N. Ifl$ has the Schur
property then limn a(<pn) = 1. If limn b(<f>n) = 1 then £4, has the Schur property.

PROOF. The necessity part is a consequence of Proposition 4.9. In fact, by definition
of the Simonenko index an = a(<j>n), it is easy to check that the functions t-> <pn(t) /'t

a"
is increasing for t > 0, and hence </)n(kt) < A.°"0n(r) < A.inf"a"0n(f) for all A. > 1,
n e N which simply yields that infn an < a (O) . But a(4>) = 1 whenever I* e (SP),
by Proposition 4.9, and hence lim,, an = 1.

Applying at first Theorem 4.8 (ii), we shall show the sufficiency part. Observe
that if there exists a real sequence (bn) such that bn -*• 1 as n -> 00 and each
function f i-> <pn(t)/t

bn is non-increasing on (0, 1], then £$ € (SP). Indeed, for any
t, u € (0,1], <pn(tu)/^n(u) > r*" and so <£„(*) > tK. Hence 0 < t - $n(t) < t - tK

for t e [0,1], and since sup/e[01} \t — tb'\-*- 0, 4>n{t) -> t uniformly on (0,1]. Thus,
by Theorem 4.8, I* € (SP). Now letting bn = supo<lil(t4>'n(t)/(f>n(t)), it is easy to
check that the functions t (->• </>n(t)/t

b- are decreasing on (0, 1]. Thus if we assume
that b(<f)n) ->• 1, then 1 < bn < b{<j>n) ->• 1, and so t* e (SP). •

REMARK. Note that the sufficiency part in the above result also follows from
Theorem 4.7. Indeed, if b(<j>n) -+ 1 then a(<f>*) -*• 00, in view of the relation
X/biQn) + l/a(</>*) = 1. Moreover, the functions t H* 4>*(t) / f ^ are increasing for
/ > 0, and so for any 0 < X < 1, s\ipl>0(<p*(kt)/4>*(t)) < k"^, n € N, which yields
limn supl>0(4>*(kt)/4>*(t)) = 0 and thus 4>* e (S), and by Theorem 4.7, U e (SP).
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5. Schur property in weighted Orlicz sequence spaces

Important class of Musielak-Orlicz sequence spaces is a class of the weighted
Orlicz sequence spaces £^(io) studied among others in [29]. Given an Orlicz function
<j> and a weight sequence w = (wn), that is, a real positive sequence, let 4> = (</>„),
where <f>n(u) = <p(u)wn for each n e N. Then l^w) = 1$ is called a weighted Orlicz
space.

Recall that an Orlicz function <f> satisfies condition A2 (<j> e A2) if <f> satisfies
condition A2 at infinity, that is, limsupI(_).oo^(2M)/0(M) < oo, and if it satisfies
condition A2 at zero, that is, limsupH_>0+ 0 ( 2 U ) / 0 ( M ) < oo.

In what follows we say that a weight sequence w = (wn) belongs to class Ai
(IU € Ai) or Aoo (to € Aoo) whenever w e t{ or wn -*• oo, respectively. Recall also,
following [29, Definition 2.6], that a weight sequence w = (wn) belongs to class A
(IU e A) if there is a subsequence (wnk) of (wn) such that

lim wn = 0 and 7 wn = 00.
*=1

We will present further some applications of the obtained results in Musielak-Orlicz
spaces to weighted sequence Orlicz spaces. The next result, showed first by Wnuk [33]
as a corollary of characterization of Orlicz spaces L^(0, 1) with the positive Schur
property [20], is also a consequence of Theorem 4.7.

THEOREM 5.1. Let 4> = ($„) be such that 4>n(u) = 4>(u)wn, where <f> is a finite
valued Orlicz function with lim^oo<p(u)/u = oo, and w 6 Ai. If <j> satisfies
condition A2 at infinity and l im, , .^ <f>*(au)/<j>*(u) = oo for some a > 1, then 1$ has
the Schur property.

PROOF. By the assumption of A2 condition at infinity of (f>, it is easy to show that
<t> € (<52). Let now * = (^n) , where r/rn(u) = <p(aau)wn, and an = <(>~x(\/wn). Then
I* is isometrically isomorphic to I* and VOi(l) = 1, n € N, and

f*(u) = wn<t>* (u/anwn)

are finite valued by the assumption lim^oo <p(u)/u = oo. In view of Theorem 4.7,
we complete the proof if we show that <** e (S).

Let S > 0 be any number and b{ be such that r/r*(bi) = S. By Lemma 4.6,
b = sup, bt < oo. Let further A. = I/a and Aj = \/a'. By the assumption on </>*,
there exists u, > 0 such that for u > uj (f>*(u/a) - (l/aj)<f>*(u) < 0. Observe also
that in view of lim^oo <j>(u)/u = oo, lim^oo b/(ajWi) = oo and so

b
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for all i > rtij and some m, e N. Hence for all i > nij

sup W*(ku)-Ajf*(u)} < w, sup L* (-^—) - —(/>* (—)]
*;«<« o<u<b[ \aaiWiJ a' \a,u;;/J

= U>, SUp I <j>* ( - ) r(f>*(u) \ = WjBj ,
o<u<b/aiWi I ^d' a1 J

where Bj = sup^^ , , [<j>*(u/a) — <p*(u)/aJ}. Choosing n, > m; such that

we finally obtain that YiJLi 5Zi>n;
 W'^J — 12T=i ̂ ' < °°' w ^ c ^ shows condition (S)

for * ' . D

REMARK. Examples of Orlicz functions <j> satisfying the conditions (for any a > 1)
of the above theorem are, for instance, the following: 4>(t) = rln(l + t); <p(t) =
(1 + t) ln(l + t) — t for t > 0. Thus the weighted Orlicz sequence spaces l^iw) has
the Schur property for any weight sequence w € Aj. Note that this property can not
be concluded from Theorem4.8 and hence from the Yamamuro's result as well. To
see this consider only <p(t) = tln(l + t). Let <t> = (<f>n), where <j>n(t) = (p(ant)wn

with an = ip~1(l/wn) and w e Aj. It is clear that 4> is a normalized Musielak-Orlicz
function and I* is isometrically isomorphic to ^^(ion) and so €«, € (SP). However, if
we take an = \/an for every n e M, we have an -*• 0 and

for every n € N, t > 0. Since 0(r) x f2 on [0,1], so Theorem 4.8 does not work in
this case.

In [10] it is proved that for every separable Musielak-Orlicz sequence space 1$
there exists an Orlicz function (f> and a weight sequence w = (wn) e A^ such that the
weighted Orlicz sequence space l^w) is (order) isomorphic to i&. This result seems
to explain that in general for a given w e Aoo, the problem of characterization of the
Schur property in l^w) in terms of <p is nontrivial.

Following [23] (see also [9,27]), for a given finite valued Orlicz function <j> van-
ishing only at 0 and for any 0 < s < oo, we define several subsets of C(0, 1) as
follows:

4>(.tu) I
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El = n o < , < i _ ^ . E? = n , > . E%,, C~ = conv£~, and £ , (0 , oo) = £0iOO,
Q ( 0 , oo) = conv£^(0, oo). They are all compact subsets of C(0,1/2), and if
<j> e A2 at zero then £ ^ , and E§ are compact subsets of C(0,1), if (f> e A2 at infinity,
then E£s, £ ~ and C~ are compact in C(0, 1), and finally if 0 e A2, then £0(O, oo)
and Q ( 0 , oo) are also compact in C(0,1).

PROPOSITION 5.2. Let 4> be a finite valued Orlicz function which vanishes only at
zero. Then the following statements hold true.

(i) For every ty e ££° there exists a weight sequence w € Ai such that i^ixv) is
isomorphic to an Orlicz sequence space l^.

(ii) For every ty € E% there exists a weight sequence w G Aoo such that t^,(w) is
isomorphic to an Orlicz sequence space l^.

(iii) Iftjiw) has the Schur property for every ID e A | (respectively, w € Aoo),
then f(t) x r o « [0, I] for every rfr e £ ~ (respectively, \fr e E%).

(iv) Iffy satisfies condition A2, lim^oo </>(u)/u = oo andUm^^ (j>*(au)/<f>*(u) =
oo for some a > 1, then ijr(t) x t on [0, I] for any i/r € E£°.

PROOF. The proof of (ii) is similar to the proof of (i), which is presented in [9,
Proposition 1]. (iii) is an immediate consequence of (i) and (ii) since 1+ e (SP) if and
only if f(t)xt on [0,1]. Finally, (iv) follows by (iii) and Theorem 5.1. •

Next we present a characterization of (SP) in the weighted Orlicz sequence spaces
t^,(w) in the case whenever the weight sequence is in the class A. Note that it is
shown in [7] that given w e A for every positive sequence v = (vk) the canonical
basis of l+(v) is equivalent to a block basic sequence with constant coefficients of the
canonical basis of ^(w). In fact by the result [3], it follows that the series YlT=i w>>
has the Darboux property for every ID € A, that is, for every positive real number x
there exists a subseries YlJLi wkH which converges to x. An immediate consequence
of this result is the following simple observation, which will be used in the sequel,
that for any weight sequence v = (vk) there exists a sequence (/*) of pairwise disjoint
subsets of N such that ]Cn6/»

 w» — u* f° r eyery k € N. This easily yields that the map
(*n) •-»• J2nXnXu is an order isometry of the weighted Orlicz sequence space l^(v)
onto a sublattice of ^(w).

THEOREM 5.3. Let a weight sequence w = (wn) e A and let <f> be a finite valued
Orlicz function which vanishes only at zero. Then the following statements are
equivalent:

(i) l,t,(w) has the Schur property;
(ii) <j> € A2 and\jr(t) >c t on [0, I] for every yjr € Q ( 0 , oo);

(iii) 0 € A2) <p(t) x t on [0, 1] and f(t)-^t on [0, I] for every f e C~.
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PROOF, (i) implies (ii). Let <$> = (</>„) with </>„(*) = <j>{t)wn. First note that
<t> € (<52), otherwise £* contains an isomorphic copy of £<» and so ^ ( tu ) ^ (SP). It is
clear that <I> e (<52) implies <p e A2 (see also [17]).

We shall show now that every function in Q ( 0 , oo) is equivalent to a linear function
on [0,1]. Indeed, let V G Q ( 0 , OO). Then there exist a sequence (/,)~j of finite
subsets of N and positive sequences of real numbers (aj) and (sj) such that fr —> \js
uniformly on [0, 1], where ^,-(0 = £;«=/,«] (p(s't)/(pis') fort > OwithiMl) = 1 for
all i 'e N. Without loss of generality we assume that limn wn = 0 and E^Li wn = °°-
By the Darboux property of the series Y17=\ w^ t n e r e exists a sequence (/ (i, j )),-6N j ^A,
of pairwise disjoint subsets of N such that for every i e N and j € /, it holds
Uneiuj)w" = (*j/<t>(Sj)- If we define * = {ft), then for any (x,) 6 £*, we have

E *(*><i)u>« = 2 >
i=l i=l jeli nel(ij) "=l

This shows that the map (xn) i-» (E i= i ^2j<n- x>sj Xwj)(n))n=i is an order isometry of
£^intoasublatticeof£0(u;). Hence £* has the Schur property by l^w) e (SP). Since
(\jfj) converges uniformly to f on [0,1], there is a subsequence (i/fit) of (V^) such
that the canonical basis (ek) of an Orlicz space l^ and (ek) oil^ik) are equivalent. In
consequence, we conclude that t^, has the Schur property and thus 1^(0 x ' on [0, 1].

(ii) implies (iii). Since C£° c Q ( 0 , oo) and </> e C^(0, oo), the implication is
clear.

(iii) implies (i). First we show that (iii) implies that \fr(t) x t on [0, 1] for any
yjr e Q ( 0 , oo). To see this take \Jf e Q ( 0 , oo). Using the Krein-Milman Theorem,
we conclude that (see [27, proof of Theorem 1.1]) ^ can be written as a convex
combination: x/r = A.] t̂ -i + -̂2^2 + ^3^3 with V̂ i 6 conv£^,i, ^2 € C£° and with \/f3
having a representation

where v is a probability measure on [1, 00) such that v({l}) = 0. This implies that
C(p(t) < ylf3{t) < t for all t £ [0,1], where 0 < C = f™(l/4>(s)) dv(s) < 00. Since
(p(t)^t on [0,1], we get ^ ( 0 x r on [0, 1]. Clearly, 0 ( 0 x t on [0, 1] implies that
any function in conv£^tl is equivalent to a linear function on [0, 1]. In consequence,
the equality \(r = Ait^i + ^-2^2 + ^3^3 implies the required equivalence yfr(i) x t on
[0, 1].

In order to finish the proof we use Theorem 4.4. Let (1/0) be any O-convex block

of (</>„), that is, frit) = E7=n,+i <$>> (taj) with Ey
n=ij+i 4>J <<aJ > = L T h i s i m P l i e s t h a t

j=n
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that is, (x/fi) C Q,(0, cx>). By the compactness argument (V ,̂) contains a subsequence
(\lrik) which converges uniformly to some \jr € C$(Q, oo). However, we proved that
\jr(t) x t on [0, 1] for any xjr e Q ( 0 , oo), and this finishes the proof. D

COROLLARY 5.4. Letw = (wn) e A and let <p{t) x max{f, <p(t)} on R
is a finite valued and differentiate at infinity Orlicz function satisfying condition A2

at infinity and limr_»oo(^'(0/<o(0) = P- Then t^,{w) has the Schur property if and
only ifp = 1.

PROOF. It follows from [9, Proposition 6] that £ ~ = [f]. This implies that
also C£° = {f}. Clearly, 0 satisfies condition A2 and </>(?) x t on [0, 1]. Thus
Theorem 5.3 applies. •

EXAMPLE. Let 1+ {w) be a weighted Orlicz sequence space with w e A and <p (r) x
max{;, <p(r)} on 1 + , where ^ is the following function

(p{t) = tp \r?{e + t) for t > 0, 1 < p < 00, a € K.

Then by Corollary 5.4, ^(u>) has the Schur property if and only if p = 1, since
\iml^oot<p'(t)/<p(t)=p.

Combining the above example with the following result below, we conclude that
there exist weighted Orlicz sequence spaces with the Schur property which are not
isomorphic to any j£?i -space (in the sense of [22]) and in particular, it is not isomorphic
to any AL-space (see [2]). In consequence, it follows by Theorem 3.5, that these spaces
are not isomorphic to any symmetric space.

PROPOSITION 5.5. Ifw e A and cf> e A2 with lim,,-.^ <f>{u)/u = 00, then l^w) is
not an 2£\ -space.

PROOF. AS we have already noticed t^(w) is isometrically isomorphic to I*, where
vy = (^rn) is a normalized Musielak-Orlicz function with ^M") = <)>(.anu)wn and
an = (p~l(l/wn) for all u > Oandn G N. ByTheorem4.1, wehave^ -̂> I* «-»• £x.
The condition 0 e A2 implies that €^(u>) is separable for any weight w. Thus if
t^iw) were an j£?i-space, then 1% would be isomorphic to £oo, by [22, Corollary 2].
Since 1% = ^*., a Banach lattice E = ly. is isomorphic to AM-space ^oo. Thus,
by applying [1, Theorem 5], we would get that there exists a constant C > 0 such

that ||*, H \-xn\\E < Cmax{ | |* , | | £ , . . . , ||*«||E} for any pairwise disjoint elements
xi,... ,xn € E. Since U <^y ly. ^> t x , we have supn \\en\\E < 00. In consequence,
by the Fatou property of E, we conclude that the sequence with all terms equal to one
belongs to E = I*.. Since ** = (wn<t>*(u/anwn)),

< oo
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for some A. > 0, which is impossible because antwnk —*• 0 and ̂ t wnk = oo for some

(nt) C N. D

Note also that the above example and the result below show that there are Musielak-
Orlicz sequence spaces t$, with the Schur property, however <I>* does not satisfy the
condition (S).

PROPOSITION 5.6. Let <S> = (<f>n) be such that <pn(u) = (f>{anu)wn with an =
<f>~l(l/wn) and (wn) € A. Then <t>* satisfies condition (S) if and only if<f>{u) x u
onR+.

PROOF. Without loss of generality we assume that limn wn = 0 and YlT=i w* = °°-
Assume that (S) is satisfied for <t>*. If 4>* is a finite valued function, lima^oo 0(M) /M =
oo. Let 8 > 0, 0 < A. < 1, (A,-) € 1+ and (ny) c N be arbitrary. By Lemma 4.6,
infn bn = c > 0, where (p*(bn) = 8 and (p*(u) = wn(f>*(u/anwn). Hence

Q = sup {<p* ' - U

s u pp ( p (
o<«<c I \ aiwi/ \aiWi

= sup {<f{ku) - Ajfiu)}.
0<u<c/aiWj

We have lim, aiWi = lim, (p~l(l/Wi)/(l/Wi) = 0. Let [0, M] be such a large interval
that 0*(A.M) > 0 for some u e [0, M]. There exists i t e N such that c/fljiu,- > M
for i > k. Then Q > C, for all i > it and ; e N, where C, = supOsusM{</)*(X«) -
Aj((>*(u)}. It is clear that C, > 0 for sufficiently large j . Hence

j=\ i>rij j=\ i>itvn; y=l i>kviij

This contradicts condition (S). Hence <f>* admits some infinite values, which yields that
A = lim^oo <f>(u)/u < oo. Again let (S) be satisfied and assume that <j>*(u) > 0 for
all u > 0. Let further a = sup{w : 0*(M) < oo} and tn = sup{« : (/>*(w) < 8}. Since
0 < a < oo, for i large enough a,u;i a /2 < t, < a a,u;,. In view of limj a{Wi = I/A,
there exist A: 6 N and d > 0 such that f, > rf for all i > k. Hence, analogously as
before, for i > k

Qj> sup [<p*(ku)-Aj4>*(u)}.
0<u<d/aiWj

Now choose m > k such that for i > m, c/ajWi > AC/2. It follows that for i > m,

Co > sup [<j>*(ku)-Aj4>*(u)},
0<u<AC/2
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which again contradicts (S), since the right-hand term of the above inequality is positive
in view of the assumption that </>*(«) > 0 for every u > 0. Thus limu_>0 </>(«)/« > 0,
and combining with limu_>00(/>(M)/M < oo, we obtain that <j)(u) x u on R+. Now if
<j)(u) = H,then0*(«) = OforO < u < 1 and0*(w) = ooforw > 1. Hence </>* satisfies
(S) trivially. Since (S) is preserved under equivalence, the proof is complete. •

We finish this section with the result which shows that the Schur property of a
weighted Orlicz sequence space does not imply that its symmetrization is isomorphic
to l\, and that the assumption in Corollary 3.6 that (en) is a semi-normalized basis is
essential.

Recall that if <j> is a finite valued Orlicz function which vanishes only at zero and w =
(wn) e A is a non-increasing sequence, then the Orlicz-Lorentz symmetric sequence
space A.0U, consists of allreal sequences* = (x(n)) such that ]T^l10(e**(n))u>n < oo
for some e > 0 and is equipped with the norm

llxll = inf h > 0 : ̂ 0(x*(n)/f)«;. < 11 .

If <f>(t) = tp, 1 < p < oo, A.0TW coincides with the classical Lorentz space d(w,p)
(see [23]).

COROLLARY 5.7. Let w = (u>n) e A and let <t> be a finite valued Orlicz function
which vanishes only at zero. Then the following statements hold true:

(i) (*<>,„)„ "^ 5(€0(io)a) with v = (vn), where vn = supt>n \wt\;
(ii) if(wn) is non-increasing and l^w) has the Schur property, then 5(£^(iy)) =

d(w, 1) is not isomorphic to t\ and the continuous inclusion map (£i,d(w, l))e,P °+
t^iw) is compact for any 0 < 6 < 1 and 1 < p < oo.

PROOF, (i) Obviously v = (vn) is non-increasing, v € A, and ^(v) ^ £4,(10).
Then the required result follows by the following easily verified equality

00 00

sup
« n

which holds for any x 6 i f t .
(ii) Since l^w) € (SP), we have by Theorem 5.3, <j> e A2 and </>(r) x t on [0,1].

This yields by (i) that S(^(iu)) = XfUJ = d{w, 1) up to equivalence of norms. Since
en -> 0 weakly in d(w, 1), we conclude that d(w, 1) £ (SP), and so Sit^iw)) is not
isomorphic to £\. Moreover the continuous inclusion map l\ <-*• d(w, 1) is weakly
compact (see proof of Proposition 3.4). This implies by [5] that (lx,d{w, \))e,P is
reflexive space for any 0 < 0 < 1 and 1 < p < 00. Since (-^{w) e (SP) and
(ti,d(w, l))BtP ^ l+(w), the result follows. •
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6. Weak Dunford-Pettis and positive Schur properties in Orlicz spaces

We conclude the paper with a characterization of the weak Dunford-Pettis and
positive Schur properties in Orlicz spaces defined on any non-atomic infinite measure
space. As far as we know there is no characterization of the weak Dunford-Pettis
property in Orlicz spaces defined on a finite measure space. It is easy to show (see
proof below) that if the measure space (£2, 9&, (i) is non-atomic and finite (respectively,
infinite), then L0(/i) e (wDP) if and only if i^w) e (wDP) for any w e A]
(respectively, for some or equivalently for any w e A). In particular, it follows from
Theorem 5.1 that L^(/x) € (wDP) with <j>(u) = «ln(l + w) for any finite measure
space (see [20]).

In the case of infinite non-atomic measure spaces we have the following result.

THEOREM 6.1. Let <p be a finite valued Orlicz function which vanishes only at
zero and let L^ifi) be an Orlicz space over a non-atomic and infinite measure space
(£2, SS, fx). Then the following statements are equivalent:

(i) Ljin) has the positive Schur property;
(ii) L4, (/z) has the weak Dunford-Pettis property;
(iii) </> € A2, 0 (0 x t on [0, 1] and f(t) x t on [0, 1] for every f e C£°;
(iv) <p e A2 and \/r(t) x t on [0, 1] for every f € Q(0, 00).

PROOF. Implication from (i) to (ii) is obvious and the equivalence of (iii) and (iv)
follows from Theorem 5.3.

(ii) implies (iii). It is clear that complemented sublattices of a Banach lattice with
the (wDP)- property, have this property too. Take any sequence (Qn) of mutually
disjoint measurable sets in 06 such that 10 = (wn) e A with wn = fi(Qn) and observe
that the map P defined by

is the contractive projection which maps L^n) onto [xaJ^Li- It is clear that the map
(xn) i-» J2nxnxn, is an order isometry of ^(to) onto a sublattice [xnjjjii of L^(fi).
This implies that ^(u>) has the weak Dunford-Pettis property, and thus also the Schur
property [34]. In consequence, (ii) holds by Theorem 5.3.

(iii) implies (i). By [34] it is enough to show that every disjoint, weakly null
sequence in L^ifi) converges in norm. Thus, take a disjoint weakly null sequence
(/„) in L+Qi). Since <p € A2, the set of simple functions is dense in L^ifi). Let
gn = ^ t 6 / i i JC*XA*. where (/„) is a sequence of finite subsets of N and CAj,),e/n>neN

is a sequence of mutually disjoint measurable sets of 38 of positive measure such
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t h a t HT=i 11/" ~ S"IIMM)
 < 1 / 2 - F r o m t 2 3 ' Prop08111011 l a 9 ] > it follows that the

basic sequences (/„) and (gn) are equivalent. Following [29, proof of Theorem 2.7],
define the weight sequence v = («„,,-) = (/x(Aj1)),e/n,neN. Clearly, ^ ( v ) is order
isometrically isomorphic to [gn]%Li in L^iti). By the Darboux property of the series
£ n wn, we conclude that l+iy) is order isometrically isomorphic to a sublattice of
^(u>). Now by Theorem 5.3, we have £0(u>) € (SP). Inconsequence, [#„]*, e (SP).
From the above inequality we get that gn —• 0 weakly in L^(fx), by / „ -> 0 weakly.
Hence gn ->• 0 in L^C/A) yields / „ -> 0 (by the above inequality), and the proof is
complete. •

REMARK. Notice that the assumptions in the above theorem that </> is finite-valued
and vanishes only at zero are essential. In fact it is easy to check that up to equivalence
of norms, L^(fi) = Li(fi) H LgoQi) whenever <f>{t) = OforO < t < 1 and <j>(t) = oo
for t > 1, and L^(ix) = L,(/x) + Lx(fjL) whenever (p(t) = 0 for 0 < t < 1 and
<j>{t) = t — 1 for t > 1. In [15] it is shown that these spaces defined on any non-
atomic separable measure space have (DP)-property and hence also (wDP)-property.
However, it is clear that these spaces fail to have the positive Schur property.
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