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Characterization of unsteady separation in a
turbulent boundary layer: mean and
phase-averaged flow
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A spatially developing turbulent boundary layer subject to a space- and time-dependent
pressure gradient is analysed via large-eddy simulation. The unsteadiness is prescribed
by imposing an oscillating suction–blowing velocity profile at the top boundary of the
computational domain. The alternating favourable and adverse pressure gradients cause
the flow to separate and reattach to the wall periodically. A range of reduced frequencies
k was investigated, spanning from a very rapid flutter-like motion to a slow, quasi-steady
flapping. The Reynolds number based on the boundary-layer displacement thickness δ∗o
at the inflow plane is Re∗ = 1000. Both time- and phase-averaged fields are analysed and
results are compared with steady conditions. The reduced frequency k has a significant
effect on the transient flow-separation process. For high k the separation bubble does
not grow as thick as in the corresponding steady case, but the length of the bubble
remains comparable; hysteresis is observed in the near-wall region. As k is reduced,
a threshold is met at which the separation bubble grows in the wall-normal direction.
However, the length of the bubble is significantly reduced again when compared with
the steady case. At this frequency, the region of slow-moving fluid generated by the flow
reversal is advected downstream, causing a decorrelation between the forcing (the imposed
free-stream velocity) and the velocity and pressure downstream of the separation bubble.
Moreover, hysteresis effects are shifted away from the wall. At the lowest frequency a
quasi-steady solution is approached; however, transient effects are still present in the
backflow region.
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1. Introduction

Almost all turbulent boundary-layer (TBL) flows of practical relevance are subject to
pressure gradients, usually introduced by changes in geometry. The pressure gradient
might be favourable (FPG) or adverse (APG), and both conditions are ubiquitous
in engineering and physical systems such as wings, turbomachinery and geophysical
applications. A strong APG may lead to flow separation. In diffusers and turbine blades,
for instance, the formation of a closed recirculation region (referred to as a ‘turbulent
separation bubble’, TSB) caused when the flow suddenly separates and reattaches on the
wall, is associated with a loss of efficiency and a drop in performance. In many cases,
however, (e.g. helicopter blades, turbine blades, swimming fish, pitching airfoils etc.) the
pressure gradient varies both spatially and temporally. The study of the separating flow
caused by an unsteady pressure gradient on a flat plate will be the focus of this paper.
In the rest of this section, the literature most closely related to the present work will be
reviewed, first for the steady, and then for the unsteady case. Subsequently, the objectives
of this study will be discussed, followed by an outline of the rest of the paper.

1.1. Steady pressure-induced separation
Many experiments focused on investigating geometry-induced separating flows (e.g. flow
over a backward-facing step or a bluff body) in which the separation point is fixed in
space (Simpson 1989). We will focus, instead, on pressure-induced separating flows, in
which the free-stream velocity distribution causes strong pressure gradients on the wall,
leading eventually to the formation of a closed separation bubble. For instance, Samuel &
Joubert (1974) investigated a spatially developing TBL under increasing APG and noted
that the mean-velocity profile develops a larger outer-wake region as the strength of the
APG increases. Perry & Fairlie (1975) fixed the shape of the flexible roof of the duct
and generated a pressure field that induced the formation of a closed separation bubble.
Their inviscid model for turbulent separation was shown to be capable of predicting the
gross properties of the flow fields. Another example involves extensive measurements
of a separating turbulent boundary layer under an airfoil-type pressure distribution; see
Simpson, Strickland & Barr (1977). Here, important features caused by the APG on a
TBL were highlighted. It was found that the law-of-the-wall velocity-profile scaling is
valid up to the intermittent separation region, and that the separated flow shares common
characteristics with a free-shear mixing layer.

Results from early experiments on separated turbulent boundary layers and their
underlying physical features were collected in the comprehensive and complete review
papers by Simpson (1981, 1985, 1987, 1989). It is now widely accepted that the word
separation refers to an entire process that extends in space. Three regions can be identified:
intermittent detachment (instantaneous backflow 1 % of the time); transitory detachment
(instantaneous backflow 50 % of the time); and detachment, which occurs (on a smooth
surface) when the time-averaged wall shear stress goes to zero (τ̄w = 0). Na & Moin (1998)
among others also used the mean dividing streamline (ψ = 0) to identify the separation
point, and found good agreement with the location corresponding to zero wall shear stress.

Patrick (1985) performed an experimental study of a large-scale separation bubble
on a flat plate. It was observed that the reattachment region was highly unstable
and characterized by low-frequency, non-periodic flapping caused by the advection
of large eddies downstream of the reattachment location. This analysis was taken
further by the recent investigations by Weiss, Mohammed-Taifour & Schwaab (2015)
and Mohammed-Taifour & Weiss (2016) who analysed the unsteady behaviour of an
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incompressible, massively separated TBL generated by a combination of FPG and
APG. They corroborated the findings of Patrick (1985) and observed that the TSB was
characterized by two distinct, unsteady time-dependent phenomena: a breathing motion
(contraction–expansion) of the TSB at low frequency, and a medium-frequency shedding
motion of turbulent structures downstream of the TSB.

Coleman & Spalart (1993) were among the first to perform a direct numerical simulation
(DNS) of a weakly separated turbulent boundary layer on a flat plate. Although their inflow
velocity profile was not perfectly developed (due to Reynolds number limitations), they
were able to draw significant conclusions: the severe effects of flow separation on the flow
physics not only affect the boundary-layer assumption but also several assumptions often
used in turbulence modelling, therefore highlighting the urge of a thorough study of this
type of flows.

Of particular note is the work conducted by Na & Moin (1998) on a massively separated
TBL with an inflow Reynolds number (based on momentum thickness) of Reθ = 300. The
generation of a steady, closed TSB was achieved by imposing a suction–blowing velocity
profile at the top boundary of the domain, a condition that set the standard for many
following studies (Abe 2017; Wu & Piomelli 2018). They found that both detachment and
reattachment points were not fixed in space but fluctuating upstream and downstream, and
observed that flow detachment occurred over a region rather than a point. Using different
definitions of the mean separation point from Simpson (1989), they found good agreement
between the mean dividing streamline (ψ = 0) and the location of zero mean wall shear
stress.

More recent simulations of separated TBLs have reached higher Reynolds numbers,
and use longer computational domains to promote flow development. Abe (2017) analysed
wall-pressure fluctuations of a TSB over a flat plate for a range of Reynolds numbers up to
Reθ = 900, using a numerical methodology similar to that of Na & Moin (1998). Particular
importance was given to the Reynolds number dependence of wall-pressure fluctuations.

Wu & Piomelli (2018) performed a large-eddy simulation (LES) of a TBL over smooth
and rough walls. They observed that streamline detachment occurred earlier for the rough
case, and that due to the momentum deficit caused by the roughness, the separation region
was significantly larger compared with the smooth case.

Continuing their early work in 1997, Coleman, Rumsey & Spalart (2018) performed
DNS of several TBL cases with the formation of a small closed TSB in the domain. By
changing both the magnitude of the pressure gradients and the Reynolds number, they
were able to generate an extensive dataset with the objective of improving turbulence
modelling capabilities. Extra care this time was put to have a well-developed turbulent
inflow boundary condition and a longer domain to allow flow development downstream of
the pressure-gradient region.

1.2. Unsteady pressure-induced separation
While the studies cited above consider pressure gradients that vary only spatially, in many
cases the pressure gradient is unsteady. As described by Simpson (1989) the term unsteady
here refers to an organized time-dependent motion, in contrast to the inherently unsteady
aperiodic character of turbulence. The focus here is on flows in which the unsteadiness is
generated by applying a periodic boundary condition on the TBL.

Based on dimensional analysis the most important parameter governing the unsteadiness
is the reduced frequency, k, defined as

k = πfL/U, (1.1)
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where f is the imposed frequency of the perturbation, L represents the characteristic length
scale of the problem and U the velocity scale. The reduced frequency represents the
ratio between the convective time scale of the flow, and the imposed unsteady time scale
(Schatzman & Thomas 2017).

The response of the flow to the unsteadiness is greatly dependent on the reduced
frequency, k, and threshold values have been identified by Leishman (2006) in his work
on helicopter aerodynamics. A reduced frequency k = 0 corresponds to nominally steady
flow. When 0 < k < 0.05 the flow is generally considered to be quasi-steady. As the
reduced frequency grows larger the effects associated with acceleration dominate the flow
physics. To be noted is the existence of two sources of ambiguity: (i) the length scale L
is highly dependent on the specific problem, and its choice is arbitrary in the case of a
flat-plate TBL, (ii) the velocity scale U, in the case of rotor dynamics, is continuously
changing. Therefore, the specific numbers for reduced frequency limits mentioned above
should not be considered universal.

Many researchers, starting in the late 1950s worked on quantifying unsteady effects
on the flow field by carrying out experiments using free-stream perturbations and
by varying the reduced frequency k. The common conclusion reached by several
investigations (Karlsson 1959; Schachenmann & Rockwell 1976; Kenison 1978; Parikh,
Reynold & Jayaraman 1982; Simpson, Shivaprasad & Chew 1983; Brereton, Reynolds &
Jayaraman 1990) was that the mean-velocity profile is nearly unaffected by the free-stream
unsteadiness over a wide range of reduced frequencies, testifying to the robustness of the
mean structure of a TBL.

Covert & Lorber (1984) performed measurements of an unsteady TBL over a
NACA0012 airfoil for a wide range of reduced frequencies and several APGs. They found
that mean profiles were nearly independent of the reduced frequency in a mild APG.
However, for an APG strong enough to cause incipient separation, differences arose in
the velocity profile as the frequency was increased.

In their recent work Schatzman & Thomas (2017) experimentally investigated an
unsteady APG turbulent boundary layer at a reduced frequency k ≈ 0.12. They showed
that, for an APG strong enough to generate an inflectional velocity profile, the flow was
then dominated by the existence of an embedded shear layer closely related to the inviscid
instability of the outer inflection point. Using the scaling parameters of the embedded
shear layer, they were able to obtain similarity of both mean and phase-averaged velocity
profiles. Finally, they conjectured that the embedded shear layer might be a generic
characteristic of all APG turbulent boundary layers.

One important feature of unsteady separating TBLs is that an oscillating cycle of APG
and FPG can generate transient (or dynamic) flow separation that is significantly different
from the steady case. Common to airfoils in manoeuvring procedures, turbine blades and
helicopter rotor blades, dynamic flow separation is associated with a drop in performance
and the onset of dynamic stall (Leishman 2006; Rival & Tropea 2010; Williams et al.
2015). Transient separation has been the subject of many experimental studies and was
found to be the reason behind the existence of dynamic hysteresis in the lift-force and
pitching-moment curves (Williams et al. 2015). From a fluid dynamics perspective,
dynamic hysteresis is observed when a physical quantity assumes two different values
at corresponding phases in a periodic cycle, and it is often used in unsteady aerodynamics
to characterize the behaviour of the lift and drag coefficients for a cycle of varying angle
of attack (Rival & Tropea 2010; Williams et al. 2017).

McCroskey (1982) reviewed results of experiments and numerical simulations of
unsteady flows over pitching airfoils with particular emphasis on unsteady separation and
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dynamic stall. He showed that dynamic stall will occur on any airfoil (or other lifting
device) subject to sufficiently fast, time-dependent motions (e.g. pitching, plunging, etc.)
that takes the angle of attack rapidly above its static stall value. The flow physics in these
conditions has been shown to be drastically different from the same airfoil under steady
flow conditions. Moreover, if the angle of attack oscillates about the static stall angle, the
characteristic fluid dynamic forces and moments are affected by large hysteresis effects
(McCroskey 1982; Simpson 1989).

The presence of hysteresis effects, and the associated deterioration of aerodynamic
performance, have been the subject of several subsequent studies (Lissaman 1983; Selig
et al. 1996; Ekaterinaris & Platzer 1998). It was found that, depending on the Reynolds
number, two types of separation bubble were formed over the airfoil denoted as long
and short bubbles for low and high Reynolds numbers, respectively. The increasing
hysteresis effects were found to have different characteristics depending on whether they
were generated by long or short separation bubbles. Moreover, the magnitude of the
hysteresis, and the shape of the hysteresis loops varied in a highly nonlinear manner with
the amplitude of the oscillation, mean angle of attack and reduced frequency of the airfoil.

Rival & Tropea (2010) experimentally analysed the effects of reduced frequency k and
angle of attack on a dynamic airfoil for simple and combined pitching and plunging
motions. When k was increased from 0.05 to 0.1 the hysteresis curve was observed to
switch from clockwise to the counter-clockwise rotation, representing an increase in the
total aerodynamic lag.

Williams et al. (2015) carried out wind tunnel experiments of a pitching airfoil and
showed that the lift coefficient, when transient separation occurs, exhibits dynamic
hysteresis. The hysteresis was found to be highly dependent on the pitching manoeuvre,
pitching frequency and flow separation. Moreover, the hysteresis loop was observed
to change its shape as the frequency was increased and was present at both high
and low pitching rates, which justifies the conclusion that dynamic stall (happening at
high frequencies) is not a necessary condition for dynamic hysteresis (Williams et al.
2015).

The onset of dynamic stall influences the behaviour of the detached flow region. In
many cases the stalled flow region was found to be highly unstable: Mullin, Greated
& Grant (1980) reported that Lebouche and Martin performed an experiment in which
the unsteadiness was tested by pulsating the incoming flow in a duct with enlargements
on both sides to generate symmetric flow separation. They found a limiting value of
reduced frequency k below which the recirculation vortex was shed downstream. In their
own experiment of a pulsating flow over a backward-facing step, Mullin et al. (1980)
corroborated the findings by Lebouche and Martin and found that the separated-flow
region behind the step was strongly perturbed by the free-stream oscillation, and then
finally advected downstream.

In a review paper on separated flows, Simpson (1989) described the occurrence of
dynamic stall in a diffuser. Even in this case, the stalled-fluid region grows in the
wall-normal direction, becomes unstable and is washed out of the diffuser.

The literature on unsteady flows studied via numerical simulations is also quite
substantial, especially for the case of a pitching airfoil. However, the spatially developing
TBL under the effect of unsteady pressure gradients, with alternating APG and FPG has
been the subject of fewer studies. In the following, we summarize only those most relevant
to our work.

Spalart & Baldwin (1989) performed a DNS of a turbulent, oscillatory boundary layer
in which the free-stream velocity U∞ varied sinusoidally around a zero mean. A variety
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of flow behaviours, including the reversal of the Reynolds shear stress, were observed.
Attention was given to develop a theory for the velocity and Reynolds-stress profiles at
high Reynolds numbers that could improve turbulence models.

Scotti & Piomelli (2001) carried out direct and LESs of a turbulent pulsating flow in
a periodic channel. They examined a wide range of frequencies and pressure gradients.
From the study of the phase-averaged quantities they noticed the presence of waves that
originate in the viscous and buffer layers and propagate away from the wall. They also
introduced the concept of the turbulent Stokes length lt, which defines how far vorticity
waves, generated near the wall, penetrate into the flow.

In their very recent investigation, Park, Ha & Donghyun (2021) analysed a TBL
under unsteady APGs at a reduced frequency k = 0.625 with the aim of testing several
turbulence models (K−ω, where K is the turbulent kinetic energy and ω the turbulent
frequency, and Spalart–Allmaras) and provide insights into their accuracy of predicting
unsteady separated flows. The APG was periodically varied to obtain dynamic separation
and reattachment but the pressure-gradient distribution was always adverse to favourable
and the TSB never disappeared. They found that turbulence models can qualitatively
predict the formation of the separation bubble, but discrepancies were found on the phase
response and near-wall behaviour.

1.3. Objectives and outline
Although much effort has been invested to shed light on the complexity of separated flows,
many questions still remain unanswered. Among them are: (i) How does the reduced
frequency k affect the transient separation cycle of a flat-plate TBL? (ii) What are the
underling physical characteristics behind dynamic hysteresis and their consequences for
the flow behaviour? (iii) Can a simulation of a TBL under unsteady pressure gradients
provide valuable insights into the dynamic stall process?

The present work aims at tackling these issues, with the additional objective of creating
a dataset that can be used to assess the accuracy of turbulence models. The configuration
studied, a flat-plate turbulent boundary layer with imposed pressure gradient, is much
simpler than what is found in practical applications, which may include streamwise and/or
spanwise curvature, roughness, etc. Isolating the effect of the pressure gradient in a
simplified geometry can, however, yield useful information, relevant to more complex
cases. This approach has been demonstrated to give valuable insight into the physics of
separation in previous studies (Na & Moin 1998; Abe 2017; Wu & Piomelli 2018). We will
show, in fact, that many phenomena that characterize unsteady separation in realistic flows
can be observed in this simplified configuration as well.

The paper is structured as follows. Section 2 describes the numerical set-up (governing
equations, boundary conditions, unsteadiness and simulation parameters). Section 3
presents the simulation results, both for steady and unsteady pressure gradients. Results
are shown for a wide range of reduced frequencies k and compared with the corresponding
steady cases. Finally, § 4 contains concluding remarks and highlights possible directions
for future investigations.

2. Problem formulation

2.1. Governing equations and boundary conditions
In the present work, simulations are performed using the LES technique. The
incompressible Navier–Stokes equations are solved for filtered quantities (here indicated
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y

z x

U

ZPG

ZPG

APG–FPGMain simulation
Auxiliary simulation

Lx = 600δo
∗

Lz = 55δo
∗

Reδo
∗ = 1000

Ly = 64δo
∗

Inflow plane

Figure 1. Sketch of the computational domain. A parallel auxiliary simulation is used to generate the inflow
boundary condition at the desired Re∗.

with an bar)

∂ ūi

∂xj
= 0, (2.1)

∂ ūi

∂t
+ ∂

∂xj

(
ūiūj

) = − ∂ p̄
∂xi

+ ν∇2ūi − ∂τij

∂xj
, (2.2)

where, x1, x2 and x3 (or x, y, z) are the streamwise, wall-normal and spanwise directions,
ūi (or ū, v̄, w̄) the velocity components in the coordinate directions, p̄ is the pressure
(divided by the constant density), ν is the kinematic viscosity, and τij = uiuj − ūiūj is
the subfilter-scale stress tensor. In the present study τij is modelled using the Vreman
eddy-viscosity model (Vreman 2004). The computational domain is shown in figure 1
(a black arrow denoting the flow direction). The length and velocity scales used for
normalization are the boundary-layer displacement thickness and the free-stream velocity
at the inflow plane, δ∗o and Uo. The Reynolds number based on δ∗o and Uo is Re∗ = 1000.
In the following the overline will be dropped, and ui, p will be used to represent the filtered
velocity and pressure.

The inflow boundary condition is generated using an auxiliary simulation as
proposed by Lund, Wu & Squires (1998) (figure 1). The auxiliary simulation uses the
recycling/rescaling boundary conditions (also proposed in that paper) in the streamwise
direction. A plane at the desired Reynolds number is extracted from the auxiliary
calculation and interpolated to match the resolution and domain size of the main
simulation. A convective boundary condition is prescribed at the outlet (Orlanski 1976).
On the bottom wall, the no-slip boundary condition is applied.

The unsteady pressure gradient is generated by imposing a vertical velocity V∞(x, t) at
the free stream, that changes both in space and time

V∞(x, t) = Vo(x) sin
(

2π
t
T

)
= U∞(x, t)

dδ∗

dx
+ (δ∗ − Ly)

dU∞
dx

, (2.3)

where T is the oscillation period, and Vo is the streamwise distribution of wall-normal
velocity, which was chosen to match the case studied by Na & Moin (1998). Here, δ∗ is
the displacement thickness, and Ly is the domain height. This approach is analogous to
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the use of a contoured wind tunnel ceiling in experiments, with the far-field streamlines
representative of the wind tunnel shape. The free-stream velocity in the streamwise
direction, U∞, is obtained by imposing a zero-vorticity condition on the top boundary
(Na & Moin 1998; Abe 2017; Wu & Piomelli 2018)

∂u
∂y

∣∣∣∣
y=Ly

= dV∞
dx

; ∂w
∂y

∣∣∣∣
y=Ly

= 0. (2.4a,b)

2.2. Numerical method
The computational domain is Lx × Ly × Lz = 600δ∗o × 64δ∗o × 55δ∗o in all cases. The
dimensions of the domain were chosen based on cases studied in the literature; the
domain length, in particular, is significantly longer than that used by Na & Moin (1998)
and Abe (2017). This length is sufficient to ensure a relaxation of the boundary layer
towards equilibrium in all the steady cases. A uniform grid in the streamwise and
spanwise directions, and a stretched grid in the wall-normal direction, are employed. A
grid-convergence study was performed (which will be described momentarily) and the
final grid uses Nx × Ny × Nz = 1536 × 192 × 256 points. In wall units (defined using the
friction velocity uτ at the inflow plane) we have	x+ = 18.7,	y+

min = 0.7 and	z+ = 10,
values comparable to direct numerical simulations for both APGs (Na & Moin 1998) and
zero pressure gradient (ZPG) (Spalart 1988; Schlatter & Örlü 2010).

The governing equations (2.1)–(2.2) are solved using second-order accurate central
differences in space on a staggered grid. The fractional-step method is used for time
advancement (Chorin 1968; Kim & Moin 1985). A second-order accurate semi-implicit
time-advancement method is used in which the Crank–Nicolson scheme is employed for
the wall-normal diffusive terms, while a low-storage third-order Runge–Kutta scheme is
applied to the remaining terms. The Poisson equation is solved directly using a fast Fourier
transform in the spanwise direction, a fast cosine transform in the streamwise direction
and a direct solver for the resulting tridiagonal matrix in the wall-normal direction. The
code is parallelized using the message-passing interface and has been well validated and
previously applied to similar cases (Keating et al. 2004; Yuan & Piomelli 2015; Wu &
Piomelli 2018).

A grid-convergence study has been carried out for a steady APG case, with the
free-stream wall-normal velocity corresponding to the strongest APG. Figure 2 shows
the free-stream velocity U∞ and the streamwise mean-velocity profiles at three locations
in the domain. The grid mentioned above was compared with a coarser one using
1152 × 129 × 152 points; the difference in the mean velocity is less than 2 %. Reynolds
stresses were also compared (not shown here) and showed good agreement. Finally,
figure 3 shows the wall-pressure and skin-friction coefficients

Cp = 2
(
Pw − Pw,o

)
U2

o
; Cf = 2τw

ρU2
o

(2.5a,b)

for the two grids compared with reference data from the literature; the present LES results
are within 4 % of the DNS data; the difference from the pressure coefficient measured by
Weiss et al. (2015) using a low-speed, open-circuit, blower boundary-layer wind tunnel
is probably due to a slight difference in the blowing section of the transpiration velocity
profile V∞. The difference in Cf between the present data and those by Abe (2017) is
probably due to the chosen length of the computational domain. In the present study 100δ∗o
are left for flow development before and after the pressure gradient region. The domain
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Figure 2. (a) Free-stream velocity U∞ (black lines represent the locations where the velocity profiles are
extracted), and (b) mean velocity at three different streamwise locations. Blue lines denote the 1536 × 192 ×
256 grid; red lines denote the 1152 × 129 × 152 grid.
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Figure 3. Distribution of (a) the mean pressure coefficient Cp and (b) the skin-friction coefficient Cf . Blue
dashed line, 1536 × 192 × 256 mesh; red dashed line, 1152 × 129 × 152 mesh; � Abe (2017); ◦ Weiss et al.
(2015).

used by Abe (2017), on the other hand, was considerably shorter, and most importantly did
not include a recovery length in which the pressure gradient was nominally zero.

2.3. Simulation parameters
The unsteadiness was imposed by modulating the wall-normal free-stream velocity using a
sine function. We define a phase angleΦ = 2π(t + nT)/T (with integer n). Figure 4 shows
the free-stream streamwise velocity distribution at four phases. At t = nT or Φ = 0◦ and
t = (n + 1/2)T orΦ = 180◦ the pressure gradient is nominally zero. For 180 < Φ < 360◦
the free-stream velocity first decreases (causing an APG) and then returns to its inflow
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Figure 4. Free-stream velocity at four phases in the cycle. Black arrows denoting the direction of
incrementing phase angle Φ.

value (causing a FPG). The maximum APG is achieved at Φ = 270◦. Conversely, for
0 < Φ < 180◦ a FPG is followed by an APG, the maximum FPG occurring at Φ = 90◦.

For post-processing, the oscillation period was divided into 20 equally spaced phases;
figure 4 shows the phase angle Φ and the free-stream streamwise velocity U∞ profiles at
four different phases during one complete cycle. For brevity, we will refer to the phases
0◦ < Φ < 90◦ as the ‘ZPG–FPG phases’ (although an APG is present following the FPG).
Similarly, the ‘FPG–ZPG phases’ correspond to 90◦ < Φ < 180◦, the ‘ZPG–APG phases’
to 180◦ < Φ < 270◦ and the ‘APG–ZPG phases’ to 270◦ < Φ < 360◦. We will also refer
to the ‘separation side’ and ‘acceleration side’ of the cycle, for 180◦ < Φ < 360◦ and
0◦ < Φ < 180◦, respectively.

As previously mentioned, the non-dimensional parameter that characterizes the
unsteadiness in our problem is the reduced frequency k, defined here as

k = πfLPG

Uo
, (2.6)

where f = 1/T is the imposed frequency, LPG is a characteristic length and Uo is the
free-stream velocity at the inflow plane. In many cases the length-scale definition is clear:
for a pitching airfoil, for instance, it is the chord length; for a swimming fish it would
be the length of the body. Here, on the other hand, some arbitrariness exists. We have
chosen to use the length over which the pressure gradient varies as the analogue of the
chord length. Some arbitrariness still remains (we chose LPG as the distance over which
|Vo| > 0.06 max(|Vo|), so that a direct comparison with the literature is not possible.
However, the results do show trends that are in agreement with the literature, as will be
shown in the following sections. We performed numerical simulations for k = 0.2, 1 and
10 to represent a wide range of physical behaviours; from a very fast flutter-like motion,
to a slower quasi-steady flapping. As mentioned in § 1, the non-dimensional reduced
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LES of unsteady separation in a TBL

frequency represents the ratio between the convective time scale of the flow, and the
imposed unsteady time scale of the perturbation. Given that in our case the convective time
scale is constant, the reduced frequency is the only parameter that governs the unsteady
pressure gradient. Leishman (2006) found that a reduced frequency k > 0.05, when the
imposed time scale is less than 20 convective time scales, was the threshold beyond which
the boundary layer was clearly unsteady, and many experimental studies have been carried
out for a wide range of reduced frequencies 0.1 < k < 82 (Karlsson 1959; Brunton &
Rowley 2009).

To analyse the results all quantities were first averaged in the homogeneous spanwise
direction. Then two averaging procedures were used: time averaging (indicated with
an overline), and phase averaging (indicated with angle brackets). The time- and
phase-averaging operators are defined respectively as

f̄ (x, y) = lim
T−→∞

1
T

∫ T

0
f (x, y, t) dt; 〈f (x, y, t)〉 = lim

N−→∞
1
N

N∑
n=0

f (x, y, t + nτ) .

(2.7a,b)

Using these averaging operators, triple decomposition (Hussain & Reynolds 1970)
could be employed. Every instantaneous quantity is decomposed into a time-averaged
component, a coherent (or periodic) component and a stochastic (or turbulent) component

f (x, y, z, t) = f̄ (x, y)+ f̃ (x, y, t)+ f ′ (x, y, z, t) , (2.8)

where the tilde denotes the coherent component. From (2.8), several relations follow that
connect the various components of the field

〈f 〉 = f̄ + f̃ ; f = 〈f 〉 + f ′; f ′ = f − 〈f 〉 ; f̃ = 〈f 〉 − f̄ . (2.9a–d)

We also carried out numerical simulations with a steady pressure gradient corresponding
to that imposed at Φ = 0◦, 54◦, 90◦, 270◦ and 306◦. The Reynolds number
chosen for the present numerical simulation: Re∗ = 1000 was consistent with similar
previous investigations (Abe 2017; Coleman et al. 2018). Phase-averaged statistics were
accumulated over several periods, dependent on the reduced frequency. To estimate
the uncertainty of the results in terms of sample convergence, we compared the
phase-averaged velocity obtained by using only half of the cycles with that obtained using
all the available ones. For the k = 0.2 case (which is the most critical one, since the period
is longer and fewer cycles could be computed) the difference is less than 3 %, whereas in
the other cases it is less than 1 %.

3. Results

3.1. Steady pressure-gradient calculations
To characterize the influence of the unsteady pressure gradient on the flow physics, five
cases in which the pressure gradient is steady have been analysed for direct comparison.
Following the notation introduced in the previous section, and as illustrated in figure 4,
these cases correspond to the pressure gradients imposed at Φ = 270◦, 306◦, 0◦, 54◦ and
90◦, and will be referred to as SC-1 through SC-5. In cases SC-1 and 2 an APG is followed
by an FPG, whereas in cases SC-4 and 5 the reverse happens. SC-3 is the ZPG case.

Figure 5 shows contours of the streamwise time-averaged velocity ū for the steady cases
characterized by a non-zero pressure gradient (SC-1, SC-2, SC-4, SC-5). In both SC-1
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Figure 5. Contours of streamwise time-averaged velocity ū for the steady calculations corresponding to the
following phases: (a) SC-1 Φ = 270◦; (b) SC-2 Φ = 306◦; (c) SC-4 Φ = 54◦; (d) SC-5 Φ = 90◦. Solid and
dashed lines denote positive and negative values of the streamfunction, respectively.

and SC-2 cases the APG generated by the suction side of the V∞ velocity profile leads to
flow separation. In the SC-1 case, the closed separation bubble formed has characteristics
similar to those described in previous numerical studies (Na & Moin 1998; Abe 2017; Wu
& Piomelli 2018).

For the SC-1 case, the height of the separation bubble is approximately 23δ∗o and its
length, identified by the mean separation streamline, is approximately 120δ∗o . SC-4 and
SC-5 cases both experience a strong FPG given by the blowing side of the velocity
profile before the APG section, as can be clearly observed by the streamline curvature
in figure 5(c,d). As a result, in both cases no reversed flow is observed.

Figure 6 shows the streamwise distribution of the time-averaged skin-friction coefficient
Cf . In both SC-1 and SC-2 cases Cf is negative over a portion of the domain. In the
SC-1 case the length over which Cf � 0 is approximately 120δ∗o , consistent with the
separated-flow region length estimated using the mean separation streamline.

The SC-4 and SC-5 cases are characterized by an initial increase of the skin-friction
coefficient due to the acceleration. The SC-3 case (symbols) has the characteristic
behaviour of a ZPG TBL in equilibrium conditions. In the 100δ∗o upstream of the
pressure-gradient region, subject to a ZPG, all the cases match, indicating that the pressure
gradient imposed by the free-stream vertical velocity V∞ does not affect the inflow region.

While the SC-1 and SC-2 cases recover to roughly the ZPG value of Cf after the
reattachment point, the SC-4 and SC-5 cases show a drastic drop in the Cf magnitude
of approximately 38 %. The acceleration induced by the FPG side of the velocity profile
V∞ gives the flow enough energy to resist flow separation, but the following APG is strong
enough that the flow does not completely recover and the boundary-layer characteristics
are still changing in the outflow region. A common characteristic, resulting from the
imposed pressure gradient, is that every case is significantly far from the equilibrium
condition, even in the outflow region.
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Figure 6. Spatial distribution of the skin-friction coefficient Cf for the steady calculations corresponding to
the following phases: blue solid line, SC-1Φ = 270◦; red dashed line, SC-2Φ = 306◦; green dotted line, SC-3
Φ = 0◦; orange dotted line, SC-4 Φ = 54◦; purple dash-dotted line, SC-5 Φ = 90◦.

3.2. Dynamic pressure-gradient calculations

3.2.1. Time-averaged velocity field
As mentioned in § 2, a total of three unsteady pressure-gradient cases have been analysed.
They are denoted as UPG-1 (with k = 10.0), UPG-2 (k = 1.0) and UPG-3 (k = 0.2). The
first result that will be presented here is the time-averaged behaviour of the velocity over
the cycle. As discussed in § 1, many researchers found that the time-averaged quantities
are insensitive to the reduced frequency k. Figure 7 shows the time-averaged streamwise
velocity ū in wall units (indicated by +) for the dynamic cases compared with the steady
ZPG case at three different streamwise locations, one upstream of the recirculation region,
one at its centre and one downstream of the pressure-gradient region. Wall units are
obtained by normalizing the velocity field using the friction velocity uτ = (τw/ρ)

1/2 and
the viscosity ν.

First, we observe that the time-varying free-stream pressure distribution does not affect
the region upstream of the pressure gradient, indicating that the ZPG region is fully
developed, and unaffected by the pressure gradient. Secondly, in contrast with previous
studies, the effect of the unsteady pressure gradient on the time-averaged fields at the
centre of the pressure-gradient region is significant. The discrepancy with previous
experimental observations is mainly due to a Reynolds number effect. The acceleration
parameter,

K = ν

U2∞

dU∞
dx

, (3.1)

which characterizes the strength of the APG, depends on the viscosity (or, equivalently,
the Reynolds number). For a given free-stream velocity distribution, an intermediate-Re
simulation will present much stronger pressure-gradient effects than observed in the
experiments, which are at much higher Re.
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Figure 7. Time-averaged profiles of streamwise velocity in wall units for the dynamic cases compared with the
steady ZPG case at three streamwise locations. Symbols denote the steady calculations. Colours are as follows:
• steady case; green solid line, k = 10; blue dashed line, k = 1; orange dash-dotted line, k = 0.2.

The UPG-1 case maintains the conventional shape of a TBL but the logarithmic region
is shifted downwards compared with the steady ZPG case. This effect is often associated
with the presence of an APG (Spalart & Watmuff 1993; Monty, Harun & Marusic 2011).
Furthermore, both the medium-frequency (UPG-2) and the low-frequency (UPG-3) cases
display an intensification of the wake region in the centre of the pressure-gradient region,
another common consequence of the APG. Unlike the UPG-1 case, the logarithmic region
for the UPG-2 case is shifted above the classic TBL log law. Finally, close to the end
of the computational domain (in a region in which the free-stream velocity does not
change with time) significant differences can still be observed. The high-frequency case
has returned to the equilibrium, ZPG profile, and the low-frequency one is approaching
it. The intermediate-frequency case, on the other hand, still displays some discrepancies
in the wake region; the physical reasons behind this behaviour will be explained in the
following section.

3.2.2. Flow evolution
Figure 8 shows profiles of streamwise and wall-normal phase-averaged velocity at the free
stream, 〈U∞〉, 〈V∞〉 for each frequency for four equally spaced phases Φ in the cycle: 0◦
(ZPG – corresponding to SC-3 case), 90◦ (corresponding to the SC-5 case), 180◦ (ZPG –
corresponding to the SC-3 case) and 270◦ (corresponding to the SC-1 case). Comparison
is made with steady calculations at the same phases.

The medium-frequency case (UPG-2) shows some differences in 〈U∞〉 at the centre of
the domain for Φ = 0◦, and further downstream for Φ = 90◦. To explain this behaviour,
figures 9, 10 and 11 show contours of phase-averaged streamwise velocity 〈u〉 for the
same four phases in the cycle. It should be noted here that, in the unsteady simulations,
the size of the recirculation bubble is not the same as in the steady ones. This results
in a different value of the mean velocity in the region of the recirculation bubble, and
a different development of δ∗. Although the forcing (the wall-normal velocity) is the
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main four phases of the cycle are shown (see figure 4). Symbols denote the steady calculations, lines represent
dynamic results at different reduced frequencies k. Solid lines U∞, dashed lines V∞. Colours are as follows:
• steady case; green lines, k = 10; blue lines, k = 1; orange lines, k = 0.2.
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Figure 9. Contours of phase-averaged streamwise velocity 〈u〉 for k = 10. Only the main 4 phases of the
cycle are shown.

same for steady and unsteady cases, the free-stream velocity U∞ may be different; this
is especially noticeable for the intermediate frequency.

In the UPG-1 case, the two ZPG phases (0◦ and 180◦) show the usual behaviour of
a flat-plate TBL and there is little difference in the outer layer and in the far stream.
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Figure 10. Contours of phase-averaged streamwise velocity 〈u〉 for k = 1. Only the main four phases of the
cycle are shown.
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Figure 11. Contours of phase-averaged streamwise velocity 〈u〉 for k = 0.2. Only the main four phases of the
cycle are shown.

At phase Φ = 90◦, we observe the accelerating flow region due to the FPG and the
corresponding decrease of the boundary-layer thickness, which increases again in the APG
section; the flow then redevelops towards a ZPG TBL at the outlet. At phase Φ = 270◦,
the rate of change of the free-stream forcing V∞ is fast enough to prevent the growth of
the separation bubble to dimensions comparable to the steady case SC-1. However, flow
separation occurs in a very small region close to the wall and the length of the separation
region is comparable to the one observed in SC-1.
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Figure 12. Contours of phase-averaged streamwise velocity 〈u〉 for the phaseΦ = 270◦: (a) k = 10; (b) k = 1;
(c) k = 0.2; (d) steady calculation (SC-1). Solid and dashed lines denote positive and negative values of the
streamfunction, respectively.

Figure 10 shows the phase-averaged streamwise velocity 〈u〉 for the medium-frequency
case UPG-2. As the reduced frequency k decreases, the thickness of the separation bubble
increases but the length of the separation region is significantly reduced (see Φ = 270◦
figure 10). The separation region is highly unsteady, and the stalled fluid generated by
the reversed flow is advected downstream and periodically washed out of the domain
(Simpson 1989). This behaviour is consistent with experimental observations by Mullin
et al. (1980) who analysed a flow over a backward-facing step using a sinusoidal oscillation
of the free stream with an amplitude 12 % of the average velocity. The reduced frequency
F∗ = fh/Ū, defined as a function of the step height h and mean velocity Ū, was specifically
chosen to be smaller than the threshold value of F∗ = 0.07. Mullin et al. (1980) in
fact mentioned a previous experiment carried out by Lebouche and Martin of a similar
pulsating flow in which it was observed that when the frequency was reduced below
F∗ = 0.07 the re-circulation vortex was shed (Mullin et al. 1980; Simpson 1989). Present
results corroborate findings by Mullin et al. (1980) and Lebouche and Martin and show
that there is a limiting reduced frequency 1 < k < 10 below which the stalled-fluid region
is advected downstream, causing the hysteresis effects to move away from the wall. The
fact that the two ZPG phases (Φ = 0◦ and Φ = 180◦) differ indicates the presence of
hysteresis, which will be discussed later.

As the reduced frequency is further decreased (figure 11), the separation bubble (at
Φ = 270◦) grows to dimensions comparable (both in height and length) to the steady
case, indicating a trend towards a quasi-steady state. Some differences between the two
ZPG phases (Φ = 0◦ and Φ = 180◦), however, indicate that hysteresis effects are still
present as the thickness of the boundary layer is significantly different. In this case, the
separation region appears to be more stable, compared with the UPG-2 case; however,
advection of turbulent structures downstream of the reattachment point is still a dominant
physical mechanism and causes the aforementioned hysteresis. Figure 12 shows contours
of phase-averaged streamwise velocity 〈u〉 at phase Φ = 270◦ for the unsteady cases and
the corresponding steady case SC-1, panel (d).

Table 1 summarizes the dimensions of the separation bubbles; here, XS and XR are the
averaged separation and reattachment locations.
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Case XS/δ
∗
o H/δ∗o L/δ∗o XR/δ

∗
o

UPG-1 251 1.4 124 375
UPG-2 253 3.2 67 320
UPG-3 240 25 120 360
SC-1 247 23 122 369

Table 1. Dimensions of the four separation bubbles for the unsteady and steady (SC-1) cases.
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Figure 13. Streamwise distribution Up/U∞. Only the main four phases of the cycle are shown. Colours are as
follows: • steady case; green solid line, k = 10; blue dashed line, k = 1; orange dash-dotted line, k = 0.2.

To quantify the strength of the pressure gradient we used the ratio of the pressure
velocity Up = [(dP∞/dx)δ∗]1/2 to the free-stream streamwise velocity U∞, as defined in
Kitsios et al. (2017), shown in figure 13. We observe the persistence of pressure-gradient
effects, in the region where the flow separates, even in the two ZPG phases. This behaviour
will be explained in a following section. At Φ = 90◦, where the FPG precedes the APG
and U∞ > 1, there is very good agreement between dynamic and steady cases, and
we observe that in the pressure-gradient region (150 < x/δ∗o < 450) the ratio Up/U∞
is positive but lower than 1, implying that convection effects overcome the pressure
gradient. On the other hand, at phase Φ = 270◦, where the APG precedes the FPG
and U∞ < 1 the opposite occurs. The UPG-3 case shows very good agreement with the
corresponding steady case, and in the separation region pressure-gradient effects mildly
overcome the convection ones. At high and intermediate frequencies (UPG-1, UPG-2)
there is a very good match with the corresponding steady case upstream and downstream
of the separation region; however, pressure-gradient effects are significantly greater than
convection effects in the centre of the domain. This behaviour is closely related to that
shown in figure 8, and deeply affects the flow physics, as will be shown momentarily.
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Figure 14. Streamwise phase-averaged 〈u〉 velocity profile for four phases in the cycle for the different reduced
frequencies k (colours) and streamwise locations (line styles). Comparison is made with steady calculations
(symbols) at the same streamwise locations. Each profile is shifted by one unit for clarity. Solid line, x/δ∗o = 270
dashed line, x/δ∗o = 300; dotted line, x/δ∗o = 450.

Finally, figure 14 shows the streamwise phase-averaged velocity profile at four phases
in the cycle for the different reduced frequencies at three streamwise locations: x/δ∗o =
270, 300 and 450, upstream, at the centre and downstream of the pressure-gradient
region. The phenomena described above can be more clearly visualized. At Φ = 90◦,
where the FPG precedes the APG, the dynamic cases match reasonably well the steady
calculations, with the best agreement being the quasi-steady low-frequency (UPG-3)
case. At Φ = 0◦ and Φ = 180◦, the two ZPG phases, we observe again that the
high and low frequencies (UPG-1, UPG-3) are in agreement with SC-3 whereas the
intermediate-frequency case (UPG-2) shows significant hysteresis effects, especially in
the location at the centre of the separation region (x/δ∗o = 300). Once again, this is due to
the advection of the stalled-fluid region downstream of the separation bubble, which will
be discussed momentarily. Hysteresis effects will be analysed in depth in the following
section.

Significant differences between steady and dynamic calculations can be observed when
flow separation occurs (Φ = 270◦). First, we observe the difference between the dynamic
cases, which is due to the different size and development of the separation bubbles.
Second, even though UPG-3 case is approaching a quasi-steady state, displaying a good
match with the steady calculation, it is characterized by a stronger backflow in the centre
of the separation region, indicating the persistence of transient effects. Of specific interest
is the comparison between the high and intermediate frequencies (UPG-1 and UPG-2)
for Φ = 270◦ in the centre of the separation region (figure 14). We previously showed
(figure 8) that both 〈U∞〉 and 〈V∞〉 for these cases are roughly the same throughout the
domain, which suggests that the free-stream pressure gradient imposed on the flow is the
same. The discrepancies in the velocity profiles near the free stream observed in figure 14
can be explained considering (2.3). While V∞ is the same for all cases, δ∗ changes due
to the blockage caused by the separation bubble, and U∞ adjusts to ensure global mass
conservation.
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Figure 15. Contours of phase-averaged skin-friction coefficient 〈Cf 〉 as a function of the streamwise direction
x and phase Φ. Black dashed-dotted lines denote the ZPG phases: (a) k = 10; (b) k = 1; (c) k = 0.2.

To highlight the transient effects present in every unsteady case, we consider the
phase-averaged skin-friction coefficient 〈Cf 〉 plotted in figure 15 as a function of the
streamwise direction x/δ∗o and phase Φ. Phases Φ = 90◦ and Φ = 270◦ are the two
extreme FPG and APG phases, respectively, whileΦ = 0◦ andΦ = 180◦ are the two ZPG
phases. The separated flow appears as a green elongated elliptical region, while the region
of high wall stress corresponding to the acceleration phases is darker purple. At very high
frequency (UPG-1 case) these two regions are tilted, indicating that the regions of high
positive and negative wall stress are not only growing in magnitude, but also moving
upstream in time. Also, the maximum and minimum wall stresses are shifted in x with
respect to each other, and areas of negative wall stress are observed in the ZPG phases. At
this frequency the near-wall flow is decoupled from the free-stream forcing.

At k = 1 the contours of 〈Cf 〉 are now enclosed between the two ZPG phases, and the
locations of maximum and minimum correspond to Φ = 90◦ and Φ = 270◦, respectively.
However, the shedding of the recirculation region observed at this frequency causes the
〈Cf 〉 to be very small after the reattachment, and the contours of 〈Cf 〉 to be tilted in the
downstream region. The washing out of the slow-moving fluid appears as a lighter diagonal
streak starting in the recirculation zone and propagating downstream. The convection
speed of this propagation can be estimated from figure 15(b) to be approximately 0.5 Uo.
This result is consistent with the convection velocity of the vortical disturbance over the
chord length of an airfoil when dynamic stall occurs (Leishman 2006).

At low frequency the contours are symmetric in time, and the shedding disappeared.
However, due to flow impinging the wall in the reattachment region, the location of
minimum 〈Cf 〉 is now shifted downstream, occurring at x/δ∗o = 330.

Figure 16 shows the spatial distribution of the phase-averaged skin-friction coefficient
〈Cf 〉 for four phases in the cycle for the different reduced frequencies k, compared with
steady cases (see figure 6). First, we see that 〈Cf 〉 profiles for the dynamic cases match
reasonably well the steady calculation in the acceleration side of the cycle (Φ = 90◦),
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Figure 16. Distribution of phase-averaged skin-friction coefficient 〈Cf 〉 for four phases in the cycle for the
different reduced frequencies k. • Steady case; green solid line, k = 10; blue dashed line, k = 1; red dash-dotted
line, k = 0.2.

with the best agreement being the UPG-3 case. This trend is now consistent with previous
presented results. At the two ZPG phases, both the medium (UPG-2) and low (UPG-3)
frequencies match very well the steady calculation, whereas the very high-frequency
case (UPG-1) displays significant differences. As mentioned earlier, at this frequency the
near-wall flow behaviour is completely decoupled from the free-stream forcing, and it is
interesting to note that, as opposed to the other cases, UPG-1 case is not characterized by
a phase of quasi-uniform (or monotonically decreasing) 〈Cf 〉.

3.2.3. Hysteresis effects
As mentioned in § 1, dynamic hysteresis is observed when a physical quantity assumes
two different values at corresponding phases in a periodic cycle. The TBL experiences the
same pressure gradient twice in one cycle and, since we consider 20 equally spaced phases,
we have nine matching phases (plus the two extreme ones). The phases are divided into
three groups, as shown in figure 17: the first includes phases in the separation side of the
cycle, where the APG precedes the FPG, and the free-stream velocity U∞ < 1. The second
includes the two phases characterized by a ZPG. The third group includes the phases in
the acceleration side of the cycle, where the FPG precedes the APG, and U∞ > 1.

In order to visualize hysteresis effects we can observe the behaviour of the velocity
profile at one streamwise location for every phase in the cycle. If there were no hysteresis,
the velocity profiles for matching phases would be the same. Figure 18 shows the results
for the UPG-1 case at the streamwise location x/δ∗o = 300. Due to the high frequency,
the convective time scale of the flow is dominant over the imposed unsteady time scale.
Hysteresis is present, but its effects are confined to a very thin layer close to the wall,
and practically absent in the outer layer and free stream. The flow in the near-wall region
is in phase with the forcing, although the effect of viscosity causes a small lag in the

945 A10-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

56
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.561


F. Ambrogi, U. Piomelli and D.E. Rival

288º 306º 360º 18º 36º 54º 72º

180º 162º 144º 126º 108º

324º 342º

252º

Φ = 270º

Φ = 90º

234º 216º 198º

U∞ < 1 U∞ > 1U∞ = 1

Figure 17. Schematic representation of all matching phases in one complete cycle. Following the black solid
line from the extreme phaseΦ = 270◦ the cycle reaches the opposite extremeΦ = 90◦ and goes back following
the black dashed line towards completion of the cycle. Enclosed in the blue square, all the matching phases for
which U∞ < 1; enclosed in the black square, the matching phases for which U∞ = 1; enclosed in the red
square, all the matching phases for which U∞ > 1.
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Figure 18. Phase-averaged streamwise velocity for the k = 10 case at the streamwise location x/δ∗o = 300.
Black solid and dashed lines represent the extreme phasesΦ = 270◦ andΦ = 90◦, respectively, corresponding
to APG–FPG and FPG–APG. Colours represent the intermediate phases in the cycle. The solid line represent
the phases between 270◦ and 90◦ (APG–ZPG and ZPG–FPG phases), and symbols represent the matching
phases from 90◦ to 270◦ (FPG–ZPG and ZPG–APG phases). Black solid line, Φ = 270◦; black dashed line,
Φ = 90◦; blue solid line and circle,Φ = 288◦, 252◦; red solid line and circle,Φ = 306◦, 234◦; green solid line
and circle, Φ = 324◦, 216◦; aqua solid line and circle, Φ = 342◦, 198◦; magenta solid line and circle, Φ = 0◦,
180◦; yellow solid line and circle, Φ = 18◦, 162◦; olive green solid line and circle, Φ = 36◦, 144◦; light blue
solid line and circle, Φ = 54◦, 126◦; brown solid line and circle, Φ = 72◦, 108◦.

response to the acceleration and deceleration. Starting from the extreme phase Φ, 270◦
(black solid line in figure 18), as the APG decreases the intensity of the backflow decreases.
Flow separation, on average, stops at phase Φ = 306◦ and the flow starts to accelerate
towards the Φ = 90◦ phase (black dashed line in figure 18). When the cycle comes back
(symbols), hysteresis effects on the acceleration side are very small when compared with
the separation side, and the flow starts to slow down in phase with the free stream. As
soon as the V∞ profile turns from blowing–suction to suction–blowing the flow separates
until it reaches the extreme phase Φ = 270◦, again justifying the conclusion that, for the
UPG-1 case, the flow is synchronized with the free-stream forcing everywhere except in a
very small near-wall region where friction generates dynamic hysteresis.
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Figure 19. Phase-averaged streamwise velocity for the k = 1 case at the streamwise location x/δ∗o = 300. The
same notation as in figure 18 is used.

For the UPG-2 case (figure 19) at the same streamwise location, the effects of hysteresis
are moving away from the wall towards the centre of the separated shear layer. At this
reduced frequency k = 1, the convective time scale and the imposed unsteady time scale
are comparable, resulting in a significant lag in the response of the near-wall fluid to
the free-stream forcing. In fact, we observe that when the cycle comes back from the
acceleration side (close to Φ = 90◦), even though the free-stream U∞ is decelerating, the
velocity is significantly higher and flow separation does not occur until Φ = 234◦ when
the magnitude of V∞ reaches 70 % of its maximum value. As will be shown momentarily,
this lag plays an important role in the behaviour of the dynamic hysteresis at this frequency.

As the reduced frequency is further decreased in the UPG-3 case (figure 20), the
imposed unsteady time scale is now dominant over the convective time scale of the flow,
and given the long oscillation period, the flow has time to respond to the perturbation.
Although the flow is moving towards a quasi-steady state, as shown in figure 14, dynamic
hysteresis effects persist, in agreement with the results obtained by Williams et al. (2015)
in their experiment of a pitching airfoil at very low frequency. A crucial difference from
the other two cases is that, at this frequency, dynamic hysteresis seems confined to the
separation side of the cycle, whereas all the matching phases in the acceleration side are
in very good agreement.

Figures 18–20 show dynamic hysteresis effects at a given streamwise location. As
previously discussed, in the UPG-2 case the region of stalled fluid generated by the flow
reversal is advected downstream and periodically washed out of the domain (Simpson
1989). It is interesting to see how this behaviour affects the hysteresis at other locations
in the flow, and the associated implications of changing the reduced frequency. We try to
quantify the effects of hysteresis by evaluating the percentage difference between matching
phases, defined as

	U = 〈u (x, y, Φi)〉 − 〈u (
x, y, Φ∗

i
)
)〉

max(〈u (x, y, Φi))〉) × 100, (3.2)

where Φi and Φ∗
i represent two matching phases and the maximum is calculated over

the entire cycle. As defined in (3.2), 	U allows us to generate a map of the hysteresis
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Figure 20. Phase-averaged streamwise velocity for the k = 0.2 case at the streamwise location x/δ∗o = 300.
The same notation as in figure 18 is used.

50

30

10

50

30

10

50

30

10

50

30

10

50

30

10

–20 –15 –10 –5 0 5 10 15 20

100 300 500

U∞ < 1 U∞ > 1

y/
δ o∗

y/
δ o∗

y/
δ o∗

y/
δ o∗

y/
δ o∗

x/δo
∗

(a)

(b)

(c)

(d)

(e)

( f )

(g)

(h)

(i)

Figure 21. Contours of the percentage difference 	u (3.2) for the case k = 1. Axis colours follow the
schematic in figure 17: (a) Φ = 288◦, 252◦; (b) Φ = 306◦, 234◦; (c) Φ = 324◦, 216◦; (d) Φ = 342◦, 198◦;
(e) Φ = 0◦, 180◦; ( f ) Φ = 18◦, 162◦; (g) Φ = 36◦, 144◦; (h) Φ = 54◦, 126◦; (i) Φ = 72◦, 108◦.

throughout the domain. Only results for UPG-2 and UPG-3 cases will be analysed, since
the UPG-1 case did not show significant hysteresis in the outer layer.

Figure 21 shows results for the UPG-2 case. White regions indicate that no significant
hysteresis occurs; areas in green indicate that the return phase has lower velocity than the
matching case. With reference to figures 19 and 20, this occurs when the symbols are to
the left of the lines. In purple are regions in which the opposite is true. The panels on
the left side show the velocity difference between the ZPG–APG phases, during which
the flow approaches the maximum APG, and the APG–ZPG ones. In the recirculation
region (200 < x/δ∗o < 400) the flow is faster during the ZPG–APG phases than during the
APG–ZPG ones, when U∞ is increasing and the flow moves towards a ZPG boundary
layer. During the ZPG–APG phases the fluid moving towards the separation zone is faster
than it would be in a steady APG boundary layer, while during APG–ZPG it is slower than
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Figure 22. Contours of the percentage difference 	u (3.2) for the case k = 0.2. Axis colours follow the
schematic in figure 17: (a) Φ = 288◦, 252◦; (b) Φ = 306◦, 234◦; (c) Φ = 324◦, 216◦; (d) Φ = 342◦, 198◦;
(e) Φ = 0◦, 180◦; ( f ) Φ = 18◦, 162◦; (g) Φ = 36◦, 144◦; (h) Φ = 54◦, 126◦; (i) Φ = 72◦, 108◦.

in a steady case. The green region observed in panels (a–d), therefore, appears to be due
to the inertia of the fluid. As the flow begins to accelerate (ZPG–FPG) the opposite is true
(see panels f –i): the fluid approaching the recirculation region is slower than it would be in
a steady case, while for the FPG–ZPG phases it is faster. The velocity difference therefore
decreases, resulting in the green region becoming smaller and moving downstream.
In figure 19, this is shown by the velocity profiles during the ZPG–FPG phases, which
more closely match those from the FPG–ZPG part of the cycle. In the recovery region the
velocity during the APG–ZPG phases is always greater than that during the ZPG–APG
ones, panels (a–d), because of the low-speed fluid from the recirculation region that is
advected downstream (see figure 10). As this low-speed region is washed out of the domain
this zone moves downstream, and the difference between matching phases decreases.

Figure 22 shows the same analysis for the UPG-3 case. As the reduced frequency
decreases, dynamic hysteresis effects appear again created during the separation side
of the cycle (panels a–d). Because of the longer period, more fluid is affected by this
phenomenon, so that the region where 	U < 0 becomes larger. Note, however, a small
region near the wall where 	U > 0 (also visible in figure 20).

3.2.4. Phase relationship
The analysis carried out so far indicates that the near-wall flow may become decoupled
from the outer region and free stream, depending on the frequency. We have shown,
for instance, that, for the UPG-1 case (figure 18), the outer layer and free stream are
synchronized with the imposed forcing, but a very thin region close to the wall exhibits
a lag in the response, which generates dynamic hysteresis effects. On the other hand the
UPG-2 case was characterized by a phase lag downstream of the pressure-gradient region
due to the periodic washing out of the stalled fluid.

To quantify this lag (or phase shift) we consider the coherent component of the velocity
ũ defined in (2.9a–d), which represents the oscillations around the time-averaged quantity.
It is common, when hysteresis effects occur, to show the hysteresis loop, in which a
physical quantity is plotted as a function of the phase angle. If the two halves of the period
match, then hysteresis effects are absent or negligible, but if there is an area enclosed
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Figure 23. Contours of coherent component ũ as a function of the phase angle Φ for the three reduced
frequencies k and three wall-normal locations corresponding to: wall (y/δ∗o =0.0076), outer layer (y/δ∗o =15)
and free stream (y/δ∗o =50).

between the two halves, that area is sign of hysteresis. Since the phase-averaged velocity
is two-dimensional, however, we modified this approach by showing instead contours of
ũ as a function of streamwise position x and phase Φ (figure 23), at three wall-normal
positions in the near wall, outer layer and free stream, respectively. A vertical line in this
figure is a straightened-out hysteresis loop. If the contours are symmetric with respect
to the Φ = ±90◦ phase, no hysteresis is present. The vertical and horizontal red lines in
figure 23 represent the location of the maximum positive ũ at the free stream, and the phase
of maximum FPG (Φ = 90◦), respectively. The intersection between these two lines will
serve as a reference point for the following analysis.

At the free stream (y/δ∗o = 50) the contours for the UPG-1 and UPG-3 cases are nearly
circular; their symmetry with respect to Φ = 90◦ reflects the lack of hysteresis in this
region. Moreover, the flow response to the free-stream forcing is in phase for all cases as
the maximum value of ũ happens exactly atΦ = 90◦, corresponding to the maximum FPG
region. For the UPG-2 case, although the contours are circular at the centre of the domain
(as the other two cases), the diagonal contours at an approximately 45◦ angle indicate that
the hysteresis, which is more pronounced inside the boundary layer, propagates into the
free stream at this frequency.

As we move closer to the wall, in the outer layer (x/δ∗o = 15) contours become of
elliptical shape, but in the UPG-1 and UPG-3 cases they remain symmetric; for all cases
the flow response is again in phase with the free-stream forcing. The UPG-2 case, however,
displays hysteresis effects downstream of the pressure-gradient region. If we compare the
time behaviour of ũ at two streamwise locations in this region (x/δ∗o = 400 and x/δ∗o = 500
for instance), we see that at the first location ũ becomes positive around Φ = 45◦ whereas
at the second location this occurs only atΦ = 135◦. The inclination of the ũ contours is an
indication of the magnitude of the phase lag, which here increases linearly with x. While
at the two boundary-layer locations this inclination is nearly the same (indicating that the
phase lag is the same at all y locations in this region), in the far field the inclination is
significantly reduced, as the hysteresis effects die down (and would eventually disappear
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far enough from the wall). The fact that the phase lag depends on y also indicates a
decorrelation between the free stream and the boundary layer.

At the wall the behaviour is quite different; hysteresis always occurs, but its character
depends on the reduced frequency. For the UPG-1 case, the location of maximum ũ is
now shifted to approximately 45◦ with respect to the maximum of the forcing, indicating
a phase lag between the forcing and the near-wall region. Furthermore, the contours still
maintain an elliptic shape but are tilted with respect to the x-axis. As mentioned earlier, this
is a sign of phase lag. In the UPG-2 and UPG-3 cases, the location of maximum ũ is still at
Φ = 90◦, but is shifted in space: the maximum ũ occurs approximately 34δ∗o upstream of
the maximum forcing. The UPG-2 case is again characterized by a phase lag that depends
linearly on the distance between points, whereas in the UPG-3 case, although the flow
downstream of the pressure-gradient region is characterized by a negative ũ, dynamic
hysteresis only occurs in the ZPG–APG part of the cycle, and is quite weak in comparison.

4. Concluding remarks

We have carried out LESs of spatially developing TBLs with space- and time-dependent
pressure gradients. The maximum APG imposed was strong enough to generate a
large-scale TSB. The unsteady pressure gradient was generated by imposing an oscillating
suction blowing velocity profile at the top boundary. The alternating FPG and APG
caused the flow to separate from and reattach to the wall periodically. This study has
focused on the response of the mean flow to this transient separation cycle. The most
important parameter governing the unsteadiness is the reduced frequency k. We performed
simulations for a range of reduced frequencies (k = 10, 1 and 0.2), and these results have
been compared with equivalent steady calculations with the same instantaneous pressure
gradient.

Three main questions have been driving our research: (i) How does the reduced
frequency k affect the transient separation process in a flat-plate TBL? (ii) Under what
conditions does dynamic hysteresis occur, and what are the consequences? (iii) Can a
simulation of a TBL under unsteady pressure gradients provide valuable insights into the
dynamic stall process? Although our problem configuration is greatly simplified when
compared with realistic cases, some of the phenomena observed, and insights gained, are
relevant to more complex applications as well.

The reduced frequency k plays an important role in this configuration, as well as in the
more commonly considered ones (e.g. a pitching airfoil). When the reduced frequency is
high enough (k = 10) the separation bubble formed in the centre of the domain does not
have time to grow as per the corresponding steady case, although its length is comparable
to that in the steady case. In the medium-frequency case, the separation region grows in the
wall-normal direction but its length is significantly reduced compared with the steady case.
Furthermore, at this frequency the stalled region is highly unstable, and is periodically
advected downstream and washed out of the domain. This behaviour is consistent with
previous observations (Mullin et al. 1980; Simpson 1989). Although the lowest-frequency
case (k = 0.2) tends towards a quasi-steady solution, transient effects are still present in
the backflow region.

Dynamic hysteresis was observed in all cases. When the convective time scale of the
flow was dominant over the unsteady imposed time scale (large k) its effects are confined
to a very thin layer close to the wall, and the flow is synchronized with the free-stream
forcing. A small lag in the response to the acceleration and deceleration is observed only
very near the wall, and is due to viscous effects. As the frequency is reduced, hysteresis
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is observed away from the wall and in the separated shear layer. When the convective and
the unsteady imposed time scale are comparable (for k = 1) the response of the near-wall
fluid lags significantly the free-stream forcing. Depending on the reduced frequency, the
near-wall flow may be decoupled from the outer region. For the lowest frequency the time
scale of the forcing is now dominant, and the flow has time to respond and adjust to the
imposed pressure gradient. However, hysteresis is still observed (in agreement with the
experimental observations by Williams et al. (2015) for a low-frequency pitching airfoil).
At this frequency it remains confined to the separation side of the cycle.

Finally, a very common and undesirable characteristic of rotor blades, diffusers and
lifting bodies is the occurrence of dynamic stall at high angles of attack. In the present
investigation we isolated the effect of the dynamic pressure gradient on the flow physics
of a spatially developing TBL over a flat plate. Our configuration does not include the
effect of the leading and trailing edges of the airfoil, but a connection to dynamic stall
in real configurations can still be drawn. For instance, we observed the shedding of a
vortical disturbance for the intermediate-frequency case (UPG-2) only, similar to what
occurs in realistic geometries. This behaviour may be due to a resonance-like phenomenon;
an analysis of cases with k close to unity, and the identification of a critical frequency,
could thus lead to a better understanding of dynamic stall.

The present work gives the overall picture of the flow, and of the effects of the reduced
frequency on dynamic separation and hysteresis; it does not go into the causes of such
phenomena. Ongoing work includes an analysis of how the unsteadiness affects the
Reynolds stresses, their budgets and the turbulent eddies. This may shed further light on
the flow dynamics, and on the causes of the behaviours described here. Calculations of
further cases with k � 1, as discussed above, should also be performed. The database
generated in the course of this study can also provide useful insight into the behaviour
of turbulence models for the Reynolds-averaged Navier–Stokes equations in flows with
unsteady separation.
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