14

PASA. . .

Publ. Astron. Soc. Aust., 1997, 14, 106-10

Grasping the Wispy Tendrils

Richard E. Gooch

Australia Telescope National Facility, CSIRO,
PO Box 76, Epping, NSW 2121, Australia.

Macquarie University, Nth Ryde, NSW 2109, Australia
rgooch@atnf.csiro.au

Received 1996 August 26, accepted 1996 December 16

Abstract: The vast quantities of data produced by modern radio telescopes require
advanced visualisation tools to explore them. The quantitative nature of astronomy
requires more than just representing data visually. This paper discusses research in
displaying, and using, a three-dimensional ‘cursor’ in amorphous, noisy data which

often resemble wispy tendrils.

Keywords: techniques: spectroscopic — methods: miscellaneous — methods: numerical

1 Introduction

Previous visualisation research work at the Australia
Telescope National Facility has concentrated on visual
representation of large three-dimensional data sets
to allow the astronomer to gain insights into the
global structure of the data [see Norris (1994) and
Gooch (1995a,b,c) for more information]. The next
step in the process of extracting science from data
involves obtaining quantitative information.

Something the astronomer would often like to do is
point at a feature of interest in the three-dimensional
data cube, usually some small ‘blob’ or ‘lump’, and
find out what the three-dimensional coordinate of
the blob is. The astronomer would also like to draw
a three-dimensional polygon around a blob and do
some further analysis on that sub-volume, such as
computing the total flux.

Because of the nature of astronomical data, no
sharply defined edges and surfaces appear solid.
As a consequence, the impressive illusion of depth
we are familiar with in other fields of visualisation
(which often use surface-rendering techniques) tends
not to be so dramatic when visualising astronomical
data. We are left then with the problem of how to
grasp the wispy tendrils of space without stabbing
into the void.

To do this we must be able to determine the
three-dimensional position of features of interest and
display three-dimensional objects inside a volume
of data. This paper discusses new research towards
this goal.

1-1 Cursors

To determine the three-dimensional position of a
feature the user sees, there must be some mechanism
to point to the feature. This is analogous to the
two-dimensional cursor (usually controlled by a
‘mouse’) available in many image-display tools.

© Astronomical Society of Australia » Provided by the NASA Astrophysics Data System

https://doi.org/10.1071/AS97106 Published online by Cambridge University Press

Simply moving the cursor to a feature of interest
and reading off the horizontal and vertical coordinates
is not much help, because there is no information
about depth. Is the feature close to the front or
the back of the volume?

There are two main problems with implementing a
three-dimensional cursor: how to input the position
and how to display the cursor. This paper will
focus on the latter problem.

1-2 Practicality

Astronomers generally consider themselves to be
chronically under-funded, and generally do not have
access to the latest computational resources. Many
of the obvious ‘brute-force’ techniques are not an
option and hence algorithms to reduce computational
effort are required. Some techniques in this area
are also discussed.

2 Two-dimensional Active Cursor

A simple but quite useful cursor for three-dimensional
position determination is a modification of the familiar
two-dimensional cursor.! Here the user moves the
conventional cursor over the projected volume-
rendered data to a feature of interest. The position
of the two-dimensional cursor is then projected back
into the volume and an estimate is made of the
depth down the ray of the feature the user sees. The
algorithm used to compute the estimate changes,
depending on the shading algorithm used to render
the volume.

For a simple ‘maximum voxel’ algorithm, where
the maximum voxel value along each projected ray is
displayed, the depth of the feature is approximated

! This technique is based on an idea by Tom Oosterloo of
the Australia Telescope National Facility.


https://doi.org/10.1071/AS97106

.14

PASA. .

Grasping the Wispy Tendrils

107

Figure 1—NGC 4631 with three-dimensional overlay cursor.

to the depth of the voxel at which the intensity is
a maximum.

For more complex ‘hot gas’ shaders (described
in Gooch 1995¢), which use a radiative transfer
algorithm, the depth is computed using the following:

depth = Zaid,-/ZUi s (1)

where depth is the estimated depth, o; is the
opacity of voxel i, and d; is the depth of the
voxel. This gives meaningful results for compact,
nearly opaque features and for extended, less opaque
features. It does not perform so well where there
are two compact, nearly opaque features, one in
front of the other. I have added a threshold function
which is effective if the nearer feature has sufficient
cumulative opacity. The threshold function ignores
data that lie behind quite opaque features.

Once the approximate depth of the feature is
computed, a simple geometric transformation may
be applied to convert this and the two-dimensional
screen coordinate to a three-dimensional coordinate.
This ‘active cursor’ allows the user simply to point
to a feature and obtain the full position information.

As indicated above, the estimate of the depth is
not ideal, so to remove ambiguity a further extension
has been made which interactively displays the voxel
data and opacity data (where appropriate) along the
projected ray. The estimated depth is also shown
on this display, which allows the user to determine
whether the estimate is reasonable.

Another limitation of this cursor is that it cannot
work with a stereoscopic display. This cursor requires

that every point on the screen be projected from
a unique ray through the volume. Clearly this is
not the case with stereo, where each point on the
screen is projected from two unique rays through
the volume. Hence, the user cannot use stereo to
assist in perceiving depth if using the active cursor.

3 Three-dimensional Cursor

To overcome the limitations of the two-dimensional
active cursor we turn to a true three-dimensional
cursor. Here a three-dimensional coordinate is
defined by the user (usually with the aid of a three-
dimensional pointing device such as a Spaceball) and
is projected onto the screen. Where a stereoscopic
display is available the cursor can be seen to move
closer and further away.

The two main difficulties in implementing an
effective three-dimensional cursor are: (i) how to
draw it onto the screen, and (ii) how to enable
the user to judge depth accurately. A number
of techniques have been experimented with, each
having its particular advantages and disadvantages.
In the following sections it may be assumed that
for a stereoscopic display the operations described
may be done separately for each eye-view.

8-1 Two-Dimensional Overlay Cursor

Here the three-dimensional cursor position is pro-
jected onto the screen. A small crosshair is drawn
through this projected point. This cursor is always
visible, never disappearing even if it is pushed behind
a feature. This cursor is very simple to implement
and requires the least computation. Unfortunately,

© Astronomical Society of Australia « Provided by the NASA Astrophysics Data System

https://doi.org/10.1071/AS97106 Published online by Cambridge University Press


https://doi.org/10.1071/AS97106

.14

PASA. .

108

R. E. Gooch

Figure 2—NGC 4631 with three-dimensional shaded cursor.

depth perception is often limited, even when dis-
playing in stereo. Feedback from users indicates
that it was too difficult to measure the depth of
the cursor. Therefore, while stereoscopic display is
an important tool, it should not be solely relied
upon to provide depth cues.

8- 2 Three-Dimensional Overlay Cursor

Here the cursor position defines three intersecting
lines, each line parallel to one of the principle axes of
the volume (see Figure 1). These three lines extend
from one face of the volume to the opposite face.
This may be thought of as a large, three-dimensional
crosshair. Depth perception is improved with this
cursor. In addition, if a wireframe is drawn around
the volume, the user gets an improved sense of
where the cursor lies in the volume. As with the
previous cursor, this cursor does not disappear when
moved behind a feature.

3-8 Two-Dimensional Shaded Cursor

This cursor is similar to the two-dimensional overlay
cursor except that an estimate is made of whether the
cursor lies in front of or behind an obscuring feature.
This estimate is based on the same technique used
in the two-dimensional active cursor. If the cursor
is in front of the feature, it is drawn, otherwise it
is not drawn. While an improvement, this cursor
still does not leave the user with much of a sense
of where it lies in the volume.

Astronomical Society of Australia « Provided by the NASA Astrophysics Data System

©
https://doi.org/10.1071/AS97106 Published online by Cambridge University Press

3.4 Three-Dimensional Shaded Cursor

This cursor defines the same three lines as in
the three-dimensional overlay cursor, except that,
instead of drawing the projected lines over the
rendered volume, they are effectively merged into
the data. This merging process differs according to
the shading algorithm used to render the volume.

For a maximum voxel algorithm each point along
the three lines is drawn or not drawn according to
whether the point is considered to be in front of or
behind an obscuring feature, using the same depth
estimation algorithm used by the two-dimensional
active cursor.

For an opacity-based shader each point is properly
blended with the ray of voxel values passing through
that point. If the point is in front of a feature, it
is visible; if it is moved behind an opaque feature
it will gradually fade to invisibility (see Figure 2).

Of the three-dimensional cursors discussed so far,
this one is clearly the best in terms of visual effect,
depth perception and placement inside the volume,
and received modest praise from users. It is of course
the most computationally expensive, but even this
cost is relatively moderate.

4 Depth Perception

The nature of astromical data gives it a soft, ‘cloudy’
effect when volume rendered. This makes the task
of implementing effective three-dimensional cursors
more difficult. Even with the three-dimensional
shaded cursor, the user still finds it difficult to place
a cursor accurately relative to a feature of interest.


https://doi.org/10.1071/AS97106

.14

PASA. .

Grasping the Wispy Tendrils

The use of stereoscopic displays can help depth
perception, but often the effect is not enough to
allow the user to make accurate depth estimates.
The stereo effect can be enhanced by changing
the geometry of the eye positions. However, too
much enhancement can cause the user to lose the
stereo effect. Only users with high visual acuity
can enhance the stereo effect sufficiently to place
a three-dimensional cursor accurately. To cater for
most users, i.e. those with average visual acuities
requires an alternative, or an additional, technique.

5 Interactive Slice Plane

If users have difficulty in determining whether a
three-dimensional cursor is at a greater depth than
a feature, then they may benefit from being able to
move an opaque or translucent plane through the
volume. This ‘slice plane’ is merged into the data in
a way similar to that used for the cursor. The slice
plane may be moved closer to, and further from, the
viewing plane (an abstraction in three-dimensional
space which corresponds to the screen). As the
slice plane is moved from the back to the front of
the volume, progressively less of the volume will
be visible. If an ambiguity in the structure of
a feature exists, this slice plane may be brought
forward to obscure all but the closest tip of the
feature. Early results indicate that the slice plane
can indeed reduce these ambiguities.

6 Performance

Because of the requirement that these features
be usable on mid-range workstations, a number
of optimisation techniques have to be considered.
Some of these techniques are discussed below.

6-1 Damage Repair

The time taken to refresh the display for the two-
dimensional overlay and shaded cursors is dominated
by the time taken to redraw the image buffer
containing the rendered volume. However, since
the geometric primitives that have to be moved
(namely, two short lines) occupy only a tiny fraction
of the image area, huge gains may be made by
redrawing only the sub-image over which the cursor
was drawn, effectively repairing the damage caused
by drawing the cursor.

This technique of damage repair becomes more
complicated when the cursor to be ‘undrawn’ is
composed of three, possibly large, diagonal lines.
The direct approach would be to define a rectangle
which encloses all three lines, or to define three
rectangles each enclosing a line. Unfortunately,
because these lines are large, the result is that
most of the image will be redrawn anyway (and
possibly redrawn three times in the latter case).
The other extreme would be to rasterise the lines
into their component points and redraw sub-images

109

containing each point. This technique requires a
large number of small images to be drawn, perhaps
several thousand. If the overhead of drawing an
image is significant, this technique can take longer
than simply drawing the entire image.

A compromise is to draw a smaller number
(perhaps fewer than one hundred) of larger images.
Unfortunately, this compromise is determined by the
overheads in the graphics library/window system
that is used, and in the performance of the
display and host computer, and will probably
vary between combinations thereof. Work is being
done to determine optimum compromises for some
combinations.

6-2 Depth Planes

To draw a plane that slices through a rendered
volume requires not only that the entire image
be redrawn, but also that the entire volume be
re-rendered, at far greater computational cost. If
the position of this plane is to be moved interactively
by the user, rendering times must be brought down
to a small fraction of a second.

Instead of doing a complete render of the volume,
a few shortcuts may be taken. First we assume
that as the user moves the position of the slice
plane the view position relative to the volume does
not change. In the case of a volume rendered with
the maximum voxel algorithm, the volume may be
rendered to produce not only an image plane (that
which the user sees), but also a ‘depth plane’ which
contains an estimate of the depth of the feature the
user sees down each ray (corresponding to each of
the image pixels).

This depth plane may then be used to merge
the slice plane into the volume in a similar way
that the three-dimensional shaded cursor is drawn
into the volume. The merging process is done
on a pixel-by-pixel and basis, hence requires only
about N? operations, whereas rendering the volume
requires about N3 operations. This is an enormous
saving,.

The depth-plane technique may be extended
to more complex shading algorithms, such as the
‘hot gas’ shader. Here we compute not only the
estimated depth, but also the cumulative opacity
to that depth and a measure of opacity rolloff
beyond that depth. This algorithm assumes that
the volume is transparent until the estimated depth
is reached, at which point there is a rapid rise
in opacity followed by a gradual decrease. This
performs reasonably well for compact, nearly opaque
features or extended features. It does not perform
well in cases where there is a compact, translucent
feature. By adding another estimate of the depth
where the opacity suddenly drops, this case is also
covered. There are still other cases where this
would prove inadequate. However, in the context

© Astronomical Society of Australia + Provided by the NASA Astrophysics Data System

https://doi.org/10.1071/AS97106 Published online by Cambridge University Press


https://doi.org/10.1071/AS97106

.14

PASA. .

110

of astronomical data these are considered to be of
secondary importance. The purpose is to obtain a
reasonable first approximation with minimum effort.

The techniques described above deal with avoiding
costly rendering operations. When merging a slice
plane into a volume,. each point on the image
plane has to be projected into the volume. The
intersection of each projected ray and the slice plane
has to be computed and this has to be converted
into a depth down the ray. Only then can this
depth value be compared with the estimate of the
feature depth and a new image pixel computed.
The computations involved in finding the depth of
the slice plane down a ray tend to dominate the
process. It is desirable to have a simple relationship
between the position of a slice plane and the depth
down a ray of its intersection point with the ray.
This relationship exists and is

t=N-SQ/N-R+d/N-R, )

where t is the distance down the ray of the intersection
point in units of R, N is a unit vector normal to
the slice plane, R is the ray direction vector, d is
the distance from a reference plane parallel to the
slice plane (in units of N), and SQ is the vector
from the starting position of the ray (S) to a point
on the reference plane (Q). This is of the form

t=a+dg. 3)

Once a and B have been computed for each image
pixel, the distance of the slice plane from the
reference plane may be altered (by changing d) and
a new image can be computed very quickly. It is
possible to get update rates of several frames a
second on a mid-range workstation.

© Astronomical Society of Australia « Provided by the NASA Astrophysics Data System

https://doi.org/10.1071/AS97106 Published online by Cambridge University Press

R. E. Gooch

7 Future Work

Astronomers are interested in drawing polyhedra
around an interesting feature, extracting the data
in that sub-volume and analysing them. As more
complex shapes need to be drawn inside a volume
of data, a generalisation of the depth plane may
be necessary. Since this depth plane is somewhat
analogous to the familiar ‘Z-buffer’ used in surface-
rendering graphics libraries, we may see these
developments as a hybrid of volumetric rendering
and surface rendering.

8 Summary

Taking visualisation of astronomical data into
the realm of interacting with the data has posed
new problems that require new solutions. As
astronomers demand tools to give them greater
insight into their data, placing greater demands
on visualisation software, we hope to continue to
develop interesting solutions to these problems.

Acknowledgments
I thank Ray Norris and Tom Oosterloo for ideas
and contributions to the Visualisation Project.

Gooch, R. E., 19954, in Astronomical Data Analysis Software
and Systems IV, ASP Conf. Ser. 77, ed. R. A. Shaw, H.
E. Payne & J. J. E. Hayes (San Francisco: ASP), p. 144

Gooch, R. E. 1995b, in Workshop on Applications of Radio
Science 1995, Australian Academy of Science through
the National Committee for Radio Science

Gooch, R. E. 1995¢, in IEEE Visualisation 95, ed. G. M.
Nielson & D. Silver, (IEEE), p. 374

Norris, R. P. 1994, in Astronomical Data Analysis Software
and Systems III, ASP Conf. Ser. 61, ed. D. R. Crabtree,
R. J. Hanisch & J. Barnes (San Francisco: ASP)


https://doi.org/10.1071/AS97106

