REAL CANONICAL CYCLE AND ASYMPTOTICS OF OSCILLATING INTEGRALS

DANIEL BARLET

Abstract

Let $X_{\mathbb{R}} \subset \mathbb{R}^{N}$ a real analytic set such that its complexification $X_{\mathbb{C}} \subset \mathbb{C}^{N}$ is normal with an isolated singularity at 0 . Let $f_{\mathbb{R}}: X_{\mathbb{R}} \rightarrow \mathbb{R}$ a real analytic function such that its complexification $f_{\mathbb{C}}: X_{\mathbb{C}} \rightarrow \mathbb{C}$ has an isolated singularity at 0 in $X_{\mathbb{C}}$. Assuming an orientation given on $X_{\mathbb{R}}^{*}$, to a connected component A of $X_{\mathbb{R}}^{*}$ we associate a compact cycle $\Gamma(A)$ in the Milnor fiber of $f_{\mathbb{C}}$ which determines completely the poles of the meromorphic extension of $\int_{A} f^{\lambda} \square$ or equivalently the asymptotics when $\tau \rightarrow \pm \infty$ of the oscillating integrals $\int_{A} e^{i \tau f} \square$. A topological construction of $\Gamma(A)$ is given. This completes the results of [BM] paragraph 6 .

§0. Introduction

Let $X_{\mathbb{C}}$ be a normal complex space of dimension $n+1(n \geq 1)$ having an isolated singularity at 0 , and let $f: X_{\mathbb{C}} \rightarrow \mathbb{C}$ be an holomorphic function on $X_{\mathbb{C}}$ with an isolated singularity at 0 . We shall assume that $\left(X_{\mathbb{C}}, f\right)$ is the complexification of a real analytic function $\left(X_{\mathbb{R}}, f_{\mathbb{R}}\right)$ on a real analytic space $X_{\mathbb{R}}$. In such a situation, we shall consider A, non zero, in $H^{0}\left(X_{\mathbb{R}}^{*}, \mathbb{C}\right)$. Assuming that an orientation is given on the smooth real manifolds $X_{\mathbb{R}}^{*}$, we have defined in [BM] a compactly supported cohomology class $\gamma(A) \in$ $H_{c}^{n}(F, \mathbb{C})_{1}$ associated to A, where F denotes the complex Milnor's fiber of f on $X_{\mathbb{C}}$ and $H_{c}^{n}(F, \mathbb{C})_{1}$ the spectral part for the eigenvalue 1 of the monodromy acting on $H_{c}^{n}(F, \mathbb{C})$. The definition is the following:

For any $e \in H^{n}(F, \mathbb{C})_{1}$ represented by semi-meromorphic forms on $X_{\mathbb{C}}$, with poles along $f=0, w_{0}, \ldots, w_{k}$, so satisfying the conditions

$$
(A) \begin{cases}1) \quad d w_{j}=\frac{d f}{f} \wedge w_{j-1} & \forall j \in[1, k], w_{0}=0 \\ 2)\left[w_{k} / F\right]=e \in H^{n}(F, \mathbb{C})_{1} & \end{cases}
$$

Received June 25, 2001.
Revised September 13, 2002.
2000 Mathematics Subject Classification: 32S40, 14P15.
we have

$$
I(e, \overline{\gamma(A)})=(2 i \pi)^{-n} \operatorname{Res}\left(\lambda=0, \int_{A} f^{\lambda} \rho w \wedge \frac{d f}{f}\right)
$$

Here $I: H_{c}^{n}(F, \mathbb{C}) \times H^{n}(F, \mathbb{C}) \rightarrow \mathbb{C}$ denotes the hermitian Poincaré duality defined by $I(a, b)=\frac{1}{(2 i \pi)^{n}} \int_{F} a \wedge \bar{b}$ and ρ is in $C_{c}^{\infty}\left(X_{\mathbb{R}}\right)$ with $\rho \equiv 1$ near 0 . We use here the notation $i \pi \int_{A} f^{\lambda} \frac{d f}{f} \wedge \square$ for the \mathbb{R}^{*}-Mellin transform of the function defined on \mathbb{R}^{*} by $\varphi(s)=\int_{f(s) \cap A} \square$ where \square is a semi-meromorphic n-form on $X_{\mathbb{R}}$ with compact support ${ }^{(*)}$ and poles in $\left\{f_{\mathbb{R}}=0\right\}$.

Recall that the \mathbb{R}^{*}-Mellin transform of φ is given (see [B99]) by definition by

$$
i \pi M \varphi(\lambda):=\int_{0}^{+\infty} x^{\lambda-1} \varphi(x) d x-e^{-i \pi \lambda} \int_{0}^{+\infty} x^{\lambda-1} \varphi(-x) d x
$$

The purpose of this article is to give a topological construction of a compact n-cycle whose class in $H_{c}^{n}(F, \mathbb{C})_{1}$ is $\gamma(A)$. This complete the results of the paragraph 6 in $[\mathrm{BM}]$. In fact it appears from our proof and $[\mathrm{BM}]$ results that the class of our cycle $\Gamma(A)$ in $H_{c}^{n}(F, \mathbb{C})$ controls completely the poles of $\int_{A} f^{\lambda} \square$ for the given A. So the same holds for the asymptotics when $\tau \rightarrow \pm \infty$ of the oscillating integrals $\int_{A} e^{i \tau f} \square$ where \square denotes a C^{∞}-compactly supported $(n+1)$-form on $X_{\mathbb{R}}$.

So to prove existence of a pole in our context it is enough (but also necessary) to prove that the class of $\Gamma(A)$ in $H_{n}(F, \mathbb{C}) \simeq H_{c}^{n}(F, \mathbb{C})$ is not zero. This gives some new light on Jeddi's proof of Palamodov's conjecture (see [J]).

This article was written during a stay in Nagoya graduate School of Mathematics and I want to thank this Institute for its very nice hospitality.

§1. Some more notations

We continue with the hypothesis and notations introduced in paragraph 0 (still assuming that an orientation is given on $X_{\mathbb{R}}^{*}$).

We shall fix a Milnor representative of f, denoted by $f: X_{\mathbb{C}} \rightarrow D_{\delta}$ by choosing a real embedding $X_{\mathbb{R}} \hookrightarrow \mathbb{R}^{N}\left(\right.$ so $X_{\mathbb{C}} \hookrightarrow \mathbb{C}^{N}$ and $X_{\mathbb{C}} \cap \mathbb{R}^{N}=X_{\mathbb{R}}$) and choosing $0<\varepsilon \ll 1$ and $0<\delta \ll \varepsilon$ such that $X_{\mathbb{C}}:=B(0, \varepsilon) \cap f^{-1}\left(D_{\delta}\right)$; we fix a base point $s_{0} \in D_{\delta} \cap \mathbb{R}^{+*}$ and define the Milnor fiber of f to be $f^{-1}\left(s_{0}\right)=F$.

[^0]Recall now that, given A in $H^{0}\left(X_{\mathbb{R}}-\left\{f_{\mathbb{R}}=0\right\}, \mathbb{C}\right)$ (we shall use here the obvious restriction map from $H^{0}\left(X_{\mathbb{R}}^{*}, \mathbb{C}\right)$ to $\left.H^{0}\left(X_{\mathbb{R}}-f_{\mathbb{R}}^{-1}(0), \mathbb{C}\right)\right)$, we have defined in $[\mathrm{BM}]$ the closed n cycles $\delta(A)^{+}:=A \cap f_{\mathbb{R}}^{-1}\left(s_{0}\right)$, oriented as the boundary of the (oriented) open set $A^{+} \cap\left\{f_{\mathbb{R}}<s_{0}\right\}$ and $\delta(A)^{-}:=A \cap$ $f_{\mathbb{R}}^{-1}\left(-s_{0}\right)$ oriented as the boundary of the open set $A^{-} \cap\left\{-s_{0}<f_{\mathbb{R}}\right\}$, where $A=A^{+}+A^{-}$is the decomposition of the sum $A=\sum_{\alpha} a_{\alpha} A_{\alpha}$ according to the sign of $f_{\mathbb{R}}$ on each connected component A_{α} of $X_{\mathbb{R}}-f_{\mathbb{R}}^{-1}(0)$.

Now, using a C^{∞} trivialization of Milnor's fibration along the half-circle $\left\{s_{0} e^{i \theta}, \theta \in[-\pi, 0]\right\}$ we define $M^{1 / 2} \delta(A)^{-}$as the closed oriented n-cycle in F obtained from $\delta(A)^{-}$by direct image along the projection on F given by this trivialisation.

Then we set $\delta(A):=\delta(A)^{+}-M^{1 / 2} \delta(A)^{-}$and denote by $[\delta(A)]$ the classe defined by $\delta(A)$ in $H^{n}(F, \mathbb{C})$. To be precise, the class $[\delta(A)]$ is defined via the hermitian duality I by the formula

$$
I([a], \overline{\delta(A)}):={\underset{(2 i \pi)^{n}}{ } \int_{\delta(A)} a} a
$$

where a is a compactly supported closed $C^{\infty} n$-form on F defining the class $[a]$ in $H_{c}^{n}(F, \mathbb{C})$.

§2. Construction of $\Gamma(A)$ in $H_{n}(F, \mathbb{C}) \simeq H_{c}^{n}(F, \mathbb{C})$

We fix $\varepsilon^{\prime}<\varepsilon^{\prime \prime}<\varepsilon$ with $\varepsilon-\varepsilon^{\prime} \ll \varepsilon$ and define

$$
\begin{aligned}
X & :=B(0, \varepsilon) \cap f^{-1}\left(D_{\delta}\right) \\
X^{\prime} & :=B\left(0, \varepsilon^{\prime}\right) \cap f^{-1}\left(D_{\delta}\right) \\
X^{\prime \prime} & :=B\left(0, \varepsilon^{\prime \prime}\right) \cap f^{-1}\left(D_{\delta}\right)
\end{aligned}
$$

and then $\partial A:=A \cap \partial X^{\prime \prime}$ for our given non zero A in $H^{n}\left(X_{\mathbb{R}}^{*}, \mathbb{C}\right)$. The orientation of this compact n-cycle in $X_{\mathbb{R}}^{*}$ is given as the boundary of the open set $A \cap X^{\prime \prime}$. As a compact n-chain ∂A has three pieces:

$$
\partial A=\left(\delta\left(A^{-}\right) \cap \bar{X}^{\prime \prime}\right) \cup\left(\delta(A)^{+} \cap \bar{X}^{\prime \prime}\right) \cup \Delta
$$

where the two "vertical" pieces $\delta(A)^{ \pm} \cap \bar{X}^{\prime \prime}$ are obtained by cutting $\delta(A)^{ \pm}$ by $\overline{B\left(0, \varepsilon^{\prime \prime}\right)}$, and where the compact n-chain Δ lies in $X-\bar{X}^{\prime}$ is fibered by f over $\left[-s_{0}, s_{0}\right]$ as a family of compact ($n-1$)-cycles which gives an homology in $X-\bar{X}^{\prime}$ between $\delta(A)^{-} \cap \partial B\left(0, \varepsilon^{\prime \prime}\right)$ and $\delta(A)^{+} \cap \partial B\left(0, \varepsilon^{\prime \prime}\right)$.

The proof of our theorem will follow precisely a move from this compact n-cycle ∂A to a compact n-cycle $\Gamma(A)$ contained in F. To move ∂A to $\Gamma(A)$,
first fix a C^{∞} trivialisation of Milnor's fibration over the punctured half disc $\bar{D}_{s_{0}}^{-}-\{0\}=\left\{s \in \mathbb{C} / \operatorname{Im} s \leq 0,|s| \leq s_{0}, s \neq 0\right\}$ which induces the previously fixed trivialisation on the half-circle $\left\{s_{0} e^{i \theta}, \theta \in[-\pi, 0]\right\}$ used to define $M^{1 / 2} \delta(A)^{-}$. We shall also fix a C^{∞} trivialisation of $f \mid X-\overline{X \cap B\left(0, \varepsilon^{\prime}\right)} \rightarrow$ D_{δ} which corresponds to a commutative diagram

where $F^{\prime}:=F \cap\left(X-\overline{X \cap B\left(0, \varepsilon^{\prime}\right)}\right)$, also compatible with the previous trivialisation.

First we begin by moving Δ to Δ_{0} using the above trivialisation (recall that $\left.\Delta \subset X-\overline{X \cap B\left(0, \varepsilon^{\prime}\right)}\right)$ without moving its boundary part, so that we get

Then we move the compact n-cycle $\partial A_{0}:=\partial A-\Delta+\Delta_{0} \subset$ $f^{-1}\left(\bar{D}_{s_{0}}^{-}-\{0\}\right)$ using the above trivialisation of f over this set, so that the vertical part $\delta(A)^{-} \cap \bar{X}^{\prime \prime}$ will follow the half-circle $\left\{s_{0} e^{i \theta}, \theta \in[-\pi, 0]\right\}$, the vertical part $\delta(A)^{+} \cap \bar{X}^{\prime \prime}$ will be fixed, and the Δ_{0} part moves, using the trivialisation of f on $X-\overline{X \cap B\left(0, \varepsilon^{\prime}\right)}$ from the path γ_{0} to the constant path γ_{1} equal to $\left\{s_{0}\right\}$ as follows

Let us call $\left(\Delta_{t}\right)_{t \in[0,1]}$ this deformation. We shall denote by $\left(\partial A_{t}\right)_{t \in[0,1]}$ the family of compact n-cycles in $f^{-1}\left(\bar{D}_{s_{0}}^{-}-\{0\}\right)$ defined for $t \in[0,1]$ by

$$
(\partial A)_{t}:=-\widetilde{\delta}(A)_{s_{0} e^{-i \pi(1-t)}}^{-}+\widetilde{\delta}(A)^{+}+\Delta_{t}
$$

where $\widetilde{\delta}(A)^{ \pm}$is $\delta(A)^{ \pm} \cap \bar{X}^{\prime \prime}$ and where $\widetilde{\delta}(A)_{s_{0} e^{i \theta}}^{-}$is obtained by following the compact $\widetilde{\delta}(A)^{-}$in the above trivialisation along the half-circle.

So we define now the compact oriented n-cycle

$$
\Gamma(A):=(\partial A)_{1} \subset F .
$$

By definition we have

$$
\Gamma(A)=\widetilde{\delta}(A)^{+}-M^{1 / 2} \widetilde{\delta}(A)^{-}+\Delta_{1}
$$

where Δ_{1} is a compact n-chain in F^{\prime} so that $\partial \Gamma(A)=\emptyset$.
Remark that this already shows that we have

$$
\operatorname{can}[\Gamma(A)]=[\delta(A)] \quad \text { in } H^{n}(F, \mathbb{C})
$$

because our initial chain Δ was the boundary in $X-X \cap \overline{B\left(0, \varepsilon^{\prime}\right)}$ of the closed $(n+1)$-chain

$$
\left(A-A \cap B\left(0, \varepsilon^{\prime \prime}\right)\right) \cap f^{-1}\left(\bar{D}_{s_{0}}\right)
$$

(and Δ_{0} similarily).
As we know that $\partial\left(\widetilde{\delta}(A)^{+}\right)$and $\partial\left(\widetilde{\delta}(A)^{-}\right)$are homologuous in $X-$ $\overline{X \cap B\left(0, \varepsilon^{\prime}\right)}$ as $(n-1)$-compact cycles, for any choice of a compact n-chain Δ_{2} in F^{\prime} such that $\widetilde{\delta}(A)^{+}-M^{1 / 2} \widetilde{\delta}(A)^{-}+\Delta_{2}$ is a compact n-cycle in F ($M^{1 / 2}$ preserves the homology between boundaries), we obtain a compact n-cycle in F whose image by

$$
\operatorname{can}: H_{n}(F, \mathbb{C}) \simeq H_{c}^{n}(F, \mathbb{C}) \longrightarrow H^{n}(F, \mathbb{C})
$$

is the class $[\delta(A)]$. But the choice of Δ_{2} is defined up to a compact n-cycle of F^{\prime}. As $H_{n}\left(F^{\prime}\right) \simeq H_{n}(\partial F) \simeq H^{n-1}(\partial F)$ is exactly the kernel of can (via the exact sequence $0 \rightarrow$ Ker can $\left.\simeq H^{n-1}(\partial F) \rightarrow H_{c}^{n}(F) \xrightarrow{\text { can }} H^{n}(F)\right)$ to make this construction is just to lift $[\delta(A)]$ to $H_{c}^{n}(A)$, and this is possible by $[\mathrm{BM}]$.

What we have done in the construction of $\Gamma(A)$ is to make a precise choice of $\Delta_{2} \subset F^{\prime}$ by using the component A again.

The following theorem shows that our choice is the good one.

Theorem. The cycle $\Gamma(A)$ constructed above satifies the following property:

For any $e \in H^{n}(F, \mathbb{C})_{1}$ we have

$$
I(e, \overline{\Gamma(A)})=(2 i \pi)^{-n} \operatorname{Res}\left(\lambda=0, \int_{A} f^{\lambda} w_{k} \wedge \frac{d f}{f}\right)
$$

where w_{1}, \ldots, w_{k} are semi-meromorphic n-forms representing e (i.e. satisfying the condition (A) of paragraph 0).

Moreover we have $\operatorname{can}([\Gamma(A)])=[\delta(A)]$ so, using $[\mathrm{BM}]$, we deduce that $[\Gamma(A)]$ satisfies also:

For any $e \in H^{n}(F, \mathbb{C})_{1}$ represented by w_{1}, \ldots, w_{k}

$$
h\left(e, \operatorname{can}\left(\overline{\Gamma(A)}_{1}\right)\right)=(2 i \pi)^{n} P_{2}\left(\lambda=0, \int_{A} f^{\lambda} w_{k} \frac{d f}{f}\right)
$$

where $P_{2}(\lambda=0, F(\lambda))$ is the coefficient of $1 / \lambda^{2}$ of the Laurent expansion of the meromorphic function f at 0 , and where

$$
h: H^{n}(F, \mathbb{C})_{1} \times H^{n}(F, \mathbb{C})_{1} \longrightarrow \mathbb{C}
$$

is the canonical hermitian form defined in $[\mathrm{BM}]$ in our context.
For any $e \in H^{n}(F, \mathbb{C})_{e^{-2 i \pi r}}, 0<r<1$, represented by $w_{1}, \ldots, w_{k}{ }^{(\dagger)}$ we have

$$
I(e, \overline{\Gamma(A)})=\frac{s_{0}^{r}}{(2 i \pi)^{n}} \operatorname{Res}\left(\lambda=-r, \int_{A} f^{\lambda} w_{k} \wedge \frac{d f}{f}\right)
$$

As an easy consequence we obtain the following corollary, which completes results of $[\mathrm{BM}]$ paragraph 6 .

Corollary.

1) we have $[\Gamma(A)]_{1}=\gamma(A)$
2) $\int_{A} f^{\lambda} \square$ has no poles iff $[\Gamma(A)]=0$ in $H_{n}(F, \mathbb{C})$.

Proof of the theorem. In order to follow easily the moving cycle $(\partial A)_{t}$ and integral on it, it is convenient to introduce a d-closed n-form W associated to $e \in H^{n}(F, \mathbb{C})_{1}$. Let us fix the logarithm function on $D_{\delta}-D_{\delta} \cap i \mathbb{R}^{+}$ such that the argument is in $]-3 \pi / 2, \pi / 2[$. Now define

$$
W:=\sum_{j=0}^{k-1}(-1)^{j} w_{j} \frac{(\log f)^{j}}{j!}
$$

[^1]on the open set $f^{-1}\left(D_{\delta}-D_{\delta} \cap i \mathbb{R}^{+}\right)$of X, where w_{1}, \ldots, w_{k} are semimeromorphic n-forms on X satisfying (A) of paragraph 0 .

Then we have $d W=0$ and also

$$
\left[\left.W\right|_{F}\right]=\sum_{k-1}^{j=0}(-1)^{j} \frac{\left(\log s_{0}\right)^{j}}{j!} e_{k-j}
$$

where $e_{k-j}:=\left[\left.w_{j}\right|_{F}\right]$ for $j \in[0, k-1]$ in $H^{n}(F, \mathbb{C})$. So $e_{0}=e$.
So we have

$$
\int_{(\partial A)_{0}} W=\int_{\Gamma(A)} W=\sum_{j=0}^{k-1}(-1)^{j} \frac{\left(\log s_{0}\right)^{j}}{j!}(2 i \pi)^{n} I\left(e_{k-j}, \overline{\Gamma(A)}\right) .
$$

Now we have to go from $(\partial A)_{0}$ to ∂A.
We define $\int_{\partial A} W$ as follows:

$$
\int_{\partial A} W:=P f\left(\lambda=0, \int_{\partial A} f^{\lambda} W\right) .
$$

And we shall precise later on why $\int_{\partial A} W=\int_{(\partial A)_{0}} W$. But thanks to Stokes formula (for $\operatorname{Re} \lambda \gg 0$) and analytic continuation we get

$$
\int_{\partial A} W=\operatorname{Res}\left(\lambda=0, \int_{A \cap \bar{X}^{\prime \prime}} f^{\lambda} \frac{d f}{f} \wedge W\right) .
$$

So, modulo our Lemma 2 which will allow us to replace the integration on $A \cap \bar{X}^{\prime \prime}$ by a smooth cut off function $\rho \in C_{c}^{\infty}\left(X_{\mathbb{R}}\right), \rho \equiv 1$ near $\bar{X}^{\prime \prime}$, without changing the polar parts, we obtain, by the definition of $\gamma(A) \in H_{c}^{n}(F, \mathbb{C})_{1}$ recalled in paragraph 0

$$
\sum_{j=0}^{k-1}(-1)^{j} \frac{\left(\log s_{0}\right)^{j}}{j!} I\left(e_{k-j}, \overline{\gamma(A)}\right)=\sum_{j=0}^{k-1}(-1)^{j} \frac{\left(\log s_{0}\right)^{j}}{j!} I\left(e_{k-j}, \overline{\Gamma(A)}\right) .
$$

Now we can conclude easily because we already know from [BM] that $\operatorname{can}[\gamma(A)]=\operatorname{can}[\Gamma(A)]_{1}$. So for e_{1}, \ldots, e_{k-1} which are in Imcan (because $\operatorname{Im}(T-1) \subset \operatorname{Im}$ can) we know that $I\left(e_{k-j}, \overline{\gamma(A)}\right)=I\left(e_{k-j}, \overline{\Gamma(A)}\right)$ for $j \in[1, k-1]$. So we conclude that

$$
I\left(e_{k}, \overline{\gamma(A)}\right)=I\left(e_{k}, \overline{\Gamma(A)}\right)
$$

and we obtain $[\gamma(A)]=[\Gamma(A)]_{1}$ in $H_{n}(F, \mathbb{C})_{1}$.

To pass from Δ to Δ_{0} we first remark that now we are considering a compact n-chain (with fixed boundary) in $X-\overline{X \cap B\left(0, \varepsilon^{\prime}\right)}$ where no singularity occurs for $X_{\mathbb{R}}$ or $f_{\mathbb{R}}$. So locally we can assume that $A=\mathbb{R}^{n+1}$ and $f=x_{0}$ is the first coordinnate. Now let us define a push down of W on \mathbb{C} : via our fixed C^{∞} trivialisation of $X-\overline{X \cap B\left(0, \varepsilon^{\prime}\right)} \rightarrow D_{\delta}$ we can consider Δ near $f_{\mathbb{R}}^{-1}(0)$ as a family $\left(\delta_{t}\right)_{t \in[-\eta, \eta]}$ of compact $(n-1)$-cycles in F^{\prime} which are smooth. Let us then consider the submanifold ∇ defined near δ_{0} as the union of all $\left(t+i \tau, \delta_{t}\right)$ for $\tau \in[-\xi, \xi]$ and t near 0 . So, in fact, we just translate Δ near 0 along the imaginary axis in our trivialisation compatible with f.

Now ∇ is a piece of smooth $(n+1)$-submanifold containing Δ and with a proper smooth fibration $\left.f\right|_{\nabla}: \nabla \rightarrow \mathbb{C}$ near 0 in \mathbb{C}.

Define $\alpha:=(f \mid \nabla)_{*}(W \mid \nabla)$. Then α is a semi-meromorphic n-form near 0 in \mathbb{C} which is d-closed because W is semi-meromorphic and d-closed. Now the following lemma with allow us to pass from $\int_{\partial A} W$ to $\int_{(\partial A)_{0}} W$:

Lemma 1. Let $\eta>0$ and denote by α a d-closed semi-meromorphic 1 -form (with pole at $s=0$) in a neighbourhood of $\overline{D(0, \eta)}$ in \mathbb{C}.

Then we have

$$
\operatorname{Pf}\left(\int_{0}^{\eta} s^{\lambda} i_{+}^{*}(\alpha)-e^{-i \pi \lambda} \int_{0}^{\eta} s^{\lambda} i_{-}^{*}(\alpha)\right)=\int_{-\pi}^{0} j^{*}(\alpha)
$$

where $i_{+}:[0, \eta] \rightarrow \overline{D(0, \eta)}$ and $i_{-}:[-\eta, 0] \rightarrow \overline{D(0, \eta)}$ are the obvious inclusion and where j is given by $j:[-\pi, 0] \rightarrow \overline{D(0, \eta)}, j(\theta)=\eta e^{i \theta}$.

Proof. After reduction to the case $\alpha=d s / s^{k}$ this is an elementary exercice.

To finish the proof of our theorem, it is enough to prove our second lemma:

Lemma 2. Let $\rho \in C_{c}^{\infty}\left(\underline{X_{\mathbb{R}}}\right)$ with $\rho \equiv 1$ near $\bar{X}^{\prime \prime}$ and let w be a semimeromorphic n-form on $X-\overline{X \cap B\left(0, \varepsilon^{\prime}\right)}$ with poles in $f=0$.

Then for any $k \in \mathbb{N}$ the meromorphic function

$$
\lambda \longrightarrow \int_{\left(X-\bar{X}^{\prime \prime}\right) \cap A} f^{\lambda}(\log f)^{k} \rho \frac{d f}{f} \wedge w
$$

has no pole.

Proof. Of course we have here our previous choice of logarithm. Our assertion is local on $\left(X-\bar{X}^{\prime \prime}\right) \cap$ Supp ρ so we can assume again that $A=\mathbb{R}^{n+1}$ and that $f_{\mathbb{R}}=x_{0}$ is the first coordinnate.

Far from $\left\{f_{\mathbb{R}}=0\right\}$ there is nothing to prove (and this is the case along the vertical boundary parts of $\bar{X}^{\prime \prime}$ for instance, where $f_{\mathbb{R}}= \pm s_{0}$).

Far from $\partial B\left(0, \varepsilon^{\prime}\right)($ i.e. far from $\Delta)$ we are reduced to the case of
$(*) \quad \int_{0}^{+\infty} x_{0}^{\lambda-j}\left(\log x_{0}\right)^{k} \sigma\left(x_{0}\right) \frac{d x_{0}}{x_{0}}$

$$
-e^{-i \pi \lambda} \int_{0}^{+\infty}(-1)^{j} x^{\lambda-j}\left(\log x_{0}-i \pi\right)^{k} \sigma\left(-x_{0}\right) \frac{d x_{0}}{x_{0}}
$$

where $\sigma \in C_{c}^{\infty}(\mathbb{R})$ is obtained by integrating first in $x_{1}, \ldots, x_{n}\left(x_{0}^{-j}\right.$ comes from the poles of the semi-meromorphic form $\rho w)$.

Near $\partial B\left(0, \varepsilon^{\prime \prime}\right)$ we are reduced to the same situation but $\sigma \in \mathbb{C}_{c}^{\infty}(\mathbb{R})$ is now obtained by integration of w along $x_{1} \geq 0, x_{2}, \ldots, x_{n}$ where we assume the coordinnates chosen in such a way that $X^{\prime \prime}$ is locally defined by $x_{1}<0$.

To treat ($*$), use a Taylor expansion of σ at $x_{0}=0$ to reduce to the case of
(**) $\quad \int_{0}^{\eta} x^{\lambda-j}(\log x)^{k} \frac{d x}{x}-e^{-i \pi \lambda} \int_{0}^{\eta}(-1)^{j} x^{\lambda-j}(\log x-i \pi)^{k} \frac{d x}{x}$
which is given, thanks to Cauchy's theorem, by the integral over the half circle $\left\{z=\eta e^{i \theta}, \theta \in[-\pi, 0]\right\}$

$$
\int z^{\lambda-j}(\log z)^{k} \frac{d z}{z}
$$

But this is clearly an entire function of λ.

References

[B99] D. Barlet, Multiple poles at negative integers for $\int_{A} f^{\lambda} \square$ in the case of an almost isolated singularity, Publ. Res. Inst. Math. Sci., 35 (1999), 571-584.
[BM] D. Barlet and H. M. Maire, Non trivial simple poles at negative integers and mass concentration at singularity, Math. Ann., 323 (2002), 547-587.
[J] A. Jeddi, Preuve d'une conjecture de Palamodov, Topology, 41 (2002), 271-306.
[P] V. P. Palamodov, Asymptotic expansions of integrals on complex and real regions, Math USSR, 55 (1986), 201-236.

Universit Henri Poincaré et Institut Universitaire de France
Institut Elie Cartan UMR 7502 UHP-CNRS-INRIA
BP 239-F - 54506
Vandœuvre-lès-Nancy Cedex
France

[^0]: ${ }^{(*)}$ Remark that f-proper support is enough to define the polar parts of $\int_{A} f^{\lambda} \frac{d f}{f} \wedge \square$.

[^1]: ${ }^{(\dagger)}$ in this case we have replaced (A) of paragraph 0 by $d w_{j}=r \frac{d f}{f} \wedge w_{j}+\frac{d f}{f} \wedge w_{j-1}$ $\forall j \in[1, k]\left(w_{0}=0\right)$ and $\left[w_{k} / F\right]=e$

