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Abstract

We investigate the properties of multifractal products of geometric Ornstein–Uhlenbeck
(OU) processes driven by Lévy motion. The conditions on the mean, variance, and
covariance functions of the resulting cumulative processes are interpreted in terms of the
moment generating functions. We consider five cases of infinitely divisible distributions
for the background driving Lévy processes, namely, the gamma and variance gamma
distributions, the inverse Gaussian and normal inverse Gaussian distributions, and the
z-distributions. We establish the corresponding scenarios for the limiting processes,
including their Rényi functions and dependence structure.
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1. Introduction

Multifractal models have been used in many applications in hydrodynamic turbulence,
finance, genomics, computer network traffic, etc. (see Kolmogorov (1941), (1962), Kahane
(1985), (1987), Gupta and Waymire (1993), Novikov (1994), Frisch (1995), Mandelbrot (1997),
and Falconer (1997)). Harte (2001) and Riedi (2003) contain an extensive bibliography of the
subject. There are many ways to construct random multifractal measures such as via the
binomial cascade and branching processes (see Kahane (1985), (1987), Gupta and Waymire
(1993), Molchan (1996), Falconer (1997), Barral and Mandelbrot (2002), Riedi (2003), Mörters
and Shieh (2002), (2004), (2008), and Shieh and Taylor (2002)). Most of these multifractal
models are not designed to cover other important features such as tractable dependence struc-
ture or a natural form of the singularity spectrum (see, for example, Novikov (1994) and
Riedi (2003)). Jaffard (1999) showed that Lévy processes (except Brownian motion and the
Poisson process) are multifractal; but, since the increments of a Lévy process are independent,
this class excludes the effects of tractable dependence structures. Moreover, Lévy processes
have a linear singularity spectrum while real data often exhibit a strictly concave spectrum.

This paper follows a different approach. We consider multifractal products of stochastic
processes as defined in Kahane (1985), (1987) and Mannersalo et al. (2002), but we provide
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a new interpretation of the conditions on the mean, variance, and covariance functions of the
resulting cumulative processes in terms of the moment generating functions. This approach is
more useful for our development. We show that the logarithms of the corresponding limiting
processes have an infinitely divisible distribution such as the gamma and variance gamma
distributions (resulting in the log-gamma and log-variance gamma scenarios, respectively),
and the inverse Gaussian and normal inverse Gaussian distributions (yielding the log-inverse
Gaussian and log-normal inverse Gaussian scenarios, respectively). We describe the behaviour
of their qth-order moments and Rényi functions, which are nonlinear, hence displaying their
multifractality. A property on the dependence structure of the limiting processes, leading to
their possible long-range dependence, is also obtained. Our exposition relies on some results of
Mannersalo et al. (2002) on the basic properties of multifractal products of stochastic processes.
We should also note some related results in Barndorff-Nielsen and Schmiegel (2004), who
introduced some Lévy-based spatiotemporal models for parametric modelling of turbulence.
Log-infinitely divisible scenarios related to independently scattered random measures were
investigated in Schmitt (2003), Schmitt and Marsan (2001), and Bacry and Muzy (2003).

2. Multifractal products of stochastic processes

This section recaptures some basic results on multifractal products of stochastic processes
as developed in Kahane (1985), (1987) and Mannersalo et al. (2002). We provide a new
interpretation of their conditions based on the moment generating functions, which is useful
for our exposition.

We introduce the following conditions.

(C1) Let �(t), t ∈ R+ = [0, ∞), be a measurable, separable, strictly stationary, positive
stochastic process with E �(t) = 1.

We call this process the mother process and consider the following setting.

(C2) Let �(i), i = 0, 1, . . . , be independent copies of the mother process �, and let �
(i)
b be

the rescaled version of �(i):

�
(i)
b (t)

d= �(i)(tbi), t ∈ R+, i = 0, 1, 2, . . . ,

where the scaling parameter b > 1 and ‘
d=’ denotes equality in finite-dimensional

distributions.

Moreover, in the examples of Section 4, the stationary mother process satisfies the following
condition.

(C3) For t ∈ R+, let �(t) = eX(t), where X(t) is a stationary process with E X2(t) < ∞.

We denote by θ ∈ � ⊆ R
p, p ≥ 1, the parameter vector of the distribution of the process

X(t), and assume that there exist a marginal probability density function pθ (x) and a bivariate
probability density function pθ (x1, x2; t1 − t2) such that the moment generating function

M(ζ) = E eζX(t)

and the bivariate moment generating function

M(ζ1, ζ2; t1 − t2) = E exp{ζ1X(t1) + ζ2X(t2)}
exist.
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Conditions (C1)–(C3) yield

E �
(i)
b (t) = M(1) = 1,

var �
(i)
b (t) = M(2) − 1 = σ 2

� < ∞, σ 2
� = constant,

cov(�
(i)
b (t1), �

(i)
b (t2)) = M(1, 1; (t1 − t2)b

i) − 1, b > 1.

We define the finite product processes by

�n(t) =
n∏

i=0

�
(i)
b (t) = exp

{ n∑
i=0

X(i)(tbi)

}
(1)

and the cumulative processes by

An(t) =
∫ t

0
�n(s) ds, n = 0, 1, 2, . . . , (2)

where the X(i)(t), i = 0, . . . , n, are independent copies of a stationary process X(t), t ≥ 0.
We also consider the corresponding positive random measures defined on Borel sets B of

R+:

µn(B) =
∫

B

�n(s) ds, n = 0, 1, 2, . . . . (3)

Kahane (1987) proved that the sequence of random measures µn converges weakly almost
surely to a random measure µ. Moreover, given a finite or countable family of Borel sets Bj

on R+, it holds that limn→∞ µn(Bj ) = µ(Bj ) for all j with probability 1. The almost sure
convergence of An(t) in countably many points of R+ can be extended to all points in R+ if
the limit process A(t) is almost surely continuous. In this case, limn→∞ An(t) = A(t) with
probability 1 for all t ∈ R+. As noted in Kahane (1987), there are two extreme cases: (i)
An(t) → A(t) in L1 for each given t , in which case A(t) is not almost surely 0 and is said to
be fully active (nondegenerate) on R+; (ii) An(1) converges to 0 almost surely, in which case
A(t) is said to be degenerate on R+. Sufficient conditions for nondegeneracy and degeneracy
in a general situation and relevant examples are provided in Kahane (1987, Equations (18) and
(19), respectively). The condition for complete degeneracy is detailed in Theorem 3 of Kahane
(1987).

The Rényi function, also known as the deterministic partition function, is defined for t ∈
[0, 1] as

T (q) = lim inf
n→∞

log E
∑2n−1

k=0 µq(I
(n)
k )

log |I (n)
k |

= lim inf
n→∞

(
−1

n

)
log2 E

2n−1∑
k=0

µq(I
(n)
k ),

where I
(n)
k = [k2−n, (k + 1)2−n], k = 0, 1, . . . , 2n − 1, |I (n)

k | is its length, and logb is the log
to base b.

Remark 1. The multifractal formalism for random cascades can be stated in terms of the
Legendre transform of the Rényi function:

T ∗(α) = min
q∈R

(qα − T (q)).
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In fact, let f (α) be the Hausdorff dimension of the set

Cα =
{
t ∈ [0, 1] : lim

n→∞
log µ(I

(n)
k (t))

log |I (n)
k |

= α

}
,

where I
(n)
k (t) is a sequence of intervals I

(n)
k that contain t . The function f (α) is known as the

singularity spectrum of the measure µ, and we refer to µ as a multifractal measure if f (α) �= 0
for a continuum of α (Lau (1999)). In order to determine the function f (α), Hentschel and
Procaccia (1983), Frisch and Parisi (1985), and Halsey et al. (1986), for example, proposed to
use the relationship

f (α) = T ∗(α). (4)

This relationship may not hold for a given measure (see, for example, Taylor (1995)). When
equality (4) is established for a measure µ, we say that the multifractal formalism holds for this
measure.

Mannersalo et al. (2002) presented the conditions for L2-convergence and scaling of
moments.

Theorem 1. (Mannersalo et al. (2002).) Suppose that conditions (C1)–(C3) hold.
If, for some positive numbers δ and γ ,

e−δ|τ | ≤ ρ(τ) = M(1, 1; τ) − 1

M(2) − 1
≤ |Cτ |−γ (5)

then An(t) converges in L2 if and only if

b > 1 + σ 2
� = M(2).

If An(t) converges in L1 then the limit process A(t) satisfies the recursion

A(t) = 1

b

∫ t

0
�(s) dÃ(bs), (6)

where the processes �(t) and Ã(t) are independent, and the processes A(t) and Ã(t) have
identical finite-dimensional distributions.

If A(t) is nondegenerate, recursion (6) holds, A(1) ∈ Lq for some q > 0, and

∞∑
n=0

c(q, b−n) < ∞,

where c(q, t) = E sups∈[0,t] |�q(0) − �q(s)|, then there exist constants C and C such that

Ctq−logb E �q(t) ≤ E Aq(t) ≤ Ctq−logb E �q(t), (7)

which will be written as

E Aq(t) ∼ tq−logb E �q(t), t ∈ [0, 1].
If, on the other hand, A(1) ∈ Lq , q > 1, then the Rényi function is given by

T (q) = q − 1 − logb E �q(t) = q − 1 − logb M(q).
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If A(t) is nondegenerate, A(1) ∈ L2, and �(t) is positively correlated, then

var A(t) ≥ var
∫ t

0
�(s) ds.

Hence, if
∫ t

0 �(s) ds is strongly dependent then A(t) is also strongly dependent.

Remark 2. Result (7) means that the process A(t), t ∈ [0, 1], with stationary increments
behaves as

log E(A(t + δ) − A(t))q ∼ K(q) log δ + Cq (8)

for a wide range of resolutions δ with a nonlinear function

K(q) = q − logb E �q(t) = q − logb M(q),

where Cq is a constant. In this sense, the stochastic process A(t) is said to be multifractal. The
function K(q), which contains the scaling parameter b and all the parameters of the marginal
distribution of the mother process X(t), can be estimated by running regression (8) for a range
of values of q. For the example in Section 4, the explicit form of K(q) is obtained. Hence,
these parameters can be estimated by minimising the mean square error between the K(q)

curve estimated from data and its analytical form for a range of values of q. This method has
been used for multifractal characterisation of complete genomes in Anh et al. (2001).

3. Infinitely divisible distributions and geometric Ornstein–Uhlenbeck processes

In this section we review a number of known results on Lévy processes (see Skorokhod
(1991), Bertoin (1996), Sato (1999), and Kyprianou (2006)) and Ornstein–Uhlenbeck-type
processes (see Barndorff-Nielsen (2001), and Barndorff-Nielsen and Shephard (2001)). As
standard notation, we will write

κ(z) = C{z; X} = log E eizX, z ∈ R,

for the cumulant function of a random variable X and

K{ζ ; X} = log E eζX, ζ ∈ R,

for the Lévy exponent or Laplace transform or cumulant generating function of the random
variable X. Its domain includes the imaginary axis and frequently larger areas.

A random variable X is infinitely divisible if its cumulant function has the Lévy–Khintchine
form

C{z; X} = iaz − d

2
z2 +

∫
R

(eizu − 1 − izu 1[−1,1](u))ν(du), (9)

where a ∈ R, d ≥ 0, and ν is the Lévy measure, that is, a nonnegative measure on R such that

ν({0}) = 0,

∫
R

min(1, u2)ν(du) < ∞.

The triplet (a, d, ν) uniquely determines the random variable X. For a Gaussian random
variable, X ∼ N(a, d), the Lévy triplet takes the form (a, d, 0).

A random variable X is self-decomposable if, for all c ∈ (0, 1), the characteristic function
f (z) of X can be factorised as f (z) = f (cz)fc(z) for some characteristic function fc(z), z ∈ R.
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Recall that a càdlàg stochastic process has right-continuous sample paths with existing left
limits. A homogeneous Lévy process Z = {Z(t), t ≥ 0} is a continuous (in probability),
càdlàg process with independent and stationary increments and Z(0) = 0. For such processes,
we have C{z; Z(t)} = tC{z; Z(1)} and Z(1) has the Lévy–Khintchine representation (9).

Let f (z) be the characteristic function of a random variable X. If X is self-decomposable
then there exists a stationary stochastic process {X(t), t ≥ 0} such that X(t)

d= X and

X(t) = e−λtX(0) +
∫

(0,t]
e−λ(t−s) dZ(λs) (10)

for all λ > 0 (see Barndorff-Nielsen (1998)). Conversely, if {X(t), t ≥ 0} is a stationary
process and {Z(t), t ≥ 0} is a Lévy process, independent of X(0), such that X(t) and Z(t)

satisfy the Itô stochastic differential equation

dX(t) = −λX(t) dt + dZ(λt) (11)

for all λ > 0, then X(t) is self-decomposable. A stationary process X(t) of this kind is said to
be an Ornstein–Uhlenbeck-type process or an OU-type process for short. The process Z(t) is
termed the background driving Lévy process (BDLP) corresponding to the process X(t). In fact,
(10) is the unique (up to indistinguishability) strong solution to (11) (Sato (1999, Section 17)).
The meaning of the stochastic integral in (10) was detailed in Applebaum (2004, p. 214).

A necessary and sufficient condition for (11) to have a stationary solution is that

E log(1 + |Z(1)|) < ∞.

The stationary process {X(t), t ≥ 0} can be extended to a stationary process on the whole real
line. To do this, we introduce an independent copy of the process {Z(t), t ≥ 0}, but modify it
to be càdlàg, thus obtaining a process {Z̄(t), t ≥ 0}, say. Now, for t < 0, define Z(t) = Z̄(−t),
and, for t ∈ R, let

X(t) = e−λt

∫ t

−∞
eλs dZ(λs).

Then, {Z(t), t ∈ R} is a homogeneous càdlàg Lévy process and {X(t), t ∈ R} is a strictly
stationary process of OU-type.

Let X(t) be a square-integrable OU process. Then X(t) has the correlation function

rX(t) = e−λ|t |, t ∈ R. (12)

The cumulant transforms of X = X(t) and Z(1) are related by

C{z; X} =
∫ ∞

0
C{e−sz; Z(1)} ds =

∫ z

0
C{ξ ; Z(1)}dξ

ξ

and

C{z; Z(1)} = z
∂C{z; X}

∂z
.

Suppose that the Lévy measure ν of X has a density function p(u), u ∈ R, which is differen-
tiable. Then the Lévy measure ν̃ of Z(1) has a density function q(u), u ∈ R, and p and q are
related by

q(u) = −p(u) − up′(u) (13)

(see Barndorff-Nielsen (1998)).
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The logarithm of the characteristic function of a random vector (X(t1), . . . , X(tm)) is of the
form

log E exp{i(z1X(t1) + · · · + zmX(tm))} (14)

=
∫

R

κ

( m∑
j=1

zj exp{−λ(tj − s)} 1[0,∞)(tj − s)

)
ds, (15)

where
κ(z) = log E eizZ(1) = C{z; Z(1)},

and function (15) has the form (9) with Lévy triplet (ã, d̃, ν̃) of Z(1).
The logarithms of the moment generation functions (if they exist) take the forms

log M(ζ) = log E eζX(t) = ζa + d

2
ζ 2 +

∫
R

(eζu − 1 − ζu 1[−1,1](u))ν(du),

where the triplet (a, d, ν) is the Lévy triplet of X(0), or in terms of the Lévy triplet (ã, d̃, ν̃) of
Z(1),

log M(ζ) = ã

∫
R

(ζe−λ(t−s) 1[0,∞)(t − s)) ds + d̃

2
ζ 2

∫
R

(ζe−λ(t−s) 1[0,∞)(t − s))2 ds

+
∫

R

∫
R

[exp{uζe−λ(t−s) 1[0,∞)(t − s)} − 1

− u(ζe−λ(t−s) 1[0,∞)(t − s)) 1[−1,1](u)]ν̃(du) ds (16)

and

log M(ζ1, ζ2; t1 − t2) (17)

= log E exp{ζ1X(t1) + ζ2X(t2)}

= ã

∫
R

( 2∑
j=1

ζj exp{−λ(tj − s)} 1[0,∞)(tj − s)

)
ds

+ d̃

2
ζ 2

∫
R

( 2∑
j=1

ζj exp{−λ(tj − s)} 1[0,∞)(tj − s)

)2

ds

+
∫

R

∫
R

[
exp

{
u

2∑
j=1

ζj exp{−λ(tj − s)} 1[0,∞)(tj − s)

}
− 1

− u

( 2∑
j=1

ζj exp{−λ(tj − s)} 1[0,∞)(tj − s)

)
1[−1,1](u)

]
ν̃(du) ds. (18)

The following result plays a key role in multifractal analysis of geometric OU processes.

Theorem 2. Let X(t), t ∈ R+, be an OU-type stationary process (10) such that the Lévy
measure ν in (9) of the random variable X(t) satisfies the condition that, for some q ∈ Q ⊆ R,

∫
|x|≥1

g(x)ν(dx) < ∞, (19)
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where g(x) denotes any of the functions e2qx , eqx , or eqx |x|. Then, for the geometric OU-type
process, �q(t) := eqX(t),

∞∑
n=0

c(q, b−n) < ∞,

where c(q, t) = E sups∈[0,t] |�q(0)q − �q(s)q |.
To prove that our geometric OU-type process satisfies the covariance decay condition (5),

the expression given by (18) is not ready to yield the decay as t2 − t1 → ∞. The following
proposition gives a general decay estimate which the driving Lévy processes Z in Section 4
indeed satisfy.

Proposition 1. Consider an OU-type process X given by

dX(t) = −λX(t) dt + dZ(λt),

where the BDLP Z is without Gaussian part (that is, d̃ = 0 in (16)), and the Lévy measure ν̃(dx)

of Z has the density g(x) for which there exists some β > 0 such that g(x) ≤ (constant)e−β|x|
for all |x| > 1. Then there exist positive constants c and C such that

E(eX(t)eX(0)) ≤ Ce−ct for all t > 0.

Remark 3. The constant c is given by ν̃(|x| > 1). If the region for the boundedness assumption
on g(x) is |x| > a, a > 1, then c is determined by ν̃(|x| > a).

The proofs of Theorem 2 and Proposition 1 will be given in Section 5.
Very often the correlation structure found in applications is more complex than the exponen-

tial decreasing autocorrelation of the form (12). Barndorff-Nielsen (1998), Barndorff-Nielsen
and Sheppard (2001), and Barndorff-Nielsen and Leonenko (2005) proposed to consider the
following class of autocovariance functions:

Rsup(t) =
m∑

j=1

σ 2
j exp{−λj |t |}, (20)

which is flexible and can be fitted to many autocovariance functions arising in applications.
In order to obtain models with dependence structure (20) and given marginal density with

finite variance, we consider stochastic processes defined by

dXj(t) = −λjXj (t) dt + dZj (λj t), j = 1, 2, . . . , m,

and their superposition

Xsup(t) = X1(t) + · · · + Xm(t), t ≥ 0, (21)

where the Zj , j = 1, 2, . . . , m, are mutually independent Lévy processes. Then the solution
Xj = {Xj(t), t ≥ 0}, j = 1, 2, . . . , m, is a stationary process. Its correlation function is of
the exponential form (assuming finite variance).

Superposition (21) has its marginal density given by that of the random variable

Xsup(0) = X1(0) + · · · + Xm(0), (22)
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autocovariance function (20) (where the σ 2
j are now variances of Xj ), and spectral density

fsup(λ) = 2

π

m∑
j=1

σ 2
j

θj

θj + λ2 , λ ∈ R.

We are interested in the case when the distribution of (22) is tractable, for instance, when
Xsup(0) belongs to the same class as Xj(0), j = 1, . . . , m (see the example in Section 4).

Note that an infinite superposition (m → ∞) gives a complete monotone class of covariance
functions

Rsup(t) =
∫ ∞

0
e−tu dU(u), t ≥ 0,

for some finite measure U , which display long-range dependence (see Barndorff-Nielsen
(1998), (2001) and Barndorff-Nielsen and Leonenko (2005) for possible covariance structures
and spectral densities).

4. Multifractal analysis of geometric OU-type processes

In this section we introduce five illustrative multifractal scenarios. The mother process in
this section will take the form

�(t) = exp{X(t) − cX}, (23)

where X(t) is a stationary OU-type process (11) and cX is a constant depending on the
parameters of its marginal distribution. This form is needed for the condition E �(t) = 1
to hold. Accordingly, the Rényi function is defined in this section as

T (q) = q − 1 − logb E exp{q(X(t) − cX)}
= q

(
1 + cX

log b

)
− 1

log b
log E eqX(t) − 1.

All the definitions given in (1)–(3) and, correspondingly, all the statements of Theorem 1 are
now understood to be in terms of the mother process (23).

4.1. Log-gamma scenario

The log-gamma distribution is well known in the theory of turbulence and multiplicative
cascades (Saito (1992)). In this section we propose a stationary version of the log-gamma
scenario. We will use a stationary OU-type process (11) with marginal gamma distribution
�(β, α), which is self-decomposable, and, hence, infinitely divisible. The probability density
function (PDF) of X(t), t ∈ R+, is given by

π(x) = αβ

�(β)
xβ−1e−αx 1[0,∞)(x), α > 0, β > 0, (24)

with the Lévy triplet of the form (0, 0, ν), where

ν(du) = βe−αu

u
1[0,∞)(u) du,

while the BDLP Z(t) in (11) is a compound Poisson subordinator

Z(t) =
P(t)∑
n=1

Zn,
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with the Zn, n = 1, 2, . . . , being independent copies of the random variable �(1, α) and
P(t), t ≥ 0, being a homogeneous Poisson process with intensity β. The logarithm of the
characteristic function of Z(1) is

κ(z) = log E eizZ(1) = iβz

α − iz
, z ∈ R,

and the (finite) Lévy measure ν̃ of Z(1) is

ν̃(du) = αβe−αu 1(0,∞)(u) du. (25)

The correlation function is then

rX(t) = e−λ|t |, t ∈ R.

(C4) Consider a mother process of the form

�(t) = exp{X(t) − cX} with cX = log
1

(1 − 1/α)β
and α > 1,

where X(t), t ∈ R+, is a stationary gamma OU-type stochastic process with marginal
density (24) and covariance function

RX(t) = β

α2 e−λ|t |, t ∈ R.

Under condition (C4), we obtain the following moment generating function:

M(ζ) = E exp{ζ(X(t) − cX)} = exp{−cXζ }
(1 − ζ/α)β

, ζ < α, α > 1, (26)

and the bivariate moment generating function is given by (18), in which the measure ν̃ is given
by (25), since

M(ζ1, ζ2; (t1 − t2))

= E exp{ζ1(X(t1) − cX) + ζ2(X(t2) − cX)}
= exp{−cX(ζ1 + ζ2)} E exp{ζ1X(t1) + ζ2X(t2)}

= exp{−cX(ζ1 + ζ2)} exp

{∫
R

β
∑2

j=1 ζj exp{−λ(tj − s)} 1[0,∞)(tj − s)

α − ∑2
j=1 ζj exp{−λ(tj − s)} 1[0,∞)(tj − s)

ds

}
,

(27)

or
M(ζ1, ζ2; (t1 − t2))

= exp{−cX(ζ1 + ζ2)}

× exp

{∫
R

∫
R

(
exp

{
u

2∑
j=1

ζj exp{−λ(tj − s)} 1[0,∞)(tj − s)

}
− 1

− u

( 2∑
j=1

ζj exp{−λ(tj − s)} 1[0,∞)(tj − s)

)
1[−1,1](u)

)

× αβe−αu 1(0,∞)(u) du ds

}
. (28)
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Thus, the correlation function of the mother process takes the form

ρ(τ) = M(1, 1; τ) − 1

M(2) − 1
,

where M(2) is given by (26) and M(1, 1; τ) is given by (28). It turns out that, in this case,

logb E �(t)q = 1

log b

(
−q log

1

(1 − 1/α)β
− β log

(
1 − q

α

))
,

and condition (19) holds for g(x) = eqx, q < α:∫
|u|≥1

equν(du) =
∫ ∞

1
equ βe−αu

u
du < ∞.

We formulate the following theorem.

Theorem 3. Suppose that condition (C4) holds, and let Q = {q : 0 < q < α, α > 2}. Then,
for any b > exp{−2cX}(1 − 2α)−β, β > 0, the stochastic processes An(t) defined by (2) for
the mother process (23) converge in L2 to the stochastic process A(t) as n → ∞ such that, if
A(1) ∈ Lq for q ∈ Q,

E A(t)q ∼ tT (q)+1,

where the Rényi function T (q) is given by

T (q) = q

(
1 + 1

log b
log

1

(1 − 1/α)β

)
+ β

log b
log

(
1 − q

α

)
− 1, q ∈ Q.

Moreover,

var A(t) ≥
∫ t

0

∫ t

0
(M(1, 1; u − w) − 1) du dw,

where M is given by (27) or (28).

Proof. Theorem 3 follows from Theorems 1 and 2 and Proposition 1.

Remark 4. For q ∈ Q∩[1, 2], the condition A(1) ∈ Lq, q > 1, is not needed; thus, the above
results hold at least for this range. However, for q outside this range, the condition is partly
required for the validity of multifractal moment scaling. This remark also applies to all other
scenarios in this section.

We can construct log-gamma scenarios for a more general class of finite superpositions of
stationary gamma OU-type processes defined in (21), where the Xj(t), j = 1, . . . , m, are
independent OU-type gamma stationary processes with marginals �(βj , α), j = 1, . . . , m,
and parameters λj , j = 1, . . . , m. Then Xsup(t), t ∈ R+, has the marginal distribution
�(

∑m
j=1 βj , α) and covariance function

Rsup(t) = 1

α2

m∑
j=1

βj exp{−λj |t |}, t ∈ R.

The generalisation of Theorem 2 and Proposition 1 to this situation is straightforward and
the statement of Theorem 3 can be reformulated for the process of superposition Xsup with
β = ∑m

j=1 βj and Mθ (ζ1, ζ2; (t1 − t2)) = ∏m
j=1 Mθj

(ζ1, ζ2; (t1 − t2)), where θ = (α, β) and
θj = (α, βj ), and λ must be replaced by λj in the expressions for Mθ (ζ1, ζ2; (t1 − t2)), (27)
or (28). Here, we insert the subscripts θ and θj in Mθ and Mθj

to distinguish the parameter
vectors.
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4.2. Log-inverse Gaussian scenario

In this section we propose a stationary version of the log-inverse Gaussian scenario. We will
use a stationary OU-type process (11) with marginal inverse Gaussian distribution IG(δ, γ )

(see, for example, Barndorff-Nielsen and Sheppard (2001)), which is self-decomposable and,
hence, infinitely divisible. The PDF of X(t), t ∈ R+, is given by

π(x) = 1√
2π

δeδγ

x3/2 exp

{
−

(
δ2

x
+ γ 2x

)
1

2

}
1[0,∞)(x), δ > 0, γ ≥ 0, (29)

with the Lévy triplet of the form (0, 0, ν), where

ν(du) = 1√
2π

δ

u3/2 exp

{
−γ 2u

2

}
1[0,∞)(u) du,

while the BDLP Z(t) in (11) has the cumulant transform

κ(z) = log E eizZ(1) = izδ

γ
√

1 − 2iz/γ 2
, z ∈ R,

that is, the Lévy triplet of Z(1) is of the form (0, 0, ν̃), and Z(t) is the sum of two independent
Lévy processes: Z(t) = Z1(t) + Z2(t). Here Z1(t), t ∈ R+, is an IG(δ/2, γ ) subordinator
with Lévy density

ν̃1(du) = 1

2
√

2π

δ

u
√

u
exp

{
−γ 2u

2

}
1[0,∞)(u) du, (30)

which has infinitely many jumps in bounded time intervals, and Z2(t), t ∈ R+, is a compound
Poisson subordinator:

Z2(t) = 1

γ 2

P(t)∑
n=1

Z2
n,

where the Zn, n = 1, 2, . . . , are independent copies of the standard normal variable and
P(t), t ∈ R+, is a homogeneous Poisson process with intensity δγ /2. The (finite) Lévy
measure ν̃ of Z2(1) can be computed as

ν̃2(du) = 1

2
√

2π

δγ 2

√
u

exp

{
−γ 2u

2

}
1[0,∞)(u) du. (31)

The correlation function is then

rX(t) = e−λ|t |, t ∈ R.

(C5) Consider a mother process of the form

�(t) = exp{X(t) − cX} with cX = δ
(
γ −

√
γ 2 − 2

)
and γ ≥ √

2,

where X(t), t ∈ R+, is a stationary inverse Gaussian OU-type process with marginal
density (29) and covariance function

RX(t) = δ

γ 3 e−λ|t |, t ∈ R.
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Under condition (C5), we obtain the following moment generating function:

M(ζ) = E exp{ζ(X(t) − cX)} = exp
{
−cXζ + δ

(
γ −

√
γ 2 − 2ζ

)}
, ζ <

γ 2

2
, γ ≥ √

2,

(32)
and the bivariate moment generating function is given by (18), in which the measure ν̃ is given
by (30) and (31) since

M(ζ1, ζ2; (t1 − t2))

= E exp{ζ1(X(t1) − cX) + ζ2(X(t2) − cX)}
= exp{−cX(ζ1 + ζ2)} E exp{ζ1X(t1) + ζ2X(t2)}
= exp{−cX(ζ1 + ζ2)}

× exp

{∫
R

δ
∑2

j=1 ζj exp{−λ(tj − s)} 1[0,∞)(tj − s)

γ

√
1 − 2β

∑2
j=1 ζj exp{−λ(tj − s)} 1[0,∞)(tj − s)/γ 2

ds

}
, (33)

or

M(ζ1, ζ2; (t1 − t2))

= exp{−cX(ζ1 + ζ2)}

× exp

{∫
R

∫
R

(
exp

{
u

2∑
j=1

ζj exp{−λ(tj − s)} 1[0,∞)(tj − s)

}
− 1

− u

( 2∑
j=1

ζj exp{−λ(tj − s)} 1[0,∞)(tj − s)

)
1[−1,1](u)

)

×
(

1

2
√

2π

δ

u
√

u
exp

{
−γ 2u

2

}
+ 1

2
√

2π

δγ 2

√
u

exp

{
−γ 2u

2

})
1(0,∞)(u) du ds

}
.

(34)

Thus, the correlation function of the mother process takes the form

ρ(τ) = M(1, 1; τ) − 1

M(2) − 1
,

where M(2) is given by (32) and M(1, 1; τ) is given by (34). In this case,

logb E �(t)q = 1

log b

(
−q

(
δ
(
γ −

√
γ 2 − 2

))
+ δ

((
γ −

√
γ 2 − 2q

)))
,

and condition (19) holds for q < γ 2/2 with

∫
|u|≥1

equν(du) =
∫ ∞

1
equ 1√

2π

δ

u3/2 exp

{
−γ 2u

2

}
du < ∞.

We formulate the following theorem.

Theorem 4. Suppose that condition (C5) holds, and let Q = {q : 0 < q < γ 2/2, γ ≥ 2}.
Then, for any b > exp{−2cX + δ(γ − √

γ 2 − 4)}, the stochastic processes An(t) defined by (2)
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for the mother process (23) converge in L2 to the stochastic process A(t) as n → ∞ such that,
if A(1) ∈ Lq for q ∈ Q,

E A(t)q ∼ tT (q)+1,

where the Rényi function is given by

T (q) = q

(
1 + δ(γ − √

γ 2 − 2)

log b

)
+ δ

log b

√
γ 2 − 2q − γ δ

log b
− 1.

Moreover,

var A(t) ≥
∫ t

0

∫ t

0
(M(1, 1; u − w) − 1) du dw,

where M is given by (33) or (34).

Proof. Theorem 4 follows from Theorems 1 and 2 and Proposition 1.

We can construct log-inverse Gaussian scenarios for a more general class of finite
superpositions of stationary inverse Gaussian OU-type processes defined by (21), where the
Xj(t), j = 1, . . . , m, are independent inverse Gaussian stationary processes with marginals
IG(δj , γ ), j = 1, . . . , m, and parameters λj , j = 1, . . . , m. Then Xsup(t), t ∈ R+, has the
marginal distribution IG(

∑m
j=1 δj , γ ) and covariance function

Rsup(t) = 1

γ 3

m∑
j=1

δj exp{−λj |t |}, t ∈ R.

The generalisation of Theorem 2 and Proposition 1 to this situation is straightforward and
the statement of Theorem 4 can be reformulated for the process of superposition Xsup with
δ = ∑m

j=1 δj and Mθ (ζ1, ζ2; (t1 − t2)) = ∏m
j=1 Mθj

(ζ1, ζ2; (t1 − t2)), where θ = (δ, γ ) and
θj = (δj , γ ), and λ must be replaced by λj in the expressions for Mθj

(ζ1, ζ2; (t1 − t2)), (33)
or (34).

4.3. Log-normal inverse Gaussian scenario

We need the modified Bessel function of the third kind of index λ:

Kλ(z) =
∫ ∞

0
e−z cosh(x) cosh(λx) dx, Re λ > 0. (35)

Note that, as z → ∞,

Kλ(z) =
√

π

2
z−1/2e−z

(
1 + 4λ2 − 1

8z
+ · · ·

)
, z > 0.

We will use a stationary OU-type process (11) with marginal NIG distribution NIG(α, β, δ, µ),
which is self-decomposable and, hence, infinitely divisible. This process was first introduced
and studied in Barndorff-Nielsen (1998). The PDF of X(t), t ∈ R+, is of the form

π(x) = αδ

π
eδγ K1(α

√
δ2 + (x − µ)2)√

δ2 + (x − µ)2
eβ(x−µ), x ∈ R, (36)

where Kλ(z) is defined by (35) and the set of parameters is

δ > 0, 0 ≤ |β| ≤ α, µ ∈ R, and γ 2 = α2 − β2.
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This distribution is symmetric around µ provided that β = 0. Note that

E X(t) = µ + δβ

γ
, var X(t) = δα2

γ 3 ,

and NIG(α, β, δ, µ) has semiheavy tails, specifically,

NIG(u) ∼ (constant)|u|−3/2 exp{−α|u| + βu} as u → ±∞.

The moment generating function of NIG(α, β, δ, µ) is

K{ζ ; X(t)} = µζ + δ(
√

α2 − β2 −
√

α2 − (β + ζ )2), |β + ζ | < α.

Thus, if the Xj(t), j = 1, . . . , m, are independent so that Xj ∼ NIG(α, β, δj , µj ), j =
1, . . . , m, then we have

X1(t) + · · · + Xm(t) ∼ NIG(α, β, δ1 + · · · + δn, µ1 + · · · + µn).

The Lévy triplet X(t) is of the form (a, 0, ν), where

a = µ + 2π−1δα

∫ 1

0
sinh(βx)K1(αx) dx,

ν(du) = p(u) du = π−1δα|u|−1K1(α|u|)eβu du.

Note that, for NIG(α, 0, 1, 0), we have

p(u) = π−1δα|u|−1K1(α|u|),
while the BDLP Z(t) in (11) has a Lévy measure ν̃ with density

q(u) = (1 − βu)π−1δα|u|−1K1(α|u|)eβu + π−1α2δK0(α|u|)eβu. (37)

The correlation function of the stationary process with marginal density (36) is then

rX(t) = e−λ|t |, t ∈ R.

(C6) Consider a mother process of the form

�(t) = exp{X(t) − cX},
with cX = µ + δ

√
α2 − β2 −

√
α2 − (β + 1)2 and |β + 1| < α,

where X(t), t ∈ R+, is a stationary NIG(α, β, δ, µ) OU-type process with marginal
density (36) and covariance function

RX(t) = δα2

γ 3 e−λ|t |, t ∈ R.

Under condition (C6), we obtain the following moment generating function:

M(ζ) = E exp{ζ(X(t) − cX)}
= exp{−cXζ } exp{µζ + δ(

√
α2 − β2 −

√
α2 − (β + ζ )2)}, |β + ζ | < α, (38)
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and the bivariate moment generating function

M(ζ1, ζ2; (t1 − t2)) = E exp{ζ1(X(t1) − cX) + ζ2(X(t2) − cX)}
= exp{−cX(ζ1 + ζ2)} E exp{ζ1X(t1) + ζ2X(t2)}, (39)

where E exp{ζ1X(t1) + ζ2X(t2)} is given by (16) with Lévy measure ν̃ having density (37).
Thus, the correlation function of the mother process takes the form

ρ(τ) = M(1, 1; τ) − 1

M(2) − 1
,

where M(2) is given by (38) and M(1, 1; τ) is given by (39).
Condition (19) holds for q < α − |β| with∫

|u|≥1
equν(du) =

∫
|u|≥1

equπ−1δα|u|−1K1(α|u|)eβu du < ∞.

We formulate the following theorem.

Theorem 5. Suppose that condition (C6) holds, and let Q = {q : 0 < q < α − |β|, |β + 1| <

α, |β + 2| < α}. Then, for any

b > exp{−2cX} exp{2µ + δ(
√

α2 − β2 −
√

α2 − (β + 2)2)},
the stochastic processes defined by (2) for the mother process (23) converge in L2 to the
stochastic process A(t) as n → ∞ such that, if A(1) ∈ Lq for q ∈ Q,

E A(t)q ∼ tT (q)+1,

where the Rényi function is given by

T (q) = q

(
1 + 1

log b
δ
√

α2 − β2 − 1

log b

√
α2 − (1 + β)2

)

+ δ

log b

√
α2 − (q + β)2 − δ

√
α2 − β2

log b
− 1.

Moreover,

var A(t) ≥
∫ t

0

∫ t

0
(M(1, 1; u − w) − 1) du dw,

where M is given by (39).

Proof. Theorem 5 follows from Theorems 1 and 2 and Proposition 1.

We can construct log-normal inverse Gaussian scenarios for a more general class of finite
superpositions of stationary normal inverse Gaussian OU-type processes defined by (21), where
the Xj(t), j = 1, . . . , m, are independent normal inverse Gaussian stationary processes
with marginals NIG(α, β, δj , µj ), j = 1, . . . , m, and parameters λj , j = 1, . . . , m. Then
Xsup(t), t ∈ R+, has the marginal distribution NIG(α, β,

∑m
j=1 δj ,

∑m
j=1 µj ) and covariance

function

Rsup(t) = α2

γ 3

m∑
j=1

δj exp{−λj |t |}, t ∈ R.
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The generalisation of Theorem 2 and Proposition 1 to this situation is straightforward and
the statement of Theorem 5 can be reformulated for the process of superposition Xsup with
δ = ∑m

j=1 δj , µ = ∑m
j=1 µj , and Mθ (ζ1, ζ2; (t1 − t2)) = ∏m

j=1 Mθj
(ζ1, ζ2; (t1 − t2)), where

θ = (α, β, δ, µ) and θj = (α, β, δj , µj ), and λ must be replaced by λj in the expression for
Mθj

(ζ1, ζ2; (t1 − t2)), (39).

4.4. Log-variance gamma scenario

The next example of a hyperbolic OU process is based on the variance-gamma distribution
(see, for example, Madan et al. (1998), Finlay and Seneta (2006), and Carr et al. (2007)).
We will use a stationary OU-type process (11) with marginal variance gamma distribution
VG(λ, α, β, µ), which is self-decomposable and, hence, infinitely divisible. The PDF of
X(t), t ∈ R+, is

π(x) = γ 2κ

√
π�(κ)(2α)κ−1/2

|x − µ|κ−1/2Kκ−1/2(α|x − µ|)eβ(x−µ), x ∈ R, (40)

where Kλ(z) is defined by (35) and the set of parameters is

γ 2 = α2 − β2, κ > 0, α > |β| > 0, and µ ∈ R.

Note that

E X(t) = µ + 2βκ

γ 2 , var X(t) = 2κ

γ 2

(
1 + 2

(
β

γ

)2)
,

and VG(κ, α, β, µ) has semiheavy tails. The moment generating function of VG(κ, α, β, µ) is

K{ζ ; X(t)} = µζ + 2κ log

(
γ√

α2 − (β + ζ )2

)
, |β + ζ | < α.

Thus, if the Xj(t), j = 1, . . . , m, are independent so that Xj ∼ VG(κj , α, β, µj ), j =
1, . . . , m, then we have

X1(t) + · · · + Xm(t) ∼ VG(κ1 + · · · + κn, α, β, µ1 + · · · + µn).

The Lévy measure ν of X(t) has density

p(u) = κ

|u|eβu−α|u|, u ∈ R.

By (13), the Lévy measure ν̃ of the BDLP Z(t) in (11) has density

q(u) = −p(u) − up′(u),

where p′(u) =

⎧⎪⎨
⎪⎩

−κ

u
eu(β+α)(β + α) + κ

u2 eu(β+α), u < 0,

κ

u
eu(β−α)(β − α) − κ

u2 eu(β−α), u > 0.

The correlation function of the stationary process with marginal density (40) is then

rX(t) = e−λ|t |, t ∈ R.
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(C7) Consider a mother process of the form

�(t) = exp{X(t) − cX},
with cX = µ + 2κ log

(
γ√

α2 − (β + 1)2

)
and |β + 1| < α,

where X(t), t ∈ R+, is a stationary VG(κ, α, β, µ) OU-type process with marginal
density (39) and covariance function

RX(t) = 2κ

γ 2

(
1 + 2

(
β

γ

)2)
e−λ|t |, t ∈ R.

Under condition (C7), we obtain the moment generating function

M(ζ) = E exp{ζ(X(t) − cX)}
= exp{−cXζ } exp

{
µζ + 2κ log

(
γ√

α2 − (β + ζ )2

)}
, |β + ζ | < α, (41)

and the bivariate moment generating function

M(ζ1, ζ2; (t1 − t2)) = E exp{ζ1(X(t1) − cX) + ζ2(X(t2) − cX)}
= exp{−cX(ζ1 + ζ2)} E exp{ζ1X(t1) + ζ2X(t2)}, (42)

where E exp{ζ1X(t1) + ζ2X(t2)} is given by (16) with Lévy measure ν̃ having density (41).
Thus, the correlation function of the mother process takes the form

ρ(τ) = M(1, 1; τ) − 1

M(2) − 1
,

where M(2) is given by (41) and M(1, 1; τ) is given by (42).
Condition (19) holds for q < α − |β|. We formulate the following theorem.

Theorem 6. Suppose that condition (C7) holds, and let Q = {q : 0 < q < α − |β|, |β + 1| <

α, |β + 2| < α}. Then, for any

b > exp{−2cX} exp

{
µ2 + 2κ log

(
γ√

α2 − (β + 2)2

)}
,

the stochastic processes An(t) defined by (2) for the mother process (23) converge in L2 to the
stochastic process A(t) as n → ∞ such that, if A(1) ∈ Lq for q ∈ Q,

E A(t)q ∼ tT (q)+1,

where the Rényi function is given by

T (q) = q

(
1 + 2κ

log b
log

γ√
α2 − (β + 1)2

)

− 2κ

log b
log

√
α2 − (β + q)2 − 2κ

log b
log γ − 1.

Moreover,

var A(t) ≥
∫ t

0

∫ t

0
(M(1, 1; u − w) − 1) du dw,

where M is given by (42).
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Proof. Theorem 6 follows from Theorems 1 and 2 and Proposition 1.

We can construct log-variance gamma scenarios for a more general class of finite
superpositions of stationary variance gamma OU-type processes of the form (21), where the
Xj(t), j = 1, . . . , m, are independent variance gamma stationary processes with marginals
Xj ∼ VG(κj , α, β, µj ), j = 1, . . . , m, and parameters λj , j = 1, . . . , m. Then Xsup(t),
t ∈ R+, has the marginal distribution VG(κ1 +· · ·+κm, α, β, δ, µ1 +· · ·+µm) and covariance
function

Rsup(t) = 2

γ 2

(
1 + 2

(
β

γ

)2) m∑
j=1

κj exp{−λj |t |}, t ∈ R.

The generalisation of Theorem 2 and Proposition 1 to this situation is straightforward and
the statement of Theorem 6 can be reformulated for the process of superposition Xsup with
λ = ∑m

j=1 λj , µ = ∑m
j=1 µj , and Mθ (ζ1, ζ2; (t1 − t2)) = ∏m

j=1 Mθj
(ζ1, ζ2; (t1 − t2)), where

θ = (κ, β, δ, µ) and θj = (κj , α, β, µj ), and λ must be replaced by λj in the expression for
Mθj

(ζ1, ζ2; (t1 − t2)), (39).

4.5. Log-z scenario

The next scenario is based on the z-distribution (see, for example, Grigelionis (2001)). We
consider a PDF of the form

π(x) = 2π exp{2πβ1(x − µ)/α}
αB(β1, β2)(1 + exp{2π(x − µ)/α})β1+β2

, x ∈ R, (43)

where the set of parameters is

α > 0, β1 > 0, β2 > 0, and µ ∈ R

(see Prentice (1975) and Barndorff-Nielsen et al. (1982)). The characteristic function of a
random variable X with PDF (43) is given by

E eizX = B(β1 + iαz/2π, β2 − iαz/2π)

B(β1, β2)
eizµ, z ∈ R.

This distribution has semiheavy tails and is known to be self-decomposable (Barndorff-Nielsen
et al. (1982)) and, hence, infinitely divisible. Due to this infinite divisibility of the z-distribution,
the following generalisation can be suggested.

We will use a stationary OU-type process (11) with marginal generalised z-distribution
Z(α, β1, β2, δ, µ). The characteristic function of X(t), t ∈ R+, is then of the form

E eizX =
(

B(β1 + iαz/2π, β2 − iαz/2π)

B(β1, β2)

)2δ

eizµ, z ∈ R,

where the set of parameters is

α > 0, β1 > 0, β2 > 0, δ > 0, and µ ∈ R.

This distribution is self-decomposable and, hence, infinitely divisible, with the Lévy triplet
(a, 0, ν), where

a = αδ

π

∫ 2π/α

0

exp{−β2x} − exp{−β1x}
1 − e−x

dx + µ
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and
ν(du) = b(u) du,

where b(u) =

⎧⎪⎪⎨
⎪⎪⎩

2δ exp{−2πβ2u/α}
u(1 − e−2πu/α)

, u > 0,

2δ exp{2πβ1u/α}
|u|(1 − e2πu/α)

, u < 0.

Thus, if the Xj(t), j = 1, . . . , m, are independent so that Xj(t) ∼ Z(α, β1, β2, δj , µj ), j =
1, . . . , m, then we have

X1(t) + · · · + Xm(t) ∼ Z(α, β1, β2, δ1 + · · · + δn, µ1 + · · · + µn).

The BDLP Z(t) in (12) has a Lévy triplet (ã, 0, ν̃), where

ã = λµ + αλδ

π

∫ ∞

0

exp{−β2x} − exp{−β1x}
1 − e−x

dx − λ

∫
|x|>1

xω(x) dx,

with the density of ν̃ being given from

ν̃(du) = λω(u) du,

where

ω(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4πδ

α

(
β2 exp

{
−2πβ2

α
u

}
(1 − e−2πu/α) + exp

{
−2π(β2 + 1)

α
u

})

× 1

(1 − e−2πu/α)2 , u > 0,

4πδ

α

(
β1e2πβ1u/α(1 − e2πu/α) + exp

{
2π(β1 + 1)

α
u

})

× 1

(1 − e2πu/α)2 , u < 0.

(44)

The correlation function of the stationary process with marginal density (43) is then

rX(t) = e−λ|t |, t ∈ R.

The PDF of the generalised z-distribution Z(α, β1, β2, δ, µ) has semiheavy tails:

π(x) ∼ C±|x|ρ±e−σ±|x|, |x| → ±∞,

where

ρ± = 2δ − 1, σ+ = 2πβ2

α
, σ− = 2πβ1

α
, and C± =

(
2π

αB(β1, β2)

)2δ e±µσ±

�(2δ)
.

Note that

E X(t) = αδ

π

∫ ∞

0

exp{−β2x} − exp{−β1x}
1 − e−x

dx + µ,

var X(t) = 2α2δ

(2π)2

∫ ∞

0
x

exp{−β2x} + exp{−β1x}
1 − e−x

dx.
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In particular, the generalised z-distribution Z(α, 1
2 + β/2π, 1

2 − β/2π, δ, µ) = M(α, β, δ, µ)

is known as the Meixner distribution (Schoutens and Teugels (1998), Grigelionis (1999),
Morales and Schoutens (2003)). The density function of a Meixner distribution is given by

π(x) = (2 cos(β/2))2δ

2πα�(2δ)
exp

{
β

α
(x − µ)

}∣∣∣∣�
(

δ + i
x − µ

α

)∣∣∣∣
2

, x ∈ R,

where
α > 0, −π < β < π, δ > 0, and µ ∈ R.

Note that
|�(x + iy)|2 ∼ √

2π |y|x−1/2e−π |y|/2 as |y| → ∞.

This distribution is infinitely divisible and self-decomposable with triplet (a, 0, ν), where

a = αδ tan
β

2
− 2δ

∫ ∞

1

sinh(βx/2)

sinh(πx/2)
dx + µ

and

ν(du) = δeβu/α

u sinh(πu/α)
du.

The cumulant function is

C{z; X(t)} = iµz + 2δ log
cos(β/2)

cosh((αz − iβ)/2)
, z ∈ R.

In particular, the hyperbolic cosine distribution Z(α, 1
2 , 1

2 , 0, µ) = M(α, 0, 1
2 , µ) has the PDF

π(x) = 1

α cosh(π(x − µ)/α)
, x ∈ R,

and characteristic function

E eizX(t) = eizµ 1

cosh(αz/2)
, z ∈ R,

while the logistic distribution Z(α, 1, 1, 0, µ) has the PDF

π(x) = 2π exp(π(x − µ)/α)

α(1 + cosh(π(x − µ)/α))
, x ∈ R,

and characteristic function

E eizX(t) = eizµ αz

2 sinh(αz/2)
, z ∈ R.

Another example is the z-distribution Z(2π, k1/2, k2/2, 0, log k1/k2), which is the log Fk1,k2

distribution, where Fk1,k2 is the Fisher distribution (Barndorff-Nielsen et al. (1982)). Note that
the generalised z-distributions and generalised hyperbolic distributions form nonintersecting
sets. However, we can show that some Meixner distributions and corresponding Lévy processes
can be obtained by subordination, that is, by random time change in the Brownian motion (see,
for instance, Morales and Schoutens (2003)).
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(C8) Consider a mother process of the form

�(t) = exp{X(t) − cX}
with cX = 2δ

(
log �

(
β1 + α

2π

)
+ log �

(
β2 − α

2π

)
− log

�(β1)

�(β2)

)
+ µ,

where X(t), t ∈ R+, is a stationary Z(α, β1, β2, δ, µ) OU-type process with covariance
function

RX(t) = (var X(t))e−λ|t |, t ∈ R.

The logarithm of the moment generating function of Z(α, β1, β2, δ, µ) is

K{ζ ; X(t)} = 2δ

(
log �

(
β1 + αζ

2π

)
+ log �

(
β2 − αζ

2π

)

− log
�(β1)

�(β2)

)
+ µζ, ζ ∈

(
−2πβ2

α
,

2πβ1

α

)
.

Under condition (C8), we obtain the moment generating function

M(ζ) = E exp{ζ(X(t) − cX)} = exp{−cXζ }eK{ζ ;X(t)}, |β + ζ | < α, (45)

and the bivariate moment generating function

M(ζ1, ζ2; (t1 − t2)) = E exp{ζ1(X(t1) − cX) + ζ2(X(t2) − cX)}
= exp{−cX(ζ1 + ζ2)} E exp{ζ1X(t1) + ζ2X(t2)}, (46)

where E exp{ζ1X(t1) + ζ2X(t2)} is given by (16) with Lévy measure ν̃ having density (44).
Thus, the correlation function of the mother process takes the form

ρ(τ) = M(1, 1; τ) − 1

M(2) − 1
,

where M(2) is given by (45) and M(1, 1; τ) is given by (46).

Theorem 7. Suppose that condition (C8) holds, and let Q = {q : 0 < 2πβ1/α < q <

2πβ2/α, β1 < β2}. Then, for any

b > exp{−2cX} exp

{
2δ

(
log �

(
β1 + 2α

2π

)
+ log �

(
β2 − 2α

2π

)
− log

�(β1)

�(β2)

)
+ 2µ

}
,

the stochastic processes An(t) defined by (2) for the mother process (23) converge in L2 to the
stochastic process A(t) as n → ∞ such that, if A(1) ∈ Lq for q ∈ Q,

E A(t)q ∼ tT (q)+1,

where the Rényi function is given by

T (q) = q

(
1 + 2δ(log �(β1 + α/2π) + log �(β2 − α/2π) − log(�(β1)/�(β2)))

log b

)

− 2δ

log b

(
log �

(
β1 + qα

2π

)
+ log �

(
β2 − qα

2π

))
+ 1

log b
2δ log

�(β1)

�(β2)
− 1.

Moreover, var A(t) ≥ ∫ t

0

∫ t

0 (M(1, 1; u − w) − 1) du dw, where M is given by (46).
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Proof. Theorem 7 follows from Theorems 1 and 2 and Proposition 1.

We can construct log-z scenarios for a more general class of finite superpositions of sta-
tionary OU-type processes of the form (21), where the Xj(t), j = 1, . . . , m, are indepen-
dent stationary processes with marginals Xj(t) ∼ Z(α, β1, β2, δj , µj ), j = 1, . . . , m, and
parameters δj , µj , j = 1, . . . , m. Then Xsup(t), t ∈ R+, has the marginal distribution
Z(α, β1, β2,

∑m
j=1 δj ,

∑m
j=1 µj ) and covariance function

Rsup(t) =
(

2α2

(2π)2

∫ ∞

0
x

exp{−β2x} + exp{−β1x}
1 − e−x

dx

) m∑
j=1

δj exp{−λj |t |}, t ∈ R.

The generalisation of Theorem 2 and Proposition 1 to this situation is straightforward and
the statement of Theorem 7 can be reformulated for the process of superposition Xsup with
δ = ∑m

j=1 δj , µ = ∑m
j=1 µj , and Mθ (ζ1, ζ2; (t1 − t2)) = ∏m

j=1 Mθj
(ζ1, ζ2; (t1 − t2)), where

θ = (α, β1, β2, δ, µ) and θj = (α, β1, β2, δj , µj ), and λ must be replaced by λj in the
expression for Mθj

(ζ1, ζ2; (t1 − t2)), (46).
In a similar manner, we can construct scenarios such as the log-reciprocal inverse Gaussian

scenario based on the results of Barndorff-Nielsen and Koudou (1998), the log-tempered
stable scenario based on the results of Barndorff-Nielsen and Shephard (2002), (2003), and
the log-Euler gamma scenario based on Euler’s gamma distribution (see Grigelionis (2003)).
In principle, it is possible to obtain log-hyperbolic scenarios for which there exist exact forms
of Lévy measures of the OU process and the BDLP Lévy process; however, some analytical
work is still to be carried out. This will be done elsewhere.

5. Proofs of Theorem 2 and Proposition 1

5.1. Proof of Theorem 2

Without loss of generality, we treat the case in which λ = 1. Let b ∈ R be the drift, let
σ 2 ≥ 0 be the variance of the Gaussian part, and let N(ds, du) be the Poisson random measure
for the jumps with compensation Ñ(ds, du) of the Lévy–Itô decomposition of Z . Let B(t)

denote the standard Brownian motion. Then the process X is the stationary solution of the
stochastic differential equation

dX(t) = (−X(t) + b) dt + σ dB(t) +
∫

|x|<1
xÑ(t, dx) +

∫
|x|≥1

xN(t, dx)

(see, for example, Applebaum (2004, pp. 108, 216)). We apply Itô’s formula to f (x) := eqx

to obtain

eqX(t) − eqX(0) =
∫ t

0
qeqX(s−)(−X(s−) + b) ds +

∫ t

0
qσ 2eqX(s−) dB(s)

+ 1

2

∫ t

0
q2σ 2eqX(s−) ds +

∫ t

0

∫
|x|≥1

(eqx − 1)eqX(s−)N(ds, dx)

+
∫ t

0

∫
|x|<1

(eqx − 1)eqX(s−)Ñ(ds, dx)

+
∫ t

0

∫
|x|<1

(eqx − 1 − qx)eqX(s−)ν(dx) ds.
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We rearrange the above expression to get the following semimartingale decomposition (Apple-
baum (2004, p. 252)):

eqX(t) − eqX(0)

=
∫ t

0

(
eqX(s−)qσ 2 dB(s) +

∫
x∈R

eqX(s−)(eqx − 1)Ñ(ds, dx)

)

+
∫ t

0
eqX(s−)

(
−X(s−)q + bq + 1

2
σ 2q2 +

∫
|x|≥1

(eqx − 1)ν(dx)

+
∫

|x|<1
(eqx − 1 − qx)ν(dx)

)
ds.

For the martingale part, by the Burkhölder–Gundy inequality (see Revuz andYor (1991, p. 151)
for the continuous case, and Bichteler (2002, p. 213) for the general case with jumps) and the
quadratic variation of stochastic integrals (Applebaum (2004, p. 230)), we have, for each t0 > 0,

E max
0≤t≤t0

∣∣∣∣
∫ t

0

(
eqX(s−)σ 2 dB(s) +

∫
x∈R

eqX(s−)(eqx − 1)Ñ(ds, dx)

)∣∣∣∣
≤ C E

∣∣∣∣
∫ t0

0
e2qX(s−)σ 4 ds +

∫ t0

0

∫
R

e2qX(s−)(eqx − 1)2N(ds, dx)

∣∣∣∣
1/2

.

For the drift part,

E max
0≤t≤t0

∣∣∣∣
∫ t

0
eqX(s−)

(
−X(s−)q + bq + 1

2
σ 2q2 +

∫
|x|≥1

(eqx − 1)ν(dx)

+
∫

|x|<1
(eqx − 1 − qx)ν(dx)

)
ds

∣∣∣∣
≤

∫ t0

0
E

(
eqX(s−)

(
|X(s−)|q + |b|q + 1

2
σ 2q2 + C1 + C2

))
ds, (47)

where

C1 :=
∫

|x|≥1
|eqx − 1|ν(dx), C2 :=

∫
|x|<1

|eqx − 1 − qx|ν(dx),

which are both finite by our assumption of the measure ν.
We note that the process t → X(t−) is stationary and that, for each fixed t , E g(X(t)) =

E g(X(t−)) for every nonnegative continuous function g(·) by the quasi-left-continuity of the
process Z. For the drift part, the right-hand side of (47) is then less than or equal to

(
E eqX(0)|X(0)|q + E eqX(0)

(|b|q + 1
2σ 2q2 + C1 + C2

))
t0.

For the martingale part, we observe that E
√

Y ≤ √
E Y for every nonnegative random variable

Y ; thus, the martingale part is less than or equal to

(
E

∣∣∣∣
∫ t0

0
e2qX(s−)σ 4 ds +

∫ t0

0

∫
R

e2qX(s−)(eqx − 1)2N(ds, dx)

∣∣∣∣
)1/2

. (48)

The first integral in (48) is less than or equal to

(constant) E e2qX(0)t0.
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Since s → X(s−) is left continuous, by the compensation formula in Kyprianou (2006,
Theorem 4.4), the second integral in (48) is less than or equal to

(constant) E e2qX(0)t0

(
q2

∫
|x|≤1

x2ν(dx) +
∫

|x|≥1
(eqx − 1)2ν(dx)

)
.

The assumption that
∫
|x|≥1 g(x)ν(dx) < ∞, where g(x) denotes any of the functions e2qx , eqx ,

or eqx |x|, implies that E g(Z(t)) < ∞ for each t (see, for example, Sato (1999, Theorem 25.3)).
This again implies that E g(X(0)) < ∞ by Lemma 2.1 of Barndorff-Nielsen (2001).

The above arguments entail that

∞∑
n=0

c(q, b−n) < (constant)
∞∑

n=0

1

bn/2 < ∞,

which proves the theorem.

5.2. Proof of Proposition 1

The proof depends on the Laplace transform of the Wiener–Lévy integral (Applebaum (2004,
pp. 213, 214)). Let, for each t > 0,

Y (t) :=
∫ t

0
ft (s) dZ(s),

where the process Z has drift b, with σ 2 = 0 and Lévy measure ν̃ satisfying the integrability
condition

∫
|x|>1 |x|ν̃(dx) < ∞. The following lemma is an adaption of Applebaum (2004,

pp. 91, 94).

Lemma 1. Assume that ν̃ of Proposition 1 satisfies the exponential integrability condition that,
for some θ > 0,

∫
|x|>1 eθx ν̃(dx) < ∞. Then, for each t > 0 and each ft (s) which is positive,

increasing in s, and such that ft (s) ≤ 1,

E eθY (t) = exp

{
θb

∫ t

0
ft (s) ds

}

× exp

{∫ t

0

∫
R

(exp{θft (s)x} − 1 − θft (s)x 1[−1,1](x))ν̃(dx) ds

}
.

Proof. The case in which ft (s) ≡ 1 is given in Applebaum (2004, pp. 91, 94), written in
the Laplace transform. The general case of positive continuous ft (s) with ft (s) ≤ 1 can be
obtained by Riemann sum approximation.

Returning to the proof of Proposition 1, we assume that λ = 1. By the integral representation
of X we have

X(t) = e−tX(0) +
∫ t

0
e−(t−s) dZ(s), (49)

and the two parts of the right-hand side of (49) are independent (Applebaum (2004, p. 216)).
Thus,

E(eX(t)eX(0)) = E exp{(e−t + 1)X(0)} E

(
exp

{∫ t

0
e−(t−s) dZ(s)

})
. (50)

Now we fix a given t > 0. The first expectation on the right-hand side of (50) is less than or equal
to E e2|X(0)|. We show that the second expectation has an exponential decay under the supposed
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conditions on Z in Proposition 1. Applying Lemma 1 to ft (s) := f (s) := e−(t−s) 1{0≤s≤t−δ}
with θ = 1, where we choose δ such that e−δ < β, we have

E exp

{∫ t

0
e−(t−s) dZ(s)

}

≤ eb(β−1) exp{b(1 − e−t )} exp

{∫ t

0

∫
|x|≤1

f 2(s)x2ν̃(dx) ds

}

× exp

{∫ t

0

∫
|x|>1

(ef (s)x − 1)ν̃(dx) ds

}
.

For each t > 0, exp{b(1 − e−t )} ≤ e2|b| and exp{∫ t

0

∫
|x|≤1 f 2(s)x2ν̃(dx) ds} ≤ ec/2, c =∫

|x|≤1 x2ν̃(dx). Meanwhile,

exp

{∫ t

0

∫
|x|>1

(ef (s)x − 1)ν̃(dx) ds

}

≤ exp

{∫ t

0

∫
|x|>1

ef (s)x ν̃(dx) ds

}
e−tc′

, c′ = ν̃(|x| > 1).

By the assumption on the density of ν,
∫

|x|>1
ef (s)x ν̃(dx) ≤ (constant)

∫
|x|>1

e−(β−f (s))|x| dx ≤ (constant)
1

β − f (s)
e−(β−f (s)).

We write g(s) = β − f (s). By the definition of f (s) we see that

∫ t

0

e−g(s)

g(s)
ds ≤

∫ t

0

−g′(s)
g(s)

ds = log
1

g(t)
− log

1

g(0)
,

which is bounded in t . Therefore, for each given t > 0,

E exp

{
−

∫ t

0
e−(t−s) dZ(s)

}
≤ (constant)e−tc′

,

c′ = ν̃(|x| > 1), as required.
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