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Abstract

The past 50 yr of advances in weed recognition technologies have poised site-specific weed
control (SSWC) on the cusp of requisite performance for large-scale production systems.
The technology offers improved management of diverse weed morphology over highly variable
background environments. SSWC enables the use of nonselective weed control options, such as
lasers and electrical weeding, as feasible in-crop selective alternatives to herbicides by targeting
individual weeds. This review looks at the progress made over this half-century of research and
its implications for future weed recognition and control efforts; summarizing advances in
computer vision techniques and the most recent deep convolutional neural network (CNN)
approaches to weed recognition. The first use of CNNs for plant identification in 2015 began
an era of rapid improvement in algorithm performance on larger and more diverse datasets.
These performance gains and subsequent research have shown that the variability of large-scale
cropping systems is best managed by deep learning for in-crop weed recognition. The benefits
of deep learning and improved accessibility to open-source software and hardware tools has
been evident in the adoption of these tools by weed researchers and the increased popularity
of CNN-based weed recognition research. The field of machine learning holds substantial
promise for weed control, especially the implementation of truly integrated weed management
strategies. Whereas previous approaches sought to reduce environmental variability or manage
it with advanced algorithms, research in deep learning architectures suggests that large-scale,
multi-modal approaches are the future for weed recognition.

Introduction

Over the last five decades, weed control technology development has focused primarily on
herbicides; however, evaluation of alternative weed control technologies has continued, albeit
at a relatively slower pace. Many novel thermal technologies have been identified as potential
alternatives to herbicides, including targeted lasers (Coleman et al. 2021; Couch and Gangstad
1974; Mathiassen et al. 2006), electrical discharge (Armyanov et al. 2000; Diprose and Benson
1984), and microwaves (Brodie et al. 2012; Sartorato et al. 2006), as reviewed in Bauer et al.
(2020). Compared with herbicides, the use of these alternatives as whole-field treatments in
large-scale cropping systems has not been viable given the intensive resource demands (energy,
labor, and time). Yet, the ability to apply targeted thermal treatments to weeds specifically would
make such treatments approximately as resource-efficient as herbicides in large-scale crop
production systems (Coleman et al. 2019). This approach, referred to as site-specific weed
control (SSWC), enables the in-crop use of nonselective and alternative weed control technol-
ogies. In-crop SSWC is strongly reliant on precise and reliable weed recognition within the crop,
which can be achieved at varying degrees of specificity depending on the task at hand (Table 1)
(Lopez-Granados 2011; Slaughter et al. 2008). Thus, without accurate weed recognition the
implementation of alternative weed control technologies for in-crop uses in large-scale cropping
systems will not be successful.

The recent step-change in accessibility and performance of in-crop, image-based weed recog-
nition tools has been driven by developments in three key areas: (1) gains in computational
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power, efficiency, and hardware accessibility; (2) improved image
data availability for training complex algorithms; and (3) novel
algorithm architectures. The broader technology industry [e.g.,
Google AI and Meta AI (previously Facebook)] and the computer
science community advanced many of these areas through collabo-
rative and open-source methods, which are now providing new
opportunities for weed control (Fernández-Quintanilla et al.
2018). Despite these external technological advances, accurate
in-crop weed recognition remains a significant challenge, particu-
larly in large-scale production systems. The combination of plastic
weed (and crop)morphology (Munier-Jolain et al. 2014; Nkoa et al.
2015) and broad environmental variability complicate reliable
detection at speed.

Technological advancements are enabling the weed control
industry to progress from being able to simply determine the pres-
ence of a weed in an image (weed detection), to identifying specific
weed species and plant morphological characteristics (weed iden-
tification), and finally to be able to both characterize and locate
weed species within images (weed recognition) (Table 1) in real
time for highly targeted application. With this progression and
rapidly rising interest in weed recognition research (Figure 1), it
is critical that academic research groups and industry develop
an understanding of how in-crop SSWC will advance, the tools
required, technology limitations, and where future research should
focus. This involves a chronologically based review of the develop-
mental trajectory of technology in the context of weed control
beyond a survey of the literature (Hamuda et al. 2016; Hasan
et al. 2021; Rakhmatulin et al. 2021; Wang et al. 2019; Wu
et al. 2021).

This review examines the progress of weed detection, identifi-
cation, and recognition methods over the past 50 yr, to highlight
the potential offered by recent developments in deep learning in
the context of weed recognition in large-scale crop production
systems. Definitions of key terms relevant to SSWC are provided
for clarity, especially those used inconsistently in current literature.
This review aims to investigate the most effective approach(es) for
developing weed recognition capability that enables highly accu-
rate SSWC for large-scale crop production systems.

1971 to Early 2000s: Introduction of Weed Detection and
Computer Vision

From the outset of plant detection technology in the 1970s, the
development of SSWC tools has followed a path of increasing
complexity. It began with use in simple environments with green
weeds in fallow before moving into in-crop weed recognition with

highly variable conditions. The historical success of weed detec-
tion–based tools has been largely dependent on the ability to
control the imaging environment, which enables the application
of simple algorithms that rely on consistencies in spectral
differences, lighting, background, and/or target appearance.
During this initial 30 yr of research, SSWC commenced with
the introduction of active reflectance-based detection of living
(“green”) plants (Haggar et al. 1983; Hooper et al. 1976; Palmer
and Owen 1971) with photoelectric diodes, progressing to weed
recognition in highly controlled horticultural scenarios (Lee
et al. 1999) with cameras and early machine learning algorithms.

Reflectance-Based Weed Detection

In general, reflectance-based methods work by analyzing light
reflected from a scene, typically without spatial information. By
analyzing and comparing different parts of the spectrum, they
are able to discriminate between plant and nonplant material
(reviewed by Peteinatos et al. 2014). The technology for weed
detection in fallow scenarios emerged from research for plant
detection used in sugar beet thinning in the early 1970s
(Hooper et al. 1976; Palmer and Owen 1971). The concept, which
uses photodetectors, compares red and near-infrared reflectance
ratios between green plant material and non-green plant residues
and soil backgrounds, was later adapted for fallow weed control
(Haggar et al. 1983). The light is either provided by an active source
or passively provided by the sun. Importantly, the photodetectors
used in this method lack spatial resolution. All the reflected light in
the field of view of the photodetector is observed by the sensor as
one mixed signal. If detection is triggered, the single sensor cannot
determine where the trigger was raised within this area. Similarly,
there is often not enough information to differentiate between
types of plants. As a result, reflectance-based methods simply
detect the presence of any plant within their field of view. This
is known as “weed detection” (Table 1), and efficacy is largely
driven by the usage context. The method is suited to fallow condi-
tions (e.g., Haggar et al. 1983), where weeds can be defined as
any living plant––whether they are invasive, crop regrowth,
or self-regenerating.

Because of their simplicity and early development, reflectance-
based methods have been used for weed detection and spot
spraying in large-scale fallow fields since the 1990s (Felton et al.
1991; Haggar et al. 1983; Shearer and Jones 1991; Visser and
Timmermans 1996). These spot-spraying systems are now widely
adopted by Australian crop producers (McCarthy et al. 2010;
SPAA 2016) to target low-density (<1.0 plant 10 m–2) weed popu-
lations (Walsh and Powles 2022). The weed control savings

Table 1. Key definitions for varying levels of specificity in the location and characterization of weeds and the technologies enabling the research and development of
site-specific weed control tools.

Key term Definition

Weed detection The ability to determine presence/absence of a weed in the field of view of the detection device (localization), providing information on
machine-relevant location for site-specific control. It can be provided by a range of sensors. Integration with GPS allows for the
recording of real-world locations.

Weed identification An ability to determine weed species and/or morphological attributes required for more precise targeting.
Weed recognition The combined ability both to detect and identify a weed with the potential for inclusion of additional information on plant morphology.

Classes must be more than simply “weed” or “crop”.
Computer vision The field of study focused on understanding the content and context of digital images and videos.
Machine learning An ability of algorithms to improve automatically and learn based on some form of error feedback.
Machine vision The integration of a vision (camera) system with an actionable machine response for scene and surrounding awareness and interaction.
Artificial neural
network

An interconnected group of nodes that perform weighted calculations on data passed between these nodes (Figure 4).
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enabled by fallow SSWC have driven the demand for systems that
lead to similar savings targeting low-density weeds within crops.

Computer Vision and Machine Learning–Based Weed
Detection

As digital technologies matured in the 1970s and 1980s, photode-
tectors generalized into the charge-coupled device (CCD) sensor
and, consequently, more accessible digital cameras. Instead of indi-
vidual photodetectors observing a single part of the spectrum
through filters, the CCD combined multiple photodetectors
arranged in a grid, making it possible to record digital images with
inherent spatial information. Further development added sensi-
tivity to multiple spectral bands (e.g., red, green, and blue) allowing
color or even multispectral images to be recorded.

This new way of capturing spatial and spectral image data gave
rise to the discipline of computer vision. In general, the goals of
computer vision are to derive high-level information from digital
images. Although humans have an intrinsic ability to analyze and
understand images of crops and the contexts in which weeds might
occur, this is a complex task to replicate in software. Early attempts
to convert digital images into a higher-level understanding were
predicated on computer-vision experts designing algorithms that
could process aspects of images into “features” that could then
be passed into classification algorithms (Figure 2).

Computer vision for weed detection and identification involves
image pre-processing (e.g., color space transformation or image
resizing), feature extraction (selecting which image attributes
are relevant), and finally the application of a classification algo-
rithm that uses these features to identify the weed (Figure 2)

Figure 1. Publication counts (including journal articles, conference papers, and books) by year for the search term on Scopus: “weed detection”OR “weed recognition”OR “weed
identification” indicating the recent rise in popularity. A total of 781 documents were returned beginning in 1989 and ending in 2021; 2022 has been excluded. Columns are colored
by corresponding section in this review.

Figure 2. An example image analysis flow for conventional weed detection algorithms to extract ginger plants from the background and to then identify purple nutsedge.
The original image is first transformed into the hue, saturation, and value color space, before image features such as mean color channel statistics are calculated, thresholds
applied through a deterministic algorithm, resulting in the identification of ginger plants.
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(Wang et al. 2019; Weis and Sökefeld 2010). Initial attempts at
computer vision for species identification on eight crop and weed
species (maize [Zea mays L.], soybean [Glycine max (L.) Merr.],
tomato [Lycopersicon esculentum L.], johnsongrass [Sorghum hale-
pense (L.) Pers.], Jimsonweed [Datura stramonium L.], velvetleaf
[Abutilon theophrasti Medik.], giant foxtail [Setaria faberi
Herrm.], and common lambsquarters [Chenopodium album L.])
in 1986 achieved a modest 69% classification accuracy (Guyer
et al. 1986). Results by the start of the millennium appeared to
be improving, with up to 96.7% accuracy on five similar weed
species (velvetleaf, giant foxtail, common lambsquarters, large
crabgrass (Digitaria sanguinalis [L.] Scop.), and ivyleaf morning-
glory [Ipomoea hederacea Jacq.]), and a soil class in one example
using a neural network (Burks et al. 2000b). Whereas the initial
image attribute (feature) selection component was a manual
process that relied upon experts, the classification algorithms that
used these features to detect and/or identify weeds, were often
based onmachine learning (Table 1). Machine learning is a process
of optimizing algorithm performance by repeated prediction and
error correction from a training dataset of annotated weed images.
During the training process, the algorithm modifies or “learns” its
parameters (weights and biases) through an error feedback loop,
often referred to as a loss function or an objective function, so that
its predictions improve over time. Although machine learning
improved classification, the process of manual feature extraction
struggled in managing the diversity of the field environment
(Slaughter et al. 2008), even if weed and agronomy “experts” were
involved in identifying important features to use (Golzarian and
Frick 2011).

The types of features extracted by computer-vision experts can
be divided into four general categories: (1) color (spectral),
(2) shape, (3) texture, and (4) spatial context (e.g., planting
arrangements); details on each category and extraction methods
are reviewed by Zhang and Lu (2004) and Wang et al. (2019).

In early computer vision research for weed detection, color features
and vegetation indices formed a major component of image
features (Woebbecke et al. 1995a). Yet, there were substantial
drawbacks in the performance of algorithms due to color changes
at different growth stages across a season, between days or periods
with variable ambient lighting conditions (El-Faki et al. 2000;
Wang et al. 2019; Woebbecke et al. 1995a). It is a common chal-
lenge in agriculture and external industries (Pinto et al. 2008) that
continues for many color- and shape-based algorithms, even in
more recent in-field efforts (Chang et al. 2012; Coleman et al.
2022). Weed and plant species identification during this period
was largely restricted to highly controlled settings, where leaves
were removed and image dataset sizes were typically fewer than
100 specimens (Gerhards et al. 1993; Guyer et al. 1986; Petry
and Kühbauch 1989; Shearer and Holmes 1990) (Figure 3).

Where computer vision is integrated with a machine response
such as tine movement or spot spray application, the termmachine
vision is used, given the machine now has the capability to “see.”
During the 1990s to early 2000s, machine vision systems were
developed for high-value horticultural crops such as tomatoes,
where slow travel speeds (e.g., under 3 km h–1) and highly managed
planting arrangements were appropriate (Lee et al. 1999; Slaughter
2014). These controlled environments and slow travel speeds allow
themore effective use of manually identified image features such as
shape, color, and texture for weed detection algorithms on systems
with highly constrained processing power compared to modern
devices. In one of the first attempts at real-time, in-crop weed
detection for selective herbicide application with a tractor-
mounted, machine vision system, Lee et al. (1999) used leaf shape
features to classify individual leaves based on RGB images with a
Bayesian classifier. This system detected 73.1% of tomato leaves
and 68.8% of weeds at a forward speed of 1.2 km h–1. Similarly,
Åstrand and Baerveldt (2002) employed visual feature analysis
to achieve 96% accuracy when differentiating unspecified weeds

Figure 3. The improvement in the performance of plant classification accuracy over time from the first attempts in the mid-1980s through 2022 (n= 67). Data are provided in
Supplementary Table S1. Each point represents the top-performing classification accuracy for the top-performing algorithm in the cited article. Wheremultiple datasets were used
to train distinct algorithms, performance was reported separately. Algorithms that relied on conventional (i.e. manual) feature extraction are shown in yellow circles, whereas the
automatic, convolutional neural network (CNN)–based feature extraction is indicated by purple circles. Circle size indicates dataset size as a measure of dataset diversity. Results
were not included, if papers did not report accuracy. This underrepresents more recent results, which more frequently report metrics such as F1-score, mAP, precision, and recall.
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and sugar beet. The authors noted, however, that color features
varied with the intensity of sunlight, a significant weakness of these
early vision approaches. Despite adequate performance, the use of
comparatively high spatial-resolution images was a limiting factor
for real-time use, given the processing capability of systems at the
time. In-field use was largely limited to 2 km h–1 with detection
algorithms requiring between 100 and 200 ms for processing per
image (Fernández-Quintanilla et al. 2018; Slaughter et al. 2008).

Toward the end of the 1990s, research on overcoming chal-
lenges of visual environmental complexity diverged into either
(1) increasing spectral bands through multi- and hyperspectral
imaging and/or (2) novel algorithms that employed more
advanced techniques to make the most of lower cost digital camera
technology, though also limited by processor speed and capacity.
Hyperspectral sensors provide increased spectral range and reso-
lution over conventional cameras designed for RGB color imagery.
This improves the potential for modeling complex crop–weed
scenarios (McCarthy et al. 2010; Slaughter et al. 2008). For
example, in 2003, weed and crop discrimination using hyperspec-
tral sensors achieved an accuracy above 95% in tomatoes
(Slaughter et al. 2004), outperforming the color-based classifica-
tion effort of 75%. The approach has its own difficulties, with
recent research on hyperspectral detection of Palmer amaranth
(Amaranthus palmeri S. Wats.) and large crabgrass finding perfor-
mance changes throughout the season and with variable weed
densities (Basinger et al. 2022). Additionally, spectral imaging
for plant discrimination (as reviewed in Lu et al. 2020) requires
intensive computing resources and expensive imaging devices,
which has resulted in a reduced interest in the development of this
approach for commercial, in-crop weed recognition systems. The
availability of low-cost and readily accessible RGB imaging devices
also contributed to the declining interest in the spectral-imaging
approach for commercial systems (Brown and Noble 2005).
Recent reviews of weed detection (Lopez-Granados 2011) and
machine learning in agriculture (Liakos et al. 2018) provide more
detail on the future of multi- and hyperspectral research.

Developments in SSWC enabling technology from the 1970s to
2000s saw dramatic advances in performance and increasing
relevance for large-scale systems. Reflectance-based weed detec-
tion systems for fallow SSWC became commercially available at
the beginning of this period; then by 2002 one of the first
end-to-end machine vision systems was being used in research
settings (Åstrand and Baerveldt 2002). Although algorithm
performance was a limiting factor, practical, in-field use
during this time was substantially restrained as a result of available
processing power for image analysis, restricting image resolution
and inference speed. The development of more advanced
computer vision algorithms for agriculture over the next decade
(e.g., CNNs; LeCun et al. 1989) coupled with gains in computing
power and increased image data availability, would see field-ready
developments in large-scale systems for real-time use by the end of
the 2010s.

Early 2000s to 2012: Advances in Algorithm Performance

The reductionist approach applied in the early period of image
analysis and computer vision tools was useful in establishing intro-
ductory-level SSWC in controlled, in-crop settings. Yet, as often
identified by the authors in early studies, the manually selected
features used in these systems were brittle. Changes in the environ-
ment or crop could render ineffective simple image feature selec-
tion in complex environments. A further complication was the

plasticity of weed morphology, which varies with genotypes and
is influenced by temperature, moisture, light and nutrient avail-
ability, as well as the crop production environment (Maity et al.
2021; Munier-Jolain et al. 2014), increasing the difficulty in devel-
oping reliable detection and identification techniques. By and
large, image features designed by human experts were not easily
scalable to new tasks or able to cope with the variation in large-
scale agriculture (Figure 3) (Dyrmann et al. 2016a). In the context
of these limitations, the next wave of progress sought to use
algorithm architectures with a greater ability to represent the
complexity of conditions and morphology. This included the first
use of so-called “neural network”methods andmore robust feature
engineering efforts. Whereas developments continued in non-
neural network machine learning, as reviewed in Fernández-
Quintanilla et al. (2018) and Wang et al. (2019), neural network
architectures underpin the current state of weed detection, identi-
fication, and recognition for in-crop use and are the focus of the
following sections.

Artificial Neural Networks

The capability to deal with the complexity of the in-crop environ-
ment in the development of weed recognition algorithms was
enhanced with the use of artificial neural networks (ANNs).
This comes from the improved ability of ANNs to describe a very
large set of functions that represent weed diversity and hence
patterns in images that would identify weed species. For example,
Burks et al. (2005) used an ANN to classify images containing
giant foxtail, large crabgrass, common lambsquarters, velvetleaf,
and ivyleaf morningglory (Figure 4). Images were collected in
controlled-illumination field settings, and the features were
extracted using a manual method, achieving a classification accu-
racy up to 97%. Other ANN-only attempts have reported similar
results from ground-based (Burks et al. 2000a; Yang et al. 2000)
and, more recently, aerial platforms (Barrero et al. 2016). They
did not always outperform the state-of-the-art classification algo-
rithms such as support vectormachines (Wu andWen 2009), likely
leading to skepticism about their standalone utility. Despite the
promise, the ANN still had the fundamental flaw of previous
methods, in that the desired plant features such as color, shape,
and texture had to be manually selected by the user, resulting in
a lack of robustness in variable field conditions. Nevertheless,
ANNs formed the backbone of CNNs and were a critical compo-
nent in the progress toward weed recognition.

Convolutional Neural Networks

Weed recognition constraints associated with manual feature
extraction were largely addressed with CNNs, which combine
automatic selection and learning of image features with an
ANN-type architecture. The first of these architectures, LeNet,
was developed by LeCun et al. (1989) for identifying handwritten
postal codes in images. LeNet represented a fundamental shift
toward recognizing that the spatially connected nature of images
could be learned through CNNs (Kamilaris and Prenafeta-Boldú
2018). The feature extraction component of a CNN, known as a
kernel, moves over pixels in an image and automatically extracts
features. Specific kernels and weightings for each image dimension
(e.g., red, green, and blue) are learned in the training process. It
removes the requirement for weed experts to identify relevant
plant features during the feature extraction process, instead
shifting toward annotating weeds within images for training
datasets (Khan et al. 2020). The use of CNNs to understand spatial
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relationships within an image represented a substantial improve-
ment over previous methods (Dyrmann et al. 2016a; Hasan et al.
2021;Wang et al. 2019). Of particular importance was the ability to
stack multiple feature extraction layers to develop what are known
as “deep” architectures, which has been found to improve perfor-
mance (Grinblat et al. 2016).

Despite the benefits offered by automated feature extraction,
spatially correlated information, and deep architectures, issues
with training the algorithms resulted in a view during the early
2000s that CNNs were less effective thanmanual feature extraction
methods (Khan et al. 2020).Whereas the depth of CNNs improved
their ability to recognize weeds, the added complexity and size of
the algorithms brought additional issues. These issues stemmed
from a lack of large and diverse datasets for development, inad-
equate computational resources, and algorithmic issues during
training that prevented optimum performance. Nevertheless,
research persevered, and these flaws were largely resolved in the
mid-2000s (Bengio et al. 2006; Goodfellow et al. 2016). The reso-
lution of these problems revived interest in algorithms that were
once considered difficult to train.

The seminal paper in the field is largely considered to be the
work of Krizhevsky et al. (2012), who presented the first CNN
to substantially outperform non-CNN classification attempts on
the ImageNet challenge. This success established CNNs, and deep
learning more generally, as a suite of algorithms that could address
image complexity, a result that kick-started an era of rapid
computer vision and deep-learning advancement.

Though the realization of the potential for CNNs defined the
era, research into more advanced methods of weed recognition
had continued and delivered some success. Improved species iden-
tification (Golzarian and Frick 2011; McCarthy et al. 2010) and
better occlusion management (Hall et al. 2015; Haug et al.
2014), among other areas of research, had substantially increased
weed recognition capability (Figure 3). Yet, complexity introduced
by variation in environment and weed morphology continued to
impede field performance (Chang et al. 2014; Fernández-
Quintanilla et al. 2018). Concurrently, gains in computational
power supported field research efforts in machine vision systems,
while developments in deep learning algorithms set the framework
for future success at the end of the 2010s.

2012 to 2015: The Rise of Deep Learning for Weed
Recognition

Based on the performance of Krizhevsky’s work (Krizhevsky et al.
2012), the growing success of multilayered, deep networks
attracted interest. Researchers focused on understanding how to
create and train efficient network architectures, taking advantage
of the flexibility and descriptiveness that a deep, multilayered
network could provide. This field of research is known as “deep
learning,” which is a subfield of machine learning, and consists
of (1) multilayered models that use nonlinear data transforma-
tions, and (2) methods of supervised and unsupervised learning
of features that produce progressively abstract layers (Deng and

Crabgrass

Foxtail

Lambsquarters

Morningglory

Velvetleaf

Soil surface

Input layer 1st hidden layer
(12 nodes)

2nd hidden layer 
(6 nodes)

Output Layer

S2

S6

H1

H2

H4

H5

H6

H9

H10

S9

H11

Figure 4. A graphical representation of an artificial neural network (ANN) architecture tested in Burks et al. (2000b) with 11 input features, two hidden layers with 12 and 6 nodes,
respectively, and a 6-node output layer. The 11 inputs represent textural features extracted using a color co-occurrence matrix for hue (H) and saturation (S). The values following
the letter indicate the texture statistic used: (1) 2ndmoment, (2) mean intensity, (4) correlation, (5) product moment, (6) inverse difference, (9) difference entropy, (10) information
correlationmeasure 1, and (11) information correlationmeasure 2. Example weightings between nodes are represented by color (red: negative; blue: positive) with the intensity of
each color indicating the weighting of the connection. Each node (circle) performs a calculation on the incoming information, passing on the outcome to subsequent layers of the
network.
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Yu 2013). Within the deep learning domain for image analysis,
four key algorithm approaches provide increasing levels of infor-
mation extraction from an image. From least to most informative,
these are (1) whole-image classification (e.g., Olsen et al. 2019), (2)
bounding-box object detection (e.g., Gao et al. 2020), (3) pixel-wise
semantic segmentation (e.g., Lottes et al. 2020), and (4) instance
segmentation (e.g., Champ et al. 2020). Whole-image classification
(Figure 5A) is the simplest but least information-rich method that
produces a predicted-output label on an image. However, there is
no illustration of pixels corresponding to the predicted area.
Bounding-box detection (Figure 5B) methods output the pixel
coordinates of boxes where individual weeds have been detected,
providing more spatial detail. A disadvantage of bounding-box
methods is that they cannot trace the shape of the objects they
detect; they are limited to labeling rectangular regions. In contrast,
semantic segmentation (Figure 5C) is a pixel-wise approach to
image recognition, classifying individual pixels as belonging to a
certain class. Although it can trace the shape of weeds at a pixel
level, it is unable to separate each weed. Thus, it is unable to predict

how many weeds are within the scene. Instance segmentation
(Figure 5D) combines the advantages of bounding-box detection
and semantic segmentation. Like bounding-box detection,
instance segmentation can locate individual “instances” within
an image and trace the individual pixels that belong to the detected
object. The extra information captured by instance segmentation
comes at a cost. The tradeoff for greater detail in the output is
higher training efforts (more fine-detailed annotation) and
computational requirements due to the generally “deeper” nature
of the networks (Rakhmatulin et al. 2021). As a result, per-image
processing speeds typically decrease from image classification to
object detection to semantic segmentation to instance segmenta-
tion architectures as architecture size increases.

With a greater number of network layers, deep learning
increases the ability of an algorithm to represent complex image
features, while being robust to fluctuations in environmental
conditions (Bengio et al. 2013). The improvements in performance
and subsequent increase in popularity have primarily been driven
by (1) access to large quantities of labeled training data (in non-
plant datasets) (Russakovsky et al. 2015); (2) increased computa-
tional power and parallelism with graphics-processing units
(GPUs) (Oh and Jung 2004); and (3) more effective, open-source
algorithms. Yet, it was not until Lee et al. (2015) and Hall et al.
(2015) that the very first deep learning CNNswere trained for weed
leaf identification, achieving accuracies of 99.5% and 97.3%,
respectively. The conclusions were that deep learning and CNNs
consistently yielded superior performance compared to previously
used, non-CNN-based methods. These results are supported by
more recent comparative non-deep and deep learning classifica-
tion studies (Gogul and Kumar 2017; Šulc and Matas 2017).
The rapid increase in reported accuracy during this period, as illus-
trated in Figure 3, supports the conclusion that deep learning is the
path forward for in-crop weed recognition. At this stage, with
research focusing on validation studies for weed/plant identifica-
tion, it became increasingly clear that the transition to deep
learning resulted in increases in both accuracy and the ability of
a trained algorithm to perform outside of its training dataset in
complex and occluded environments (Dyrmann et al. 2016a;
Kamilaris and Prenafeta-Boldú 2018; Sapkota et al. 2022; Wang
et al. 2019).

During this period, improvements in open-source software and
hardware tools facilitated the development and implementation of
deep learning for machine vision. These new technologies helped
kick-start a wave of community-driven initiatives and gave rise to
the development of weed recognition algorithms for commercial
in-crop SSWC in large-scale cropping systems (Table 2). In the

Seman�c Segmenta�on

Turnipweed 

Bounding Box Object Detec�on

Instance Segmenta�on

Whole-Image 

Turnipweed 1
Turnipweed 2

Turnipweed 3

Turnipweed 4

Turnipweed
Turnipweed 2

Turnipweed 3

Turnipweed 4

Turnipweed 1

A B

C D

Figure 5. In general, there are four possible levels of weed detection and identifica-
tion based on the implementation of different algorithm architectures: (A) image clas-
sification (whole-image level); (B) object detection (localization within an image); (C)
semantic segmentation (pixel-wise classification); (D) instance segmentation (pixel
and object classification). The development and usage of each is dictated by the
desired level of accuracy and application precision, with each method providing a
theoretically greater level of information on weed location than the previous.

Table 2. Some of the recent commercial ventures into weed identification for large-scale cropping systems.a

Company Cropping scenario Location Website

AutoWeed Pasture (environmental weeds) Australia http://autoweed.com.au/
Agtecnic SenseSpray Fallow Australia https://www.agtecnic.com/sensespray
Bilberry In-crop/

Fallow
France/Australia https://www.bilberry.io/

Carbon Bee–SmartStriker In-crop France https://www.carbonbee-agtech.fr/
DeepAgro In-crop Argentina https://www.deepagro.co/
EXXACT Robotics In-crop France https://exxact-robotics.com/
GreenEye In-crop Israel/USA https://www.greeneye.ag/
John Deere/BlueRiver In-crop/fallow USA https://www.deere.com/en/
Xarvio/Bosch/BASF In-crop Canada/Europe https://www.smartfarming.ag/smart-spraying_en.html

aRecent and small projects may be missing due to rapid developments in this space.
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2000s, deep learning and CNNs were solely the domain of
computer scientists, as the platforms used to implement the algo-
rithms were inaccessible to most users. This changed in the 2010s
with the release of open-source deep learning tools such as Caffe
(Jia et al. 2014), Tensorflow (Abadi et al. 2016), and Pytorch
(Paszke et al. 2019), among many others. These tools reduced
the barrier to entry for deep learning evaluation and facilitated
its testing on weed-specific datasets. Concurrent with software
development, the gains in GPU performance and low-cost
computers helped bring deep learning formachine vision into agri-
culture and weed control.

By the end of these 4 yr, with the fast-paced advancements in
the performance of CNNs, research efforts becamemore focused on
the use of deep learning for weed recognition inmore realistic large-
scale in-crop scenarios. Whereas transformational developments
occurred during this period that established the framework for
use in large-scale crop production systems, the methods continued
to fall short in key areas such as computational speed (inference
speed), weed-specific data availability, ability to handle variable
conditions (generalizability), and algorithm performance that met
the requirements for in-field use in large-scale cropping programs.

2016 to 2022: Deep Learning for In-Crop Weed Recognition

Over time, deep learning has becomemore accessible to developers
with non–computer science backgrounds and those without
powerful computers, creating more widespread interest for
image-based weed recognition among weed researchers and the
weed control industry in general. The interest stems not only from
ease of use, but how issues concerning data, algorithm, and deploy-
ment are less of a barrier for applied research and in-field use. The
improved ability of deep learning to manage environmental and
plant variability increases the potential number of specialized
applications for precision weed control in a variety of production
settings. This increase in research interest is evident in the rapid
growth in publications meeting “weed recognition,” “weed identi-
fication,” or “weed detection” criteria on Scopus, with a research
output that has more than quadrupled over the last 5 yr (Figure 1).

As the field of deep learning for weed recognition has matured,
research is pivoting from feasibility assessments (Dyrmann et al.
2016a; Lee et al. 2015) toward understanding the interactions
between biology and deep learning (e.g., growth stages, species
similarity) (Teimouri et al. 2018). This includes optimizing archi-
tecture design (Hu et al. 2020; Xu et al. 2021) and/or selection
(Chen et al. 2021; Sharpe et al. 2019b); data management (Hu
et al. 2021a; Skovsen et al. 2019); and algorithm training
(Farkhani et al. 2021; Gao et al. 2020; Hu et al. 2021b; Hussain
et al. 2021). As the field matures, research will closely examine
the efficacy of different approaches to address the weed recognition
challenge of large-scale cropping systems. The specifics of current
deep learning architectures, training methods, and evaluation
characteristics for weed recognition are reviewed extensively by
Hasan et al. (2021) and Wang et al. (2019), with available datasets
and limitations reviewed in Lu and Young (2020). The following
sections seek to contextualize important aspects of deep learning
approaches within both the chronology of weed recognition devel-
opment and the relevant agronomy that guides SSWC use.

Cropping System Context

In developing weed recognition for crop production systems, it is
critical to identify the opportunities and constraints presented by

crop–weed interactions that can be exploited or guarded against in
algorithm development. For example, consistent and predictable
crop planting arrangements in raised-bed or highly tilled systems
(e.g., row spacing, plant spacing, uniformly tilled background) can
simplify deep learning decisions with assumptions of (1) no occlu-
sion (Zhuang et al. 2022), (2) incorporated crop sequence informa-
tion (Lottes et al. 2018), (3) included crop markers (Kennedy et al.
2020), and (4) clearly defined crop rows for unsupervised learning
(Pérez-Ortiz et al. 2015). Horticultural and wide-row cropping
systems that contain these four attributes formed much of the
initial success in developing accurate deep learning–based weed
recognition algorithms (Bah et al. 2019; Huang et al. 2020).
Large-scale systems with dense canopies, unpredictable occlusion,
plant spacing, and variable crop–weed morphological stages put
greater emphasis on the algorithm for reliable recognition.
Dyrmann et al. (2017) trained an object detection architecture
DetectNet to detect broadleaf and grass weeds in wheat
(Triticum aestivum L.) under heavy leaf occlusion with image data
collected from a high-speed platform (Laursen et al. 2017). The
algorithm detected 46.3% of weeds, encountering issues with
significant overlap. Su et al. (2021) minimized occlusion by using
a camera between rows of wheat to detect rigid ryegrass (Lolium
rigidum Gaudin) and an unspecified broad-leaved weed category.
The approach recalled up to 92% of weeds present in the area
between crop rows, benefiting from the constrained inter-row
environment. As research continues into large-scale, more
complex environments, the ability to exploit crop agronomy and
cultural practices is likely to be reduced, with reliance predomi-
nantly on advanced architectures and training methods (Picon
et al. 2022).

Weed Recognition Algorithm Output

The complexity and diversity of in-crop weed recognition datasets
and the consequent interaction with the strengths and weaknesses
of different algorithm architectures make difficult the prescription
of one-size-fits-all approaches. Selecting the level of specificity
provided by the algorithm output (Figure 5) affects the challenges
faced during the training and evaluation processes and is dictated
by the resulting weed control effort. Controlling invasive species in
rangelands may only require whole-image classification (Olsen
et al. 2019) if the control treatment is coarse (e.g., spot spraying),
whereas the application of laser weed control treatments requires
the knowledge of plant morphology to enable targeting of growing
points and other critical plant parts (Champ et al. 2020). Exploring
how different architectures affect performance, Sharpe et al.
(2019a) found that DetectNet detected all Carolina geranium
(Geranium carolinianum L.) growing among plasticulture straw-
berry plants, compared to just 21% for the image classification
architectures tested. In contrast, Zhuang et al. (2022) found that
image classification algorithms outperformed object detection
algorithms for broadleaf weed seedlings in wheat. The difference
lies in the data complexity, quantity, and quality; annotation
grouping (specific classes vs. grouped “broadleaf”), strategy and
quality; and algorithm selection and training process. A quantita-
tive comparison is difficult without access to both datasets and
contextual information, and there is limited research that dives
deeper into how weed appearance may interact with algorithm
architectures (e.g., are image classification algorithms better suited
for grass species detection over bounding-box object detection?).
Nonetheless, the object detection approach in the first instance
enabled leaf-based annotation, which was more successful than
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whole-plant detection at finding weed instances. The method is
likely to have a greater level of detection resilience, with weeds still
detected even if individual leaves were missed.

Within a general algorithm type (e.g., image classification),
there are many architectures that perform differently on the same
dataset (Figure 6). A common occurrence in research is to compare
the performance of many different architectures to determine
which option best meets the data and performance requirements
(e.g., Ma et al. 2019 and Chen et al. 2021). Increased algorithm size
through larger parameter numbers does not necessarily correlate
with algorithm performance, and often a screening of different
architectures may be required at the outset (Chen et al. 2021;
Jin et al. 2022).

Beyond architecture selection, understanding the specificity of
each weed class by grouping weeds in broader classes or as indi-
vidual species influences overall algorithm performance. In a plas-
ticulture setting, grasslike, broad-leaved, and sedge (Cyperus spp.)
weeds were detected between the rows of plasticulture with an
object detection network YOLO v3 (Sharpe et al. 2019b), whereby
the algorithm performed better when distinguishing the three
classes individually than when pooled as a broad group of weeds
for general detection. Similar performance gains have been found
when more specific classes were used for tea shoot detection (Li
et al. 2021); however, research to date has not identified appro-
priate annotation strategies for individual weed morphologies.
Considering the rapid advancements in the deep learning and asso-
ciated hardware fields, a prescriptive approach is unlikely to be
beneficial in the long term.

Data Collection, Quality, and Availability

Access to large datasets of annotated images was a critical factor in
the progress of deep learning applications. Datasets were harvested

from the Internet (e.g., ImageNet), comprising images of
“everyday” scenes. Unfortunately, agriculture and weeds were
not a substantial part of these collections. As a result, datasets
and image data quality remain a challenge for deep learning–based
weed recognition systems. Supervised learning is the predominant
method of deep learning used for weed recognition and requires
human input through the annotation of weeds present in each
image, a highly time-consuming process and a significant barrier
to widespread development (Lu and Young 2020; Wang et al.
2019). Annotating weeds in cropping-system images requires
expertise in plant species identification, which makes difficult
outsourcing to online, paid annotation platforms. Even among
trained plant consultants, an error rate of 12% was reported
(Dyrmann et al. 2016b). Assisted and corrective annotation
approaches, such as the open-source RootPainter (Smith et al.
2020), use targeted annotations on model mistakes or low-confi-
dence areas that improve the algorithm more efficiently.
Alternatively, the generation of synthetic images (to replace/
supplement in-field images) to reduce annotation requirements
through cut-and-paste approaches (Gao et al. 2020; Hu et al.
2021b), generative adversarial networks (Madsen et al. 2019), or
3D weed datasets (Di Cicco et al. 2017; Hu et al. 2022) can supple-
ment field-collected images in improving model performance,
without the need for prohibitively large manual annotation efforts.

The performance of deep learning algorithms has been shown
to increase with larger quantities of training data (Hestness et al.
2017; Sun et al. 2017; Zhuang et al. 2022). Efforts to mitigate this
bottleneck and provide greater access to image data have been
attempted in platforms such as Weed-AI (https://weed-ai.
sydney.edu.au/), with upload, download, and standardization of
agricultural metadata. Several public weed datasets exist
(Table 3); however, the quantity of images within each dataset
(30,000 or less) is many orders of magnitude lower than those

Figure 6. Comparison ofmodel parameter counts and performance on the CottonWeeds dataset. Model architectures performdifferently on different image datasets, andmodel
size is not a consistent indicator of likely performance. Chart created with data from Chen et al. (2021).
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Table 3. Publicly available and open-access weed image datasets in different crop production systems with URLs for access. Datasets listed as available in published research but without an accessible URL have been
excluded. The list expands on datasets provided in Lu and Young (2020) and Hu et al. (2021c). Where segmentation datasets are provided, the total class number does not include an assumed background or soil class.
Segmentation includes masked datasets, which can be converted into either semantic or instance segmentation if needed. The Weed-AI platform hosts numerous datasets and serves as an open-source, open-access
platform rather than a dataset itself. The Eden Library (Mylonas et al. 2022) is another weed image dataset platform; however, datasets are not open access, and as a result it has not been included in this list.

Dataset Granularity Image no. Class no. Species Dataset URL Reference

CarrotWeed Segmentation 39 2 Carrot (Daucus carota L. var. sativus
Hoffm)
unspecified weeds

https://github.com/lameski/rgbweeddetection Lameski et al. (2017)

Corn/Lettuce/Radish Classification 7,200 8 Maize
Canada thistle [Cirsium arvense (L.)

Scop.]
Fat hen
Bluegrass (Poa spp.)
Lettuce (Lactuca sativa L.)
Radish (Raphanus sativus L.)

https://github.com/zhangchuanyin/weed-datasets Jiang et al. (2020)

CottonWeeds Classification 5,187 15 Morningglory (Ipomoea spp.)
Carpetweed (Mollugo verticillate L.)
Palmer amaranth
Waterhemp [Amaranthus tuberculatus

(Moq.) J. D. Sauer]
Purslane (Portulaca spp.)
Nutsedge (Cyperus spp.)
False daisy (Eclipta prostrata L.)
Sicklepod [Senna obtusifolia (L.) Irwin &

Barneby]
Spotted spurge [Chamaesyce maculata

(L.) Small]
Ragweed (Ambrosia spp.)
Goosegrass [Eleusine indica (L.) Gaertn.]
Prickly sida (Sida spinosa L.)
Crabgrass (Digitaria spp.)
Swinecress (Lepidium spp.)
Spurred anoda [Anoda cristata (L.)

Schltdl.]

https://www.kaggle.com/yuzhenlu/cottonweedid15 Chen et al. (2021)

CWF-788 Segmentation 788 1 Cauliflower (Brassica oleracea L. var.
botrytis)

https://github.com/ZhangXG001/Real-Time-Crop-
Recognition

Li et al. (2019)

CWFID Segmentation 60 2 Carrot
Unspecified weeds

https://github.com/cwfid Haug and Ostermann
(2015)

GrassClover Segmentation 8,000 5 White clover (Trifolium repens L.)
Red clover (Trifolium pratense L.)
Shepherd’s purse [Capsella bursa-

pastoris (L.) Medik.]
Unspecified thistle
Common dandelion (Taraxacum

officinale F.H. Wigg.)

https://vision.eng.au.dk/grass-clover-dataset/ (Skovsen et al. 2019)

LincolnBeet Bounding box 4,402 2 Sugar beet (Beta vulgaris L. var.
altissima)
Unspecified weeds

https://github.com/LAR/lincolnbeet_dataset#lincolnbeet_
dataset

(Salazar-Gomez et al.
2021)

Plant Seedling Dataset Segmentation 5,539 12 Maize
Wheat
Sugar beet
Scentless mayweed (Matricaria

perforata Mérat)
Common chickweed [Stellaria media

(L.) Vill.]

https://vision.eng.au.dk/plant-seedlings-dataset Giselsson et al. (2017)
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Table 3. (Continued )

Shepherd’s purse
Cleavers (Galium aparine L.)
Charlock (Sinapis arvensis L.)
Fat hen
Small-flowered cranesbill (Geranium

pusillum L.)
Blackgrass (Alopecurus myosuroides

Huds.)
Loose silky-bent [Apera spica-venti (L.)

P. Beauv.]
Precision Sustainable Ag 2021
OpenCV Competition

Bounding box 727 7 Grass species (Poaceae spp.)
Horseweed [Conyza canadensis (L.)

Cronquist]
Cowpea [Vigna unguiculata (L.) Walp.]
Crimson clover (Trifolium incarnatum L.)
Lambsquarters
Velvetleaf
Sunflower (Helianthus annuus L.)

https://weed-ai.sydney.edu.au/datasets/27813558-2b3c-
496f-aab4-5e724a056213

PSA (2021)

RoboWeedMap Bounding box 1,147 2 Unspecified monocotyledonous
Unspecified dicotyledonous

https://weed-ai.sydney.edu.au/datasets/aa0cb351-9b5a-
400f-bb2e-ed02b2da3699

Teimuri et al. (2022)

Soybean/Grass/Broadleaf/Soil Segmentation 15,336a 3 Soybean
Grass weeds
Broadleaf weeds

https://data.mendeley.com/datasets/3fmjm7ncc6/2 dos Santos Ferreira
et al. (2017)

Sugar beets Segmentation 300 10 Sugar beet
Nine unspecified weed species

http://www.ipb.uni-bonn.de/data/sugarbeets2016 Chebrolu et al. (2017)

Weed-AI All Hosting platform https://weed-ai.sydney.edu.au
WeedMap Segmentation 10,196 2 Sugar beet https://github.com/viariasv/weedMap Sa et al. (2018b)
WeedNet Segmentation 155 2 Sugar beet

Unspecified weeds
https://github.com/inkyusa/weedNet Sa et al. (2018a)

aThe dataset includes 15,336 separate segments derived from 400 UAV-acquired images.
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in the largest generic datasets such as ImageNet (Deng et al. 2009),
Pascal VOC, and COCO, which have images of everyday objects
and scenes.

Entirely unsupervised learning techniques group data without
intervention, although they have drawbacks in their ability to
generalize into new data. There is limited research on their use
for weed recognition. Developing unsupervised approaches based
on CNN-based anomaly detection that exploit the crop growth
similarity and treat weeds as abnormalities may reduce the reliance
on large, annotated datasets altogether for late-season weed recog-
nition, where weed escapes stand out against homogeneous crop
backgrounds. Weakly supervised methods that rely on clear soil
backgrounds, no occlusion, and rows have been proposed
(Bah et al. 2019; Hu et al. 2021b) but are limited to these less
complex environments with defined agronomic contexts, as
discussed previously.

Besides image quantity, the influence of image quality
(e.g., resolution, camera angle, and lighting conditions) and plant
morphology (growth stage and size) on the performance of deep
learning algorithms are important, though not well understood
(Wang et al. 2019). Prior to the widespread use of deep learning,
it was acknowledged that higher image spatial resolution increased
the quantity of data on which algorithms can operate, likely
improving performance on smaller weeds at the cost of greater
hardware requirements (Brown and Noble 2005; Fernández-
Quintanilla et al. 2018). More recent investigations of resolution
on deep learning performance for weed recognition have found
either reduced or no change to performance (Zhuang et al.
2022) or increased performance (Hu et al. 2021a). In the latter,
Hu et al. (2021a) found that image resolution was the most benefi-
cial for object detection and segmentation tasks; however, consis-
tency between the training and testing (or inference) was critical.
Algorithms trained on specific resolutions or blur levels did not
perform well when tested on datasets with different resolutions
and higher blur. If consistency was not possible, it was recom-
mended that the full diversity of expected conditions be included
in the training dataset instead. In contrast, Zhuang et al. (2022)
reported that reductions in performance with increasing image size
(from 200× 200 pixels to 400× 400) for small architectures such as
AlexNet. The variability in findings is consistent with research in
the field of medical imaging, in which some tasks show higher
performance at low to medium resolutions rather than the highest
resolution images (Sabottke and Spieler 2020).

Unlike other research fields, variability in lighting conditions
and plant growth stage are complicating factors in weed recogni-
tion. Differential lighting across the day, year, and between weather
conditions changes the appearance of plants and may cause harsh
shadows, impeding the performance of algorithms (Hasan et al.
2021). Under natural lighting, Quan et al. (2019) found that sunny
conditions decreased maize–weed detection F1-score with a Faster
RCNN architecture from 98.46% in cloudy conditions to 94.60%.
Changes in plant appearance are also likely to affect model perfor-
mance, though research is sparse. In one study, growth stages were
also observed to affect precision, with the detection accuracy of
two- to five-leaf maize 0.53% higher on average than the six-to
seven-leaf seedlings. Besides developing more resilient weed recog-
nition algorithms capable of managing field-scale variability,
growth stage detection may also offer opportunities for more
targeted application of weed control treatments. Information on
the location of weeds at different growth stages would provide
additional management tools for farmers to understand weed
distribution and problem areas. Improving our understanding of

the influence of environmental conditions and plant morphology
on recognition performance will be important inmanaging in-field
deployment during periods of known increased false-positive and
false-negative rates. Further research in this space should identify
weaknesses in existing architectures and approaches.

Training and Evaluation

Different training and evaluation methods have been found to
influence how effective or appropriate an algorithm may be for
weed recognition in large-scale cropping and if the on-paper
perception of performance is the reality in the field. Whereas
Tensorflow and Pytorch are both widely used tools for deep
learning research, training, and deployment, weed recognition
models trained using the Pytorch framework were found to
marginally outperform models trained using Tensorflow, with
peak accuracy values of 97% and 96%, respectively (Hussain
et al. 2021). Understanding the influence of machine learning
development tools such as these requires more attention, given
the ubiquitous nature of both Tensorflow and Pytorch and the
impact if there are consistent and repeatable weaknesses. After
the training process, fairly evaluating the algorithm for perfor-
mance is critical. Weed recognition models are typically evaluated
using a range of different metrics, as discussed in detail in Hasan
et al. (2021); however, there is very limited research on how these
metrics translate into in-crop weed control under field conditions.
For example, the intersection-over-union (IoU) metric for
segmentation models provides an understanding of how many
pixels were predicted correctly. Yet, for a simple fallow spray oper-
ation, a weed only needs to be detected and its morphology not
precisely estimated, making a low IoU score not necessarily repre-
sentative of the in-field performance. The converse is also true,
where models that have high performance on paper may not trans-
late well into the dusty, variable in-field conditions.With respect to
spot-spraying, Salazar-Gomez et al. (2021) proposed the weed
coverage rate, which incorporates both model accuracy and
sprayer resolution into a performance model. It provides an indi-
cation of the percentage of weeds that would be controlled and
would be more relevant to field scenarios than typically reported
metrics such as precision, mean average precision, recall, and
accuracy.

2022 and Beyond: The Future of Weed Recognition

As the development trajectory of weed recognition continues,
trends suggest that research will focus on better identification of
fine-grained weed morphology for increasingly targeted weed
control, alongside architectures that include rather than avoid
large-scale complexity. In the initial phase, there has been substan-
tial interest in using weed recognition technologies for spot-
spraying herbicide application with traditional sprayers and nozzle
systems that have a spatially coarse weed control footprint.
Looking ahead, weed recognition is likely to provide greater oppor-
tunities for increasingly targeted weed control such as more precise
herbicide application, lasers, and electrical weeding, among others.
Incorporating temporal data with spatial weed data would provide
new insights into weed movement and the potential for density
predictions before emergence, and incorporating area-wide infor-
mation on weather, resistance status, and even crop yield could
improve management processes and weed control method selec-
tion by autonomous platforms. Developing tools for the early
detection and mitigation of herbicide resistance becomes feasible
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when a high degree of species-level detection can occur at low
densities when monitored remotely. The theme of SSWC develop-
ment moving from controlled areas to complex systems
approaches is likely to continue as more and varied data contrib-
utes to the decision to control weeds.

Weed Recognition for Nonchemical Weed Control

Highly targeted methods of nonchemical weed control, including
lasers and electrical weeding, have been proposed as viable
alternatives to herbicides when used on a site-specific basis in
low-density weed scenarios (Coleman et al. 2019). Despite their
potential, these systems require highly detailed information on
weed location and morphological details, including growing
points, leaf locations, size, and species for effective targeting,
energy estimation, and autonomous delivery. The detection of
precise targeting locations such as growing points and plant centers
has been shown in more controlled settings, by incorporating the
predictable sequence of crop plants within the row into a row
model (Lottes et al. 2018, 2020), or annotating plant nodes for
object detection models from multiple viewing points (Boogaard
et al. 2020). Simpler, barycenter methods have also been proposed,
but error between plant center and predicted center could result in
narrow laser beams missing the target entirely (Champ et al. 2020).
For reliable targeting of different species, there is a requirement to
detect and track features that represent a growing point instead of
estimating the centroid based on plant sequences and barycenter
methods. Laser damage models have been developed that adjust
laser power based on species and estimated biomass (Marx et al.
2012; Rakhmatulin and Andreasen 2020), which would require
the real-time prediction of these parameters in the field. Species
prediction with deep learning has already been shown in numerous
studies (Hasan et al. 2021); however, real-time biomass estimation,
growth stage determination, or plant organ detection from single
images are less well understood and require input from the field of
high-throughput plant phenotyping, where such methods are
required for fine-detailed analysis of plant traits (Arunachalam
and Andreasson 2021).

Weed Recognition for Weed Risk Profiling

As weed recognition algorithms advance, development has moved
from managing variability with controlled environments, to
adopting deep learning methods that can manage complexity
themselves. Now, trends in external industries suggest that the next
phase is for the development of deep learning–based architectures
that do not just avoid complexity but incorporate diverse data
sources using variability to their advantage. Research from
Google AI recently demonstrated the potential for an algorithm
capable of doing many thousands of tasks (Barham et al. 2022;
Dean 2021). The approach used an architecture that activated
different regions depending on the task at hand. Taxonomic
approaches to weed recognition have been proposed (Skovsen
et al. 2019) that would allow a model to select the most confident
level of specificity in its prediction for a weed. Future models that
have learned taxonomic relationships to detect different species of
plants could be deployed on imagery on regional scales for area-
wide understandings of weed prevalence. Such maps would
provide insights into the prevalence of certain species outside of
field margins, and thus the risk that this weed may be present in
particular fields given the incorporation of weather and agronomy
data. A more flexible approach to weed recognition may improve
the ability of these systems to operate in unseen areas and over

large regions incorporating not just image data, but previous appli-
cation maps, weather information, soil information, and crop
agronomy.

Besides area-widemanagement, species andmorphology-level
weed recognition would enable SSWC platforms to conduct risk
assessments of the likely impact of each weed on crop yield and
the likely herbicide resistance risk of each weed. Weed risk
profiles based on species, morphology, past detections in the
location, herbicide application history, and current crop
agronomy would improve the identification of an appropriate
control treatment for that weed. For example, Norsworthy
et al. (2012) proposed 12 best management practices focused
on reducing the risk of herbicide resistance that require addi-
tional information on weed biology, herbicide labels, and weed
morphology. The data could be provided by more generalized
weed recognition algorithms enabling more accurate, real-time
risk assessments of herbicide resistance evolution and hence
more appropriate weed control application. Toward rationalizing
the application of treatments, there may be instances where a
weed may not pose a risk and could be ignored or monitored
for possible future control (Gerhards et al. 2022). Given the
existing prevalence of yield maps and field histories, it is reason-
able to expect that architectures such as these could learn how
weed control decisions affected localized yield to inform future
weed control decisions. Incorporating complexity instead of
simply managing it for weed control decision making is likely
the future of SSWC and should change the way weeds are
approached over the next 50 yr of development.

The agricultural industry has a high level of anticipation
surrounding deep learning–based weed recognition and the
subsequent benefits for SSWC. As we have illustrated, the idea
of weed detection, identification, and recognition is not novel,
having been in development over the last 50 years; however,
advancements in deep learning algorithms and supporting soft-
ware and hardware have enabled widespread development for
horticultural and large-scale systems. Promisingly, deep learning
research has shown that the performance of CNNs has continued
to improve with the release of novel, open-source algorithm archi-
tectures and when trained with increasing quantities of data. It is
likely that in-crop performance will improve if weed datasets
increase in size, diversity, and accessibility and the industry
continues to adopt the most recent algorithms or develops weed
recognition–specific architectures. Just as ImageNet paved the
way for data availability and algorithm development in machine
learning, there is an opportunity in weed recognition to capture
research interest in complex image analysis problems through
the development of large-scale weed image databases. Yet much
about the biological interactions with machine learning remains
unknown. Explainable AI or machine learning is an emerging field
of research that aims to show how “black box” decisions are made
by trained models. An improved understanding on how complex
models function could help optimize their integration and use with
biological systems. Research on real-time growth stage and weed
morphology identification for highly targeted methods of weed
control is sparse. Furthermore, most existing methodologies used
for weed recognition were developed in nonagricultural industries,
where the architecture design was tuned for the task at hand and
adapted for agriculture. There are likely benefits from the develop-
ment of weed recognition–specific algorithm architectures from
large-scale image datasets that attempt to replicate the impact
ImageNet had for broader deep learning research; however, this
requires access to such public datasets.
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Given the unprecedented rate of progress in weed recognition
technologies over the last decade, the next 50 yr are likely to herald
step-changes in technology. Trends in current development
suggest that short-term research will focus on larger, multi-modal
systems. These systems would incorporate large amounts of
diverse farm data to better predict the required weed control
method, which may be a risk-based decision to ignore the weed.
The development of weed recognition with performance at the
requisite scale and reliability for agricultural systems is creating
a new potential for weed control at the individual plant level.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/wet.2022.84
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