J. Austral. Math. Soc. (Series A) 53 (1992), 55-63

ON PRIME ONE-SIDED IDEALS, BI-IDEALS AND QUASI-IDEALS OF A GAMMA RING

G. L. BOOTH and N. J. GROENEWALD

(Received 8 October 1990; revised 15 February 1991)

Communicated by P. Schultz

Abstract

Let M be a Γ -ring with right operator ring R. We define one-sided ideals of M and show that there is a one-to-one correspondence between the prime left ideals of M and R and hence that the prime radical of M is the intersection of its prime left ideals. It is shown that if M has left and right unities, then M is left Noetherian if and only if every prime left ideal of M is finitely generated, thus extending a result of Michler for rings to Γ -rings.

Bi-ideals and quasi-ideals of M are defined, and their relationships with corresponding structures in R are established. Analogies of various results for rings are obtained for Γ -rings. In particular we show that M is regular if and only if every bi-ideal of M is semi-prime.

1991 Mathematics subject classification (Amer. Math. Soc.): 16 A 78.

1. Introduction

All definitions and fundamental concepts concerning Γ -rings and their operator rings can be found in [5]. Throughout this paper M will denote an arbitrary Γ -ring (which does not necessarily possess unities, except for part of Section 2), and L and R will denote its left and right operator rings, respectively. We note that an ideal, one-sided ideal or other substructure I of M is called *finitely generated* if there exists a finite subset X of I such that I is the intersection of all such substructures of M which contain X. We call M left (right) noetherian if M satisfies the ascending chain condition for left (right) ideals. The following characterization of noetherian Γ -rings is proved as for rings.

^{© 1992} Australian Mathematical Society 0263-6115/92 \$A2.00 + 0.00

PROPOSITION 1.1. A Γ -ring M is left (right) noetherian if and only if every left (right) ideal of M is finitely generated.

Let A be a ring. If B is an additive subgroup of A such that $BAB \subseteq B$, then B is called a *bi-ideal* of A. If C is an additive subgroup of A such that $(CA) \cap (AC) \subseteq C$, then C is called a *quasi-ideal* of A. A bi-ideal, quasiideal or one-sided ideal B of A is called *prime* (*semiprime*) if $a, b \in A$, $aAb \subseteq B$ implies $a \in B$ or $b \in B$ ($a \in A$, $aAa \subseteq B$ implies $a \in B$). For further details concerning bi-ideals and quasi-ideals of a ring, we refer to Steinfeld [7] and Van der Walt [8].

2. Prime one-sided ideals

A one-sided ideal P of M is called *prime* if $x, y \in M$, $x\Gamma M\Gamma y \subseteq P$ implies $x \in P$ or $y \in P$. As for rings, we have

PROPOSITION 2.1. Let P be a left ideal of M. Then the following are equivalent:

(a) P is prime;

(b) I, J left ideals of M, $I\Gamma J \subseteq P$ imply $I \subseteq P$ or $J \subseteq P$.

PROOF. (a) \Rightarrow (b) Let *I*, *J* be left ideals of *M* such that *I*, *J* \nsubseteq *P*. Let $x \in I$, $y \in J$ with $x, y \notin P$. Then there exist $m \in M$, $\gamma, \mu \in \Gamma$ such that $x\gamma m \mu y \notin P$. Since $x\gamma m \mu y \in I\Gamma J$, $I\Gamma J \nsubseteq P$.

(b) \Rightarrow (a) Let $x, y \in M$ be such that $x \Gamma M \Gamma y \subseteq P$. Then $(M \Gamma x) \Gamma (M \Gamma y)$ $\subseteq P$. Since $M \Gamma x$ and $M \Gamma y$ are left ideals of M, we have that either $M \Gamma x \subseteq P$ or $M \Gamma y \subseteq P$. Suppose $M \Gamma x \subseteq P$. Let I be the left ideal of M generated by x. Then $I \Gamma I \subseteq M \Gamma x \subseteq P$, whence $I \subseteq P$. Hence, $x \in P$. Similarly, $M \Gamma y \subseteq P$ implies $y \in P$.

We now establish the relationships between prime one-sided ideals of M and R.

PROPOSITION 2.2. Let P be a prime left (right) ideal of R. Then P^* is a prime left (right) ideal of M.

PROOF. Since P is a left (right) ideal of R, P^{*} is a left (right) ideal of M. Let $x, y \in M \setminus P^*$. Then there exist $\gamma, \mu \in \Gamma$ such that $[\gamma, x], [\mu, y] \notin P$. Since P is prime there exists $r \in R$ such that $[\gamma, x]r[\mu, y] \notin P$. It follows that there exist $\nu \in \Gamma$, $m \in M$ such that $[\gamma, x][\nu, m][\mu, y] \notin P$, that is, $[\gamma, x\nu m\mu y] \notin P$, whence $x\nu m\mu y \notin P^*$. Hence, P is prime in M. **PROPOSITION 2.3.** Let Q be a prime left (right) ideal of M. Then $Q^{*'}$ is a prime left (right) ideal of R.

PROOF. Since Q is a left (right) ideal of M, $Q^{*'}$ is a left (right) ideal of R. Suppose $a, b \in R \setminus Q^{*'}$. Then there exist $x, y \in M$ such that $xa, yb \notin Q$. Since Q is a prime one-sided ideal of M, there exist $m \in M$, $\gamma, \mu \in \Gamma$ such that $(xa)\gamma m\mu(yb) \notin Q$, i.e. $x(a[\gamma, m][\mu, y]b) \notin Q$. It follows that $a[\gamma, m][\mu, y]b \notin Q^{*'}$, whence $aRb \notin Q^{*'}$. Hence $Q^{*'}$ is prime in R.

THEOREM 2.4. The mapping $P \rightarrow P^*$ defines a one-to-one correspondence between the sets of prime left ideals of R and M.

PROOF. Let P be a prime left left ideal of R. By Proposition 2.2, P^* is a prime left ideal of M. It is easily verified that $(P^*)^{*'} = \{r \in R: Rr \subseteq P\}$. Since P is a left ideal of R, $P \subseteq (P^*)^{*'}$. If $a \in (P^*)^{*'}$, $Ra \subseteq P$, and hence $aRa \subseteq P$. Since P is prime $a \in P$, and so $P = (P^*)^{*'}$.

Suppose now that Q is a prime left ideal of M. By Proposition 2.3, $Q^{*'}$ is a prime left ideal of R. Moreover, $(Q^{*'})^* = \{x \in M: M\Gamma x \subseteq Q\}$. Since Q is a left ideal of M, $Q \subseteq (Q^{*'})^*$. If $x \in (Q^{*'})^*$, then $M\Gamma x \subseteq Q$, whence $x\Gamma M\Gamma x \subseteq Q$. Since Q is prime, $x \in Q$, and so $(Q^{*'})^* = Q$. This completes the proof.

COROLLARY 2.5. Let $\mathscr{P}(M)$ be the prime radical of M. Then $\mathscr{P}(M)$ is the intersection of the prime left ideals of M.

PROOF. Let $\mathscr{P}(R)$ denote the prime radical of R. Then $\mathscr{P}(R)$ is the intersection of the prime left ideals of R [1, Proposition 2.1]. Moreover, $\mathscr{P}(R)^* = \mathscr{P}(M)$ [3, Theorem 4.1]. Hence

$$\mathcal{P}(M) = \left(\bigcap \{I: I \text{ is a prime left ideal of } R\} \right)^*$$
$$= \bigcap \{I: I \text{ is a prime left ideal of } R\}^*$$
$$= \bigcap \{J: J \text{ is a prime left ideal of } M\} \qquad (by Theorem 2.4).$$

Michler [6, Theorem 6] showed that if A is a ring with unity, then A is left noetherian if and only every prime left ideal of A is finitely generated. We prove an analogue of this result for Γ -rings.

We recall that a left (right) unity for M is an element $\sum_{i=1}^{m} [d_i \delta_i]$ of $L(\sum_{i=1}^{n} [\varepsilon_i, \varepsilon_i])$ of R) such that, for all $x \in M$

$$\sum_{i=1}^m d_i \delta_i x = x \left(\sum_{j=1}^n x \varepsilon_j e_j = x \right).$$

57

Note that in this case $\sum_{i=1}^{m} [d_i, \delta_i]$ $(\sum_{j=1}^{n} [\varepsilon_j, \varepsilon_j])$ is the (two-sided) unity for L(R). If M has a left unity, and I is a left ideal of M which is finitely generated by the subset $\{a_1, \ldots, a_n\}$ of I, it may be shown that

$$I = M\Gamma a_1 + \dots + M\Gamma a_n$$

For the remainder of this section, M will be assumed to have left and right unities $d = \sum_{i=1}^{m} [d_i, \delta_i]$ and $e = \sum_{j=1}^{n} [\varepsilon_j, \varepsilon_j]$, respectively.

LEMMA 2.6. If A is a left ideal of M, then $A^{*'} = \{\sum_{i=1}^{n} [\varepsilon_i, a_i] : a_i \in A\}$.

PROOF. If $a_1, \ldots, a_n \in A$, then for all $x \in M$, $x \varepsilon_j a_j \in A$, whence $\sum_{j=1}^n [\varepsilon_j, a_j] \in A^{*'}$. Conversely, if $a \in A^{*'}$, then $a = (\sum_{j=1}^n [\varepsilon_j, e_j])a = \sum_{j=1}^n [\varepsilon_j, e_ja]$. Since $a \in A^{*'}$, $e_j a \in A$ for $1 \le j \le n$ and the result follows.

LEMMA 2.7. Let A be a finitely generated left ideal of M. Then $A^{*'}$ is a finitely generated left ideal of R.

PROOF. Suppose that A is finitely generated by the set $\{a_1, \ldots, a_r\} \subseteq A$. Let $a \in A^{*'}$. By Lemma 2.6, there exists $x_1, \ldots, x_n \in A$ such that $a = \sum_{j=1}^{n} [\varepsilon_j, x_j]$. Now $A = M\Gamma a_1 + \cdots + M\Gamma a_r$ whence there exist $l_{jk} \in [M, \Gamma]$ $(1 \le j \le n, 1 \le k \le r)$ such that

$$x_j = \sum_{k=1}^r l_{jk} a_k.$$

Hence

$$a = \sum_{j=1}^{n} [\varepsilon_{j}, x_{j}] = \sum_{j=1}^{n} [\varepsilon_{j}, \sum_{k=1}^{r} l_{jk} a_{k}]$$

= $\sum_{j=1}^{n} \sum_{k=1}^{r} [\varepsilon_{j}, l_{jk} a_{k}] = \sum_{j=1}^{n} \sum_{k=1}^{r} \left[\varepsilon_{j}, l_{jk} \left(\sum_{i=1}^{m} [d_{i}, \delta_{i}] \right) a_{k} \right]$
= $\sum_{j=1}^{n} \sum_{k=1}^{r} \sum_{i=1}^{m} [\varepsilon_{j}, l_{jk} d_{i}] [\delta_{i}, a_{k}]$
= $\sum_{k=1}^{r} \sum_{i=1}^{m} \left(\sum_{j=1}^{m} [\varepsilon_{j}, l_{jk} d_{i}] \right) [\delta_{i}, a_{k}].$

Hence, $A^{*'}$ is finitely generated by the set $\{[\delta_k a_k]: 1 \le i \le m, 1 \le k \le r\}$.

LEMMA 2.8. Let A be a finitely generated left ideal of R. Then A^* is a finitely generated left ideal of M.

PROOF. Suppose A is generated by the set $\{a_1, \ldots, a_k\} \subseteq A$. Let $a \in A^*$. Then $a = \sum_{i=1}^m d_i \delta_i a$, and $[\delta_i, a] \in A$ for $1 \le i \le m$. Hence there exists $x_{ik} \in R$, $1 \le i \le m$, $1 \le k \le r$ such that

$$[\delta_i, a] = \sum_{k=1}^r x_{ik} a_k = \sum_{k=1}^r \left(x_{ik} \sum_{j=1}^n [\varepsilon_j, e_j] \right) a_k.$$

Hence

$$a = \sum_{i=1}^{m} d_i \delta_i a = \left[\sum_{i=1}^{m} \sum_{k=1}^{r} \sum_{j=1}^{n} (d_i x_{ik}) \varepsilon_j(e_j a_k)\right]$$
$$= \sum_{k=1}^{r} \sum_{j=1}^{n} \left(\sum_{i=1}^{m} (d_i x_{ik})\right) \varepsilon_j(e_j a_k).$$

So A^* is finitely generated by the set $\{e_j a_k : 1 \le j \le n, 1 \le k \le r\}$.

THEOREM 2.9. A Γ -ring M is left noetherian if and only if every prime left ideal of M is finitely generated.

PROOF. Now M is left noetherian if and only if R is left noetherian [4, Corollary 1]. Hence, in view of Michler's result, we need only show that every prime left ideal of M is finitely generated if and only if every prime left ideal of R is finitely generated.

Suppose every prime left ideal of R is finitely generated. Let P be a prime left ideal of M. Then $P^{*'}$ is a prime left ideal of R by Proposition 2.3, and is therefore finitely generated. By Lemma 2.8, $(P^{*'})^*$ is finitely generated. By [4, Theorem 1], $P = (P^{*'})^*$, and so P is finitely generated. Conversely, suppose that every prime left ideal of M is finitely generated. Let Q be a prime left ideal of R. By Proposition 2.2, Q^* is a prime left of M, and is thus finitely generated. By Lemma 2.7, $(Q^*)^{*'}$ is finitely generated in R. Again by [4, Theorem 1], $Q = (Q^*)^{*'}$, and so Q is finitely generated. This completes the proof.

Analogues of all the results in this section may of course be obtained by substituting L for R and "right ideal" for "left ideal" wherever these occur.

3. Bi-ideals and quasi-ideals

An additive subgroup A of M such that $A\Gamma M\Gamma A \subset A$ is called a *bi-ideal* of M. If B is an additive subgroup of M such that $(B\Gamma M) \cap (M\Gamma B) \subseteq B$, then B is called a *quasi-ideal* of M. It is easily seen that one-sided ideal

 \Rightarrow quasi-ideal \Rightarrow bi-ideal. We now establish some relationships between the bi-ideals and quasi-ideals of M and of R.

PROPOSITION 3.1. If A is a bi-ideal of R, then A^* is a bi-ideal of M. If M has a right unity and B is a bi-ideal of M, then $B^{*'}$ is a bi-ideal of R.

PROOF. Since A is an additive subgroup of R, it is easily verified that A^* is an additive subgroup of M. Let $a, b \in A^*$, $\gamma, \mu, \nu \in \Gamma$, $m \in M$. Then $[\gamma, a], [\nu, b] \in A$. Since A is a bi-ideal of R, $[\gamma, a][\mu, m][\nu, b] \in A$, i.e. $[\gamma, a\mu m\nu b] \in A$. Hence $a\mu m\nu b \in A^*$, whence $A^*\Gamma M\Gamma A^* \subseteq A^*$. Hence A^* is a bi-ideal of M.

Suppose that M has a right unity $\sum_{i=1}^{n} [\varepsilon_i, e_i]$, and that B is a bi-ideal of M. Let $a, b \in B^{*'}$, $r \in R$. Let $r = \sum_{j=1}^{r} [\gamma_j y_j]$ and let $x \in M$. Then $xa \in B$ and $e_ib \in B$ for $1 \le i \le n$. Hence

$$(xa)\gamma_i y_i \varepsilon_i(e_i b) \in B$$
, $1 \le i \le n$, $1 \le j \le r$.

Hence

$$\sum_{i=1}^n \sum_{j=1}^r (xa) \gamma_j y_j \varepsilon_i(e_i b) \in B,$$

that is,

$$xa\left(\sum_{j=1}^{r} [\gamma_j, y_j]\right)\left(\sum [\varepsilon_i, e_i]\right)b \in B,$$

that is, $x(arb) \in B$, whence $arb \in B^{*'}$, and so $A^{*'}RB^{*'} \subseteq B^{*'}$. Hence $B^{*'}$ is a bi-ideal of R.

LEMMA 3.2. (a) Let $A, B \subseteq R$. Then $A^* \Gamma B^* \subseteq (AB)^*$. (b) Let $A \subseteq M$. Then $A^{*'} R \subseteq (A \Gamma M)^{*'}$ and $RA^{*'} \subseteq (M \Gamma A)^{*'}$.

Proof.

(a) Let $a \in A^*$, $b \in B^*$, $\gamma, \mu \in \Gamma$. Then $[\gamma, a\mu b] = [\gamma, a][\mu, b] \in AB$. Hence $a\mu b \in (AB)^*$ and so $A^*\Gamma B^* \subseteq (AB)^*$.

(b) Let $a \in A^{*'}$, $r = \sum_i [\gamma_i, x_i] \in R$, $x \in M$. Then $xa \in A$, whence $x(ar) = (xa) \sum_i [\gamma_i x_i] = \sum_i (xa) \gamma_i x_i \in A\Gamma M$. Hence $ar \in (A\Gamma M)^{*'}$ and so $A^{*'}R \subseteq (A\Gamma M)^{*'}$. Similarly, $RA^{*'} \subseteq (M\Gamma A)^{*'}$.

PROPOSITION 3.3. (a) If A is a quasi-ideal of R, then A^* is a quasi-ideal of M. (b) If B is a quasi-ideal of M, then $B^{*'}$ is a quasi-ideal of R.

Proof.

(a) Clearly, A^* is an additive subgroup of M. Moreover, $A^*\Gamma M = A^*\Gamma R^* \subseteq (AR)^*$ by Lemma 3.2(a). Similarly, $M\Gamma A^* \subseteq (RA)^*$, whence $(A^*\Gamma M) \cap (M\Gamma A^*) \subseteq (AR)^* \cap (RA)^* = ((AR) \cap (RA))^* \subseteq A^*$, since A is a quasi-ideal of R. Hence A^* is a quasi-ideal of M.

(b) $B^{*'}$ is an additive subgroup of R. By Lemma 3.2(b), we have that $B^{*'}R \subseteq (B\Gamma M)^{*'}$ and that $RB^{*'} \subseteq (M\Gamma B)^{*'}$. Hence

$$(B^{*'}R) \cap (RB^{*'}) \subseteq (B\Gamma M)^{*'} \cap (M\Gamma B)^{*'} = ((M\Gamma B) \cap (B\Gamma M))^{*'} \subseteq B^{*'},$$

since B is a quasi-ideal of M. Hence $B^{*'}$ is a quasi-ideal of R.

A bi-ideal or quasi-ideal P of M is called *prime* if $x, y \in M$, $x\Gamma M\Gamma y \subseteq P$ imply $x \in P$ or $y \in P$.

PROPOSITION 3.4 (cf. [8, Proposition 2.2]). A prime bi-ideal P of M is a prime one-sided ideal of M.

PROOF. Suppose that P is not a one-sided ideal of M. Then $P\Gamma M \notin P$ and $M\Gamma P \notin P$. Since P is prime, $(P\Gamma M)\Gamma M\Gamma(M\Gamma P) \notin P$. Since $(P\Gamma M)\Gamma M\Gamma(M\Gamma P) \subseteq P\Gamma M\Gamma P$, and since P is a bi-ideal of M, $P\Gamma M\Gamma P \subseteq P$, then $(P\Gamma M)\Gamma M\Gamma(M\Gamma P) \subseteq P$, a contradiction. Hence, $P\Gamma M \subseteq P$ or $M\Gamma P \subseteq P$, that is, P is a one-sided ideal of M.

As an immediate consequence of this result, Corollary 2.5 and its right analogue, we obtain

COROLLARY 3.5. $\mathcal{P}(M)$ is the intersection of the prime bi-ideals of M.

PROPOSITION 3.6 (cf. [8, Proposition 2.4]). A bi-ideal P of M is prime if and only if I a right ideal of M, J a left ideal of M, $I\Gamma J \subseteq P$ imply $I \subseteq P$ or $J \subseteq P$.

The proof is similar to that for the ring case, and will be omitted. We remark that although van der Walt considers only a ring with identity in [8], the analogues for rings of Propositions 3.4 and 3.6 are valid for arbitrary rings. In view of Proposition 1.1 and Theorem 2.9, we obtain the following characterization of Γ -rings which are both left and right noetherian. The proof is again similar to the ring case [8, Proposition 2.7].

PROPOSITION 3.7. Suppose M has both left and right unities. Then M is both left and right noetherian if and only if every prime quasi-ideal of M is finitely generated (as a quasi-ideal).

4. Semi-prime bi-ideals and regular Γ -rings

A bi-ideal or quasi-ideal Q of M is called *semiprime* if $x \in M$, $x\Gamma M\Gamma x \subseteq Q$ implies $x \in Q$.

PROPOSITION 4.1. Let Q be a semiprime bi-ideal of M. Then Q is a semiprime quasi-ideal of M.

PROOF. Let $x \in (Q\Gamma M) \cap (M\Gamma Q)$. Then $x\Gamma M\Gamma x \subseteq Q\Gamma M\Gamma M\Gamma M\Gamma Q \subseteq Q\Gamma M\Gamma Q \subseteq Q$ since Q is a bi-ideal of M. Since Q is semiprime, $x \in Q$, and hence $(Q\Gamma M) \cap (M\Gamma Q) \subseteq Q$.

We now establish some relationships between semiprime quasi-ideals of M and R.

Proposition 4.2.

(a) Let P be a semiprime quasi-ideal of R. Then P^* is a semiprime quasi-ideal of M.

(b) Let Q be a semiprime quasi-ideal of M. Then $Q^{*'}$ is a semiprime quasi-ideal of R.

Proof.

(a) By Proposition 3.3(a), P^* is a quasi-ideal of M. Let $a \in M \setminus P^*$. Then there exists $\gamma \in \Gamma$ such that $[\gamma, a] \notin P$. Since P is semiprime, there exists $r \in R$ such that $[\gamma, a]r[\gamma, a] \notin P$. Put $r = \sum_i [\gamma_i, x_i]$. Then $\sum_i [\gamma, a\gamma_i x_i \gamma a] \notin P$, whence $a\gamma_i x_i \gamma a \notin P^*$ for some i. Hence $a\Gamma M\Gamma a \notin P^*$, so P^* is semiprime.

(b) By Proposition 3.3(b), $A^{*'}$ is a quasi-ideal of R. Let $a \in R \setminus Q^{*'}$. Then $xa \notin Q$ for some $x \in M$. Since Q is semiprime, there exist $\gamma, \mu \in \Gamma$, $m \in M$ such that $(xa)\gamma m\mu(xa) \notin Q$ whence $a[\gamma, m][\mu, x]a \notin Q^{*'}$. Thus $aRa \notin Q^{*'}$, and so $Q^{*'}$ is semiprime.

From Chen [2], M is regular if for all $a \in M$, $a \in a\Gamma M\Gamma a$.

PROPOSITION 4.3. M is regular if and only if every bi-ideal of M is semiprime. The proof is similar to that for the corresponding result for rings [8, Proposition 3.3].

Finally, we remark that it is easily shown that if A and B are bi-ideals of M, then $A\Gamma B$ is a bi-ideal of M. Van der Walt [8, Corollary 3.5] has given an example of a ring A with two quasi-ideals P and Q such that PQis not a quasi-ideal of A. A is a \mathbb{Z} -ring with the normal addition operation and xny = n(xy) for all $n \in \mathbb{Z}$, $x, y \in A$. Furthermore, it is easily seen that P and Q are quasi-ideals of A considered as a \mathbb{Z} -ring and $P\mathbb{Z}Q = PQ$ is not a quasi-ideal of the \mathbb{Z} -ring.

References

- A. V. Andrunakievich and V. A. Andrunakievich, 'One sided ideals and radicals of rings', Algebra i Logika 20 (1981), 489-510.
- [2] W. X. Chen, 'The largest von Neumann regular ideal of a Γ-ring', Xhejiang Dascue Xueboa 18 (1984), 4, 133-138 (in Chinese).
- [3] W. E. Coppage and J. Luh, 'Radicals of gamma rings', J. Math. Soc. Japan 23 (1971), 40-52.
- [4] S. Kyuno, 'A gamma ring with the right and left unities', Math. Japon. 24 (1979), 191– 193.
- [5] S. Yuno, 'Prime ideals in gamma rings', Pacific J. Math. 98 (1982), 375-379.
- [6] G. O. Michler, 'Prime right ideals and right noetherian rings', in *Ring Theory*, edited by R. Gordon, Academic Press, London (1972).
- [7] O. Steinfield, 'Quasi-ideals in rings and semigroups', Akademiai Kiado Budapest (1978).
- [8] A. P. J. van der Walt, 'Prime and semiprime bi-ideals', Quaestiones Mathematicae 5 (1983).

University of Transkei Private Bag XI Umtata Transkei South Africa University of Port Elizabeth P.O. Box 1600 Port Elizabeth 6000 South Africa