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Character Amenability of Lipschitz
Algebras

Mahshid Dashti, Rasoul Nasr-Isfahani, and Sima Soltani Renani

Abstract. Let X be a locally compact metric space and let .A be any of the Lipschitz algebras Lip,, X,
lip, X, or lipg, X. In this paper, we show, as a consequence of rather more general results on Banach
algebras, that A is C-character amenable if and only if X is uniformly discrete.

1 Introduction

Johnson [6] introduced the important concept of amenability for Banach algebras in
1972. In fact, he defined the amenability of a Banach algebra A through vanishing
of the first cohomology group of A with coefficients in a dual Banach A-bimodule.
Many papers have considered the implications of amenability and some other related
concepts for various Banach algebras such as group algebras and Lipschitz algebras.

Ulger [13] showed that amenability of A implies that A(A), the spectrum of A,
is discrete with respect to the weak topology induced by A**. He also observed that
when A is commutative and an ideal in A**, the weak and weak* topologies agree
on A(A). In particular, if A is commutative and amenable, and an ideal in A**, then
A(A) is necessarily discrete with respect to the weak* topology.

On the other hand, for ¢ € A(A), Kaniuth, Lau, and Pym [7, 8] introduced
and studied the concept of ¢-amenability for Banach algebras. In fact, A is called
¢-amenable if there exists a bounded linear functional m on A* satisfying

m(¢) =1 and m(f-a)=m(f)¢(a)

foralla € A and f € A*, where f-a € A* is defined by (f - a)(b) = f(ab)
for all b € A. Any such m is called a ¢-mean. Moreover, for some C > 0, A is
called C-¢-amenable if there exists a ¢p-mean bounded by C; see Hu, Monfared, and
Traynor [5]. The notion of (right) character amenability was introduced and studied
by Monfared [9]. Character amenability of A is equivalent to A being ¢-amenable
forall ¢ € A(A) and A having a bounded right approximate identity. The concept
of C-character amenability is defined similarly; see [5] for details.

Our purpose here is to consider when the Lipschitz algebras, Lip, X, lip,X, and
lip? X on a locally compact metric space X, where 0 < «, are C-character amenable.
These interesting Banach algebras were first considered by Schebert [12]; see also
Bishop [2]. Gourdeau [3] discussed amenability of Lipschitz algebras by showing
that if a Banach algebra A is amenable, then A(A) is uniformly discrete with respect
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to norm topology induced by A*; see also Bade, Curtis, and Dales [1], Gourdeau [4],
and Zhang [14].

For this purpose, we discuss the relation between C-¢-amenability of A and its
spectrum. We show that C-¢-amenability of A for all ¢ € A(A) implies that A(A)
is uniformly discrete. We also show that A(A) is discrete with respect to the weak*
topology for a certain Banach algebra A. Finally, we show that C-character amenabil-
ity of Lip, X, lip, X, and lipgx is equivalent to uniform discreteness of the underlying
locally compact metric space X.

2 The Spectrum of ¢-amenable Banach Algebras

Let A be a Banach algebra. Kaniuth, Lau, and Pym [8, Remark 5.1] brought a nec-
essary condition for discreteness of A(A) with respect to the weak topology. Indeed,
they showed that A(A) is discrete with respect to the weak topology induced by A**
if A is ¢-amenable for all ¢ € A(A). In this section, we present necessary condi-
tions for uniform discreteness and discreteness of A(A) with respect to the weak*

topology.
Let us commence with the following result, which we need in the sequel and fol-

lows from an observation in [8, Remark 5.1].

Proposition 2.1 Let A be a Banach algebra and let ¢ € A(A). If there exists C > 0
such that A is C-¢-amenable, then

I = ¥llsp = C™1 forall & € AA)\ {¢}.

Proof Suppose that A is C-¢-amenable. Then there exists an element m € A** with
lm|| < C such that

m(¢) =1 and m(f-a)=m(f)¢(a)

foralla € Aand f € A*. Lety € A(A) \ {¢}. Then, by [8, Remark 5.1], we have
m(p) = 0 forallyp € A(A)\ {¢}. So,

1= |m(¢ =) < |m| ll¢ = ¢l <Cllé =9l

and, consequently, ||¢ — || > C~ ! forallyp € A(A) \ {¢}. [ |

The following result is an immediate consequence of Proposition 2.1. First, let us
recall that, for a metric space X with a metric d, a subset Y of X is called uniformly
discrete if there exists € > 0 such that d(x, y) > € for all distinct elements x, y € Y.

Corollary 2.2 Let A be a Banach algebra. If there exists C > 0 such that A is
C-¢-amenable for all p € A(A), then A(A) is a uniformly discrete subset of A*.

Recall that a Banach algebra A is ¢-contractible if for any Banach A-bimodule X
with right module action of A on X defined by

x-a=¢a)x(ae A, xeX),
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every continuous derivation D: A — X is inner. This notion was recently introduced
and studied by Hu, Monfared, and Traynor [5] as right ¢-contractibility. Later on,
the second and third authors [10] showed, as a consequence of rather more general
results, that ¢-contractibility of A is equivalent to existence of an element m € A
such that ¢(m) = 1 and am = ¢(a)m for all a € A.

Proposition 2.3 Let A be a Banach algebra. If A is ¢-contractible for all p € A(A),
then A(A) is discrete with respect to the weak™ topology induced by A.

Proof Let ¢ € A(A). Since A is ¢-contractible, there exists an element m € A such
that
¢(m)=1 and am = ¢(a)m

for all a € A. By [8, Remark 5.1] again, we have ¢(m) = 0 for allyp € A(A) \ {4}
Therefore, A(A) is o(A*, A)-discrete. [ |

In [13, Corollary 3.2], Ulger proved that if A is a commutative amenable Banach
algebra that is an ideal in its second dual, then A(A) is discrete with respect to the
weak* topology induced by A. Related to this result, we have the following conse-
quence of Proposition 2.3.

Corollary 2.4 Let A be a Banach algebra that is an ideal in its second dual. If A is
¢-amenable for all p € A(A), then A(A) is discrete with respect to the weak™ topology
induced by A.

Proof Fix ¢ € A(A). By assumption, A is ¢-amenable and is an ideal in A**.
Then A is ¢-contractible by [10, Corollary 3.6]. Hence, by the preceding proposition,
A(A) is discrete with respect to the weak™ topology. ]

Next we present some interesting examples to which our preceding results apply.

Example 2.5 (i) Let G be a locally compact amenable group. Then the group alge-
bra L'(G) and the generalized Fourier algebra A,(G), 1 < p < oo, are 1-character
amenable; see [5]. So, their spectra are discrete with respect to the weak topology and
are uniformly discrete.

(ii) The Fourier—Stieltjes algebra B(G) of a compact group G, is 1-character ame-
nable; see [5]. So, A(B(G)) is discrete with respect to the weak topology and is also
uniformly discrete.

We end this section with the following counter example that shows that the C-¢-
amenability (¢-contractibility) for all ¢ € A(A), although sufficient, is not neces-
sary for the space A(A) to be uniformly discrete (discrete with respect to the weak*
topology). In fact, it shows that the converse of Corollary 2.2, Proposition 2.3, and
Corollary 2.4 are not valid.

Example 2.6 Let A be the Banach algebra of all upper-triangular 3 x 3 matrices
over C. Then A(A) = {¢1, ¢2, ¢3}, where for k = 1,2, 3, ¢y is defined by

o ([aij]) = aws
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see [5, Example 6.5]. It is clear that A(A) is discrete with respect to the weak™ topol-
ogy induced by A; moreover, A(A) is uniformly discrete. Whereas, as proved in [5],
A is not ¢,-amenable, it is therefore not ¢,-contractible.

3 An Application to Lipschitz Algebras

Let X be a metric space with metric d, and take o with o > 0. Recall that Lip,X is
the space of bounded complex-valued functions f on X such that

If(x) — f(y)]
dx, )

It is known that Lip,X endowed with the norm | - ||, given by

1 lla = Palf) + 11 fllsups

and pointwise product is a Banach algebra called a Lipschitz algebra. Moreover, lip, X
is the subalgebra of functions f € Lip,X such that

|f(x) — f(»)]
d(x, y)~

If X is a locally compact metric space, then lip? X is the subalgebra of lip, X consisting
of those functions tending to zero at infinity.

Recently, character amenability of Lipschitz algebras have been investigated by Hu,
Monfared, and Traynor [5]. They showed, among other things, that when X is an
infinite compact metric space and 0 < a < 1, Lip, X is not character amenable.

In our last result, we characterize C-character amenability of Lipschitz algebras.

Pa(f):Sup{ x,y € X, x#y}<oo.

—0 as d(x,y)—0.

Theorem 3.1 Let X be a locally compact metric space and let A be any of the Lipschitz
algebras Lip, X, lip, X or lip2 X. Then the following statements are equivalent.

(i) A is C-character amenable, for some C > 0.
(ii) A is amenable.
(iii) X is uniformly discrete.

Proof (i)=-(iii). Since A is C-character amenable, for some C > 0, it follows from
Corollary 2.2 that A(A) is uniformly discrete; that is, there is € > 0 such that

o =l > €

for all distinct elements ¢, € A(A). In particular, ||[¢x — ¢,|| > € for all distinct
elements x, y € X, where ¢, denotes the character on A defined by ¢.(f) = f(x) for
all f € A. But

[6x = &yl = sup |¢u(f) = ¢y(/)l = sup [f(x) = f(y)] < dlx,p)"
<1 I flla<1
for all x, y € X, where d is the metric of X. This yields that d(x, y)* > e for all
distinct elements x, y € X whence X is uniformly discrete.
(iii)=-(ii). This follows from [3, Theorem 3].
(ii)=>(i). Since A is amenable, it has an approximate diagonal bounded by some
C > 0; see [11]. So, A is C-character amenable by [5, Theorem 2.9]. [ |

(P
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