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ABSTRACT 

The short-period terms are removed by averaging from special 
equations of motion for commensurability cases of the three-dimens
ional, elliptic, restricted three-body problem. Some examples of 
retrograde motion corresponding to the -1/1 commensurability, and 
an application to Hilda-type motion demonstrate the possibilities 
given by the method. 

1. LONG-PERIOD EFFECTS STUDIED BY AVERAGING OF THE 
EQUATIONS OF MOTION 

In 1963 the late celestial mechanician Imre G. Izsak invited me 
to work at the Smithsonian Astrophysical Observatory on long-period 
effects in commensurability cases according to the ideas of Poincare 
(1902). I did so on the basis of the circular, restricted three-body 
problem given by the sun, Jupiter, and a small body. However, I 
replaced Poincare's way of removing the short-period terms from the 
basic equations of the problem, by an averaging procedure (Schubart, 
1964, 1966). The work done by Message (1966) is closer to the way 
proposed by Poincare, but I had the advantage of including the 
treatment of very eccentric orbits in my work. 

Later on D. Brouwer asked me to work on the 3/2 commensurability 
case that is represented by an asteroid of Hilda-type and Jupiter. 
For this I generalized my method of averaging to the elliptic, 
restricted three-body problem, but to the planar case only. The in
clination of real orbits.had to be neglected (Schubart, 1968). The 
inclination of (153) Hilda, for instance, is not very large, but when 
Giffen (1973) applied the same method of averaging to the 2/1 case, he 
had to neglect a much larger inclination to obtain a model for the 
motion of (1362) Griqua. As a consequence, the model gave only a rough 
approximation to real motion. Recently, I have dropped the restriction 
to the planar case, and I present some first results obtained in this 
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way in the present paper. 

In the mean time, Scholl and Froeschle (1974, 1975) used the 
method of averaging for the planar case in a treatment of the 3/1, 5/2, 
7/3, and 2/1 resonances with respect to Jupiter. They tested a col
lision hypothesis for the formation of the Kirkwood gaps in the aste
roid belt at these resonances. As an application of their results, they 
will present a paper "The Kirkwood Gaps as an Asteroidal Source for 
Meteorites" at IAU Colloquium No. 39 at Lyon. In a repent paper, 
Froeschle and Scholl (1976) confirmed former results obtained by Scholl 
and Giffen (1974) with respect to a conjecture by Giffen (1973), which 
is evidently not true. 

R. Bien, working on a dissertation at the Rechen-Institut, is 
treating the 1/1 commensurability of the planar, elliptic restricted 
problem by the method of averaging. He made a search in a wide range of 
phase space for orbits with interesting long-period effects in the 
orbital elements, especially in e and ui. Orbits of Trojan-type appear 
in his material, but also other orbits that represent a kind of very 
remote, retrograde satellites of Jupiter. 

2. THE METHOD OF AVERAGING FOR THE THREE-DIMENSIONAL, 
ELLIPTIC, RESTRICTED THREE-BODY PROBLEM 

In generalizing the computer program for the planar, elliptic 
problem (Schubart, 1968) to the three-dimensional case, I retained the 
basic definitions, units and constants. The reader is referred to the 
former paper (Schubart, 1968) for details, and especially, for the 
definition of the averaging process applied to the differential 
equations of the problem, and for the way of numerical integration. An 
IBM/360-44 computer was available for the recent computations. 

As before, a commensurability case is described by the approximate 
ratio of the mean motions of an asteroid and Jupiter, given by (p+q)/p, 
where p and q are relative prime integers, and p > 0. The six variables 
to be determined from averaged differential equations by integration, 

a 1 / 2 ( l - e 2 ) 1 / 2 
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Here, 1 and lj are the mean longitudes of the asteroid and Jupiter, a, 
e, u = a) +JV , i, and Jl are the usual designations of the osculating 
elements of the asteroid, but the orbital plane of Jupiter is the plane 
of reference, and the longitude of the node,ift/ , is counted in this plane 
from the fixed direction of the perihelion of Jupiter. This direction is 
optional, if the eccentricity of Jupiter, e-r, is neglected. eJf a, = 1, 
and Wj = 0° describe the orbit of Jupiter. 

I omit a listing of the six differential equations that follow 
from the corresponding equations of the orbital elements, but I want to 
remark, that comparatively simple equations result for the derivatives 
of ij>3 and ^ with respect to t, compare my former treatment of Hill's 
Problem (Schubart, 1963) . 

The set of the six variables is not suitable for cases of retrograde 
motion, if such cases are described by i > 90°, and if i is close to 
180 . However, if a decreasing mean longitude, or a negative mean motion, 
n < 0, is introduced, such a case can be described by i < 90°, and 
i = 0° is not an exceptional case then. If the sign of (p+q) is changed 
together with the sign of n, y will vary slowly as before. The new 
computer program can integrate many retrograde cases in two ways, either 
by i > 90°, or by a negative mean motion. In the latter case, a negative 
starting value of G causes a1'2 < 0 and thus n = a ' < 0. 

Following Poincare (1902), I had used quantities a and T in my 
studies of the circular problem (Schubart, 1964). They are given by : 

a = 1 - 2> - (1-lj) " (p+q)/q = - CJ - u • p/q 

x = 1 -.51 - (l-l)«(p+q)/q = -SI - p • p/q 
J 

The new program can list both qa and qx, as well as » = a - id = x - a 
and other quantities, as functions of t. Libration of a appears in many 
cases of commensurability, and these librations are an important way for 
many asteroids and some other objects to avoid close approaches to a 
disturbing body (see, for instance, Schubart, 1968). 

3. SOME SPECIAL CASES OF THE CIRCULAR RESTRICTED PROBLEM 

It was one of my first questions to the new program to find out, 
whether T can be equally important for an object to avoid close 
approaches to Jupiter. It is sufficient to consider the circular 
restricted problem for a first answer to this question. I knew from 
former studies of nonplanar motion corresponding to the 3/1 case, that 
libration of x is possible. If q is even, as in this case, ij>i = <J*2 = ° 
is a particular solution of the differential equations. This allows a 
comparatively simple study of the long-range effects in quantities 
corresponding to i and x (Schubart, 1964) . However, the vanishing 
eccentricity is sufficient to avoid close approaches, if a is small 
enough. 
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Therefore, I increased a to 1, the value corresponding to Jupiter. 
Libration of y is important for direct motion in the range of the 1/1 
commensurability, but I changed to retrograde motion in using p = 1, 
q = - 2, and a negative mean motion. The first orbit in Table I has a 
starting value T = - 90°, which will give the asteroid a distance of 
90° from both nodes at a moment of conjunction with Jupiter, 1 = 1 , . The 
integration of the orbit shows, that T librates around the starting 
value with an amplitude of about 5°, and that the asteroid will not come 
closer to Jupiter than 2.69 a.u., on the basis of the averaged circular 
problem. In this case the libration of x prevents a close approach. I 
did not study the effects caused by a variation of the starting value 
of e in this case, but I varied the one of a. In this way I found 
solution No. 2 (see Table I) with values of a, e = 0, i, and T = - 90 , 
which are constant as functions of t. 

The next two orbits, No. 3 and 4, belong to the retrograde 1/1 
case as well, but the eccentricity is different from zero instead of 
the inclination. Libration of a around 0° causes the small body to be 
close to perihelion or aphelion at a conjunction with Jupiter, which 
prevents close approaches again, a librates with an amplitude of 8?4 in 
case of No. 3, while it stays at 0° in the next case. There are probably 
no real objects on such retrograde orbits, but the orbits demonstrate 
the possibilities given by the program. 

4. APPLICATION TO HILDA-TYPE MOTION 

The remaining orbits in Table I belong to the 3/2 commensurability, 
especially No. 5 represents a model for the asteroid (153) Hilda. This 
model is an extension of my former model for Hilda (Schubart, 1968) . 
The model is based on numerical results by Akiyama (1962) . The angular 
elements were transformed to the orbit of Jupiter, which is the plane 
of reference. Orbit No. 5 was integrated forward and backward, so that 
a total period of about 12 OOO yr is covered. This corresponds to more 
than 180 of retrograde motion of 61 , as it is demonstrated at the 
bottom of Fig. 1. The moment t = 0 corresponds to the year 1963. Fig. 1 
demonstrates the resulting variations of a with increasing time in 
analogy to the corresponding figure for the former model. Since the 
interval in t is much larger now, I did not draw a curve, but I plotted 
the successive maxima and minima, caused by the period of libration. 
The crosses correspond to the maxima. The period of libration equals 
275 yr now. The period of perihelion that equals 2650 yr, causes strong 
variations in the subsequent maxima, or minima, as it is known from my 
former model. The backward revolution of the node which follows a 
period of about 22 300 yr, causes only small effects in the variations 
of a, as it appears from Fig. 1. The range of these variations is only 
slightly larger than in case of the former model. 

The period of revolution of co, on the average, equals about 3000 yr. 
This and other periods cause variations in i and in the speed of motion 
of SI . However, i remains close to 9?0. The deviations are less than 0.4. 
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The node deviates from linear motion by not more than 2.5 during the 
interval considered. As a whole, all the results obtained for this 
orbit show that a planar model is meaningful in a case like Hilda, but 
that additional effects are revealed by the three-dimensional model. 

I have not yet considered real asteroids with a larger inclination, 
but I studied some theoretical examples with i = 30° that belong to the 
3/2 case of the circular restricted problem. Orbit No. 6, started at 
a) = 90°, shows a libration of a around 0°. The period of libration 
gives an effect in a, but the period of the retrograde revolution of u 
causes a much stronger effect. In case of orbit No. 7 there is almost 
no influence of the period of libration, but the revolution of u causes 
an amplitude of 15° in a. The variations of e and u can be demonstrated 
in rectangular coordinates E, = e cos2co and n = e sin2co in this case : 
The point £, n moves with a nearly constant velocity along a nearly 
circular curve, that has its center on the positive £-axis. 

Finally, I selected orbit No. 8, because I suspected a libration 
of a) in this case, according to the information given in a paper by 
Jefferys and Standish (1972). A limited integration indicates indeed, 
that both a and u librate around 0° and 90°, respectively, with 
different main periods. The amplitudes are small in both cases. Since 
T = CT-HO, T is in libration as well. According to this twofold libration, 
an asteroid on this orbit will not come much closer to Jupiter than 
3.4 a.u.. 
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