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Abstract

We identify the cohomology of the stable classifying space of homotopy automorphisms (relative to an embedded
disk) of connected sums of S¥ x S!, where 3 < k < I < 2k — 2. The result is expressed in terms of Lie graph
complex homology.
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1. Introduction

The starting point of this article is the following manifold with boundary

M| = #g(S* x 8") \ D!
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2 R. Stoll

(i.e., the g-fold connected sum of S¥ x S’ with an open disk removed). Given this, a natural object to
consider is the classifying space

k,l
Bauty (M)

of the topological monoid of homotopy automorphisms of M;f’f that fix the boundary pointwise. It
classifies fibrations with fiber M;"f under the trivial fibration with fiber its boundary (see, for example,

[HL15, Appendix B]). In particular, the cohomology of Bauty(M ;‘,’f) consists of the characteristic
classes for such fibrations.

This cohomology appears to be hard to understand completely. However, at least rationally, it is
possible to say something about the behavior of the stabilization maps

H* (Bauta(Méf;ll’ s Q) L H (Bauta(M;’f); Q) (1.1)

obtained by gluing on, along one of its boundary components, a copy of S* x S! with two disjoint open
disks removed. Namely, in the case 2 < k = [, Berglund—Madsen [BM20] have shown this map to be an
isomorphism in a certain stable range of degrees,' and this was extended by Grey [Gre19] to the cases
3<k<1<2k-2.

Moreover, [BM20] contains, in the case 3 < k = [, a combinatorial description (in terms of graph
complex homology) of the stable cohomology (i.e., the limit of the maps (1.1) as g goes to infinity). In
this paper, we provide a similar description when k # [. The following is our main result.

Theorem 1.1 (see Corollary 5.9). Let 3 < k < I < 2k —2 and 2 < g be integers. Then there is, in
cohomological degrees < g — 2, an isomorphism of graded algebras

H' (Bauty (M})): Q) = H'(GL(2): Q) @ H' (U641 (Zie))

compatible with the stabilization maps on the left-hand side. Here we set GL(Z) := colimgen GLg(Z),
denote by UG (Zie) the m-twisted graph complex associated to the cyclic Lie operad (with its canonical
coalgebra structure), and write (—)" for linear dualization.

In particular, after stabilizing, we obtain an isomorphism

lim H° (Bauta(Mg;{ ): Q) ~ H*(GL(Z); Q) ® H* (ucsk”-z(gie)v)

of graded algebras.

Remark. We also prove a version of Theorem 1.1 for cohomology with certain local coefficients; see
Theorem 5.7. In this generality, the description we give is in terms of a directed graph complex (see
below). It should be possible to relate this to an undirected graph complex, just as in the case of trivial
coefficients above, but we do not carry this out in this paper.

Remark. The proof of Theorem 1.1 does not rely on the stability result of Grey [Grel9] (though we
do reuse some of its ingredients). In particular, we obtain a new proof of his result (for the manifolds
Mgf”f ), while also roughly doubling the stable range. This is made possible by a result of Li—Sun [LS19],
which yields a slope 1 vanishing of the rational cohomology of GL,,(Z) with certain coefficients. That
a result of this form would lead to an improvement of the stable range had been suggested by Krannich
[Kra20, p. 1070].

Surprisingly, the graph complex appearing in Theorem 1.1 only depends on the dimension k +/ and
not on k and / themselves. Moreover, when k + [ is even, it is the same graph complex that appears in

IThis stable range was extended significantly by Krannich [Kra20].
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[BM20] — that is, in the case k =/ (when k +/ is odd, it is defined similarly to the even case but appears
to have quite different homology; see further below). For both of these observations, there seems to be
no a priori reason to expect them to be true. The second one is particularly interesting when considering
our proof, where first a different graph complex appears, of which we then show that it actually has the
same homology as UG*"'2(Zie).

We will now describe the terms appearing on the right-hand sides of the isomorphisms of Theorem
1.1 in more detail. First, note that

H*(GL(Z); Q) = AQ(x; | i € N5;)  where |x;|=4i+1

by a classical result of Borel [Bor74]. The graph complex UG (&), for € a cyclic operad, is also a
well-known object. Versions of it were first described by Kontsevich [Kon93, Kon94], but they have,
since then, appeared in many different places; see, for example, [GK98, CV03, LV08, BM20].

We now sketch the definition of this graph complex. It is generated by graphs (potentially with loops
and parallel edges) equipped with an orientation of each edge and a labeling of each vertex with an
element of € of cyclic arity the valence of the vertex (which we assume to be at least three). We consider
a vertex to have homological degree 1 — m and an edge to have homological degree m. The resulting
graded vector space is quotiented by the actions of the automorphism groups of the graphs, taking
into account the homological degrees of the vertices and edges and yielding an extra sign (—1)"*!
whenever the orientation of an edge is flipped. The differential is defined to be the sum over all possible
contractions of non-loop edges. When an edge is contracted, the label of the new vertex is obtained via
the cyclic operad composition of the labels of the two contracted vertices, as in the following picture.

e~ ReE

The graph complex has the structure of a cocommutative differential graded coalgebra with comulti-
plication given by the sum over all possible ways to partition the connected components of a graph into
two sets.

Note that, up to regrading, the graph complex and, in particular, its homology only depend on the
parity of m. Even though this homology could theoretically be computed directly from its definition, this
has only be feasible in low degrees so far. Its structure in higher degrees remains largely mysterious. By
a result of Kontsevich [Kon93] (for m even; see also Conant—Vogtmann [CV03]) and Lazarev—Voronov
[LVO8] (for m odd), Lie graph complex homology is closely related to the rational homology (with
twisted coefficients if m is odd) of the group Out(F,) of outer automorphisms of the free group on g
generators. See Remark 4.30 for a summary of what is known about this. In particular, computations of
Brun-Willwacher [BW23] imply that H, (UG™ (Zie)) is trivial for 0 < p < 3m +2 when m > 3 is
odd (see Remark 4.30). Using this, we obtain the following consequence of our main theorem.

Corollary 1.2. Let 3 < k <1 < 2k —2 and 2 < g be integers such that k + [ is odd. Then there is, in
cohomological degrees < min(g — 2,3(k + 1) — 4), an isomorphism of graded algebras

H' (Bauty (M}7]): Q) = H'(GL(2):Q)
compatible with the stabilization maps on the left-hand side.

Sketch of the proof of Theorem 1.1

From now on, we fix some 3 < k <[ < 2k — 2 and drop them from the notation. The starting point
of our proof are methods recently developed by Berglund—Zeman [BZ22] which in particular yield an
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isomorphism
H' (Bauty(My,1); P) = H' (I Hig(0,) @ P (1.2)

for any F?—representation P (the details of applying their methods to relative self-equivalences are
worked out in the upcoming paper [BS] joint with Berglund). Here, the differential graded Lie algebra
gg is the Quillen model of the 1-connected cover of Bauty (M, 1). We write H.; (gg) for its Chevalley—
Eilenberg cohomology, and we set

k= Aut(ﬁ*(Mg,l;R), -, —>m) =~ GL,(R),

where R is a commutative ring and (-, —)n, is the intersection pairing. The Lie algebra g has an explicit
description which was shown by Berglund—Madsen [BM?20] to be isomorphic to

(S—(k+l—2) Pie) [s‘lﬁ* (Mg 1; Q)] "

equipped with the trivial differential. Here, Zie is (the symmetric sequence underlying) the cyclic Lie
operad, s denotes a degree shift, o/ [—] is the Schur functor associated to &/, and (—)* denotes positive
truncation.

The next step is to simplify the right-hand side of (1.2). To this end, we prove, using the previously
mentioned work of Li—Sun [L.S19], that the canonical map

HP (FZ; Q) ®HY ((CEE(gg) ® P)Fg) — H"(FZ; Hl L (gg) ® P)

is an isomorphism in a stable range when P is an algebraic representation of FS. (See also work of
Krannich [Kra20], where an analogous argument is made to obtain a similar stable range in the case
k=1)

This shows that it is enough to identify the (stable) cohomology of the invariants (Cig(g,) ® P)
For sake of exposition, we will now focus on the case P = Q. In the paper, we do carry out the first
part of the argument for a certain class of nontrivial representations as well, though. Similar situations,
arising from Sp,, or O, , instead of GL,, have been considered by Kontsevich [Kon93, Kon94] (see
also Conant—Vogtmann [CV03]) in the symplectic case and by Berglund—Madsen [BM20] in both cases.
In our situation, we use coinvariant theory methods similar to those of [BM20] to obtain a description
of the stable cohomology in terms of a directed version of the Lie graph complex, which we denote
by DG (Zie). It is defined in the same way as UG™ (Zie), except that every edge is equipped with a
direction, which (unlike an orientation) must be respected by automorphisms of the graph.

Q
Ig

Theorem 1.3 (see Corollary 3.33). There is an isomorphism
c‘(g)gkrln CSE(gg)FS = DOI2(Zie)

of differential graded coalgebras, compatible with the stabilization maps on the left-hand side. Here,
DO (Zie) is the subcomplex of DG (ZLie) spanned by truncated directed graphs, which are those
that do not have vertices of valence zero or one and whose vertices of valence two have only incoming
edges.

Remark. At the heart of this theorem actually lies an unstable identification of a certain subcomplex
of CSE(gg)F . Moreover, we prove a more general statement, which also applies to a certain class of
g

nontrivial representations P, as well as to all cyclic operads and not just Zie.

Although less ubiquitous than undirected graph complexes, directed versions have appeared in the
literature before; see, for example, [Will4, Ziv20, DR19]. Surprisingly, it turns out that the homology
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of the truncated directed graph complex DGy, (Zie) is actually isomorphic to the one of UG (Zie).
We will now explain the idea of this argument. Restricting the differential of DGy, (Zie) to the two

trunc
edges incident to a vertex of valence two (which must be labeled by the identity operation) yields the

following picture.

@G~ ET - D@L

Thus, intuitively, taking homology should kill the difference between the two orientations of an edge.
This can be formalized using a spectral sequence argument to prove the following theorem. Together
with the preceding results, this implies Theorem 1.1.

Theorem 1.4 (see Theorem 4.28). Let € be a cyclic operad such that € (2)) = Q(id). Then there is, for
any m € Ny, an isomorphism

H. (DOne(€)) = H.(UG™ (F))

of graded coalgebras.

Remark. We only carry out this argument in the situation arising from trivial coefficients P = Q. There
should exist a more general statement of this form, though.

Remark. For the nontruncated directed graph complex, an argument similar to this has been sketched
by Willwacher [Wil14, Appendix K].

Related work and further research

Building on their work for homotopy automorphisms, Berglund—Madsen [BM20] also computed, for
k > 3, the stable cohomology of the classifying spaces BISiTTa (Mg’f ) of block diffeomorphisms.

Combining their methods with the methods of our paper (as well as an upgrade of the methods of [BZ22]
to automorphisms of bundles, which is planned to be contained in the upcoming paper [BS] joint with

Berglund or a follow-up) should yield a computation of the stable cohomology of B]iﬁ”a (M ;f) for
3 < k <1 < 2k-2.This is currently work in progress. It should significantly simplify and extend a result
of Ebert—Reinhold [ER22], who compute, in a hands-on way, the stable cohomology of Bﬁf@ (M if]k +l)
up to degree roughly k. From this, they deduce, using classical methods as well as a recent result of
Krannich [Kra22], the stable cohomology of BDiff ( M§:1k+1) in the same range. A complete calculation
of the stable cohomology of block diffeomorphisms would, in the same way, allow to extend this result
to degree roughly 2k. Moreover, one might hope to extend this calculation even further, for example by
using methods recently developed by Krannich—Randal-Williams [KR21]. This is the goal of current
work in progress joint with Krannich.

One question one might hope to attack with this approach is to determine the images of the coho-
mology classes coming from the graph complex under the morphism

H' (Bauty(M)}): @) — 1 (BDiffy(M}]): Q)

induced by the forgetful map. When k = [, the stable cohomology of the right-hand side has been
computed completely in celebrated work of Galatius—Randal-Williams [GR 14], but even in that case,
it is mostly unknown what the graph cohomology classes map to. Results in this direction have the
potential to yield very interesting information about both the cohomology of the diffeomorphism groups
as well as the homology of the graph complex and thus the homology of Out(Fy).
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Structure of this paper

In Section 2, we fix some conventions, recall various definitions and prove basic lemmas needed
throughout the rest of the paper. In Section 3, we use coinvariant theory to prove Theorem 1.3. In
Section 4, we prove Theorem 1.4 using a spectral sequence argument. Finally, Section 5 contains the
topological part, in which we combine everything to obtain Theorem 1.1.

2. Preliminaries

In this section, we collect a number of basic conventions, notations, definitions and lemmas which we
will use throughout the rest of this paper.

2.1. Graded vector spaces

Convention 2.1. The base field is Q.

Notation 2.2. We denote by Vect the category of vector spaces and linear maps.
Convention 2.3. All gradings are by Z.

Notation 2.4. We denote by GrVect the category of graded vector spaces and grading preserving linear
maps. Sometimes we will implicitly consider an ungraded vector space (such as Q) as a graded vector
space concentrated in degree 0.

Notation 2.5. For k € Z, we denote by sK(—) a k-fold degree shift. For V a graded vector space, the

graded vector space sKV is given by (s¥V),, := V,,_r. When k = 1, we just write s := s!.

Notation 2.6. Let m € Z. A graded symplectic form of degree —m on a graded vector spaces V is a
nondegenerate bilinear form of degree —m

(=, =): VeV —Q

such that (v, w) = (=1)"IW 1 v) (ie. it is graded anti-symmetric).

We denote by Sp” the category of finite-dimensional graded vector spaces equipped with a graded
symplectic form of degree —m with morphisms those linear maps of degree O that preserve the bilinear
form.

Remark 2.7. Note that a morphism of Sp™ is automatically injective.

2.2. Double complexes

Convention 2.8. A double complex is a bigraded vector space C. . equipped with a differential d' of
bidegree (—1,0) and a differential d> of bidegree (0, —1) such that d' o d*> = —d*> o d'.

Notation 2.9. Let (C...,d', d*) be a double complex. We denote by Tot C its total complex — that is,
the chain complex with underlying graded vector space

(TotC), = EB Cr

k+l=p

and differential d = d! + d2.

Lemma 2.10. Let (C...,d"',d?) be a double complex concentrated in nonnegative degrees such that
H.(Cp.., d?) is concentrated in degree 0 for all p. Denote by

f: TotC — (HO(C.,*,dZ),dl)
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the map of chain complexes given by the canonical projections Cp o — Ho(Cp +, d?) and the trivial
map on Cp, 4 for q > 0. Then f is a quasi-isomorphism.

Proof. The map f canonically lifts to a map g: C.. — (Ho(C ., d*),d 1) of double complexes, where
the target is equipped with the double complex structure concentrated in bidegrees (p,0). The map
g induces an isomorphism between the E'-pages of the spectral sequences associated to these double
complexes whose zeroth differential is given by d? (see, for example, Weibel [Wei95, §5.6]). By the
Comparison Theorem for spectral sequences, this implies that f is a quasi-isomorphism (see, for example,
[Wei95, Theorem 5.2.12]). O

2.3. Group actions

Definition 2.11. Let G be a groupoid and C a category. A left G-module in C is a functor M: G — C,
and a right G-module is a functor M : GP — C.

Remark 2.12. Identifying a group G with its associated one-object groupoid, a left G-module in C is
an object of C together with a left G-action, and a right G-module in C is an object of C together with a
right G-action.

Convention 2.13. Unless otherwise stated, ‘module in C* will mean ‘left module in C’. In particular,
group actions will be from the left. If we omit the category C, we mean a (left or right) module in the
category GrVect.

Definition 2.14. For G a groupoid, C a category and M a (left) G-module in C, we will denote by M°P
the right G-module in C given by the composition

¢ -5g-5e,
where the first map is the isomorphism given by the identity on objects and by taking the inverses of
morphisms.

Remark 2.15. If G = G is a group, this means that M°P is the right G-module with the opposite action
(i.e.,m . g = (g7' . m)°P).

2.4. Kan extensions
The following lemmas will be useful later.

Lemma 2.16. Let G be a group and S a G-set (i.e., a functor S: G — Set). Then a functor X from the
Grothendieck construction /GS to some category C can be equivalently described as a family (Xg)ses
of objects of C equipped with morphisms gs: Xy — X, ¢ for every g € G and s € S such that they are
functorial in the sense that hg 5 0 g = (hg)s.

Moreover, let H <4 G be a normal subgroup. If C is cocomplete, then there is an isomorphism

L%

seS

= Lan/GS_>G/H X
H

of (G/H)-modules in C. On the left-hand side g € G, acts on || cs X5 by mapping X to Xg ¢ via gs; the
action of G /H is the induced action on the coinvariants. On the right-hand side, we have the left Kan
extension of X along the composite fGS — G — G/H of the canonical projection and the quotient map.

Proof. The first claim follows directly from the definition of the Grothendieck construction. For the
second claim, note that the G-module [].g X is isomorphic to the left Kan extension of X along the
canonical projection f S — G. Taking H-coinvariants of this corresponds to left Kan extending further
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along the quotient map G — G/H. Since Kan extensions compose, the result is isomorphic to the left
Kan extension of X along the composite /GS — G/H. O

We will now provide an explicit identification of the left Kan extension in the lemma above. This
takes the form of the following (more general) lemmas.

Lemma 2.17. Let G be a groupoid, H a group and F: G — H a functor. Denote by G C G the wide
subcategory of those morphisms that F maps to the neutral element ey € H. Also denote by * the unique
object of H considered as a groupoid, and by F | = the corresponding comma category. Then there is a

fully faithful functor
q)FI QF — F l %

given by sending an object G € G to (G, ey : F(G) = * — %) and a morphism g: G — G’ to itself.

Moreover, assume that, for all G € G and h € H, there exists a morphism g n: G — Kg n in G such
that F(gG.n) = h. Then @F is an equivalence of categories with an inverse (up to natural isomorphism)
given by the functor

‘PF:Fl*—>QF

given on objects by (G, h) — Kg., and on morphisms by (g: (G,h) — (G',h’)) — ggr,h/ggz;lh.
(Note that Yr depends on the choice of gg.n for all G € G and h € H.) The natural isomorphism
idp . — ®F o WF is, at an object (G, h), given by the map gg n: G — Kg p.

Proof. This follows easily from the definitions. O

Lemma 2.18. In the situation of the second part of Lemma 2.17, let C be a cocomplete category and
X: G — C a functor. Furthermore, for an element h € H, let Ay, denote the functor GF — GF that is
given by G — K¢, on objects and that sends a morphism g: G — G’ to gG/,hgg(_;l’h. Then there is an
isomorphism

Lang. g,y X = colimgr (X oincgr)

of H-modules in C. Here an element h € H acts on the right-hand side via the functor Ay, and the natural
transformation incgr — incgr o Ay, given, at an object G € GY, bygg.n: G — Kg.n.

Proof. The left Kan extension in the statement is, at the unique object * of H, isomorphic to colimg |, (Xo
pr), where pr: F | * — G denotes the projection. The action of an element 2 € H on this object is
induced by the functor F' | * — F | * given by (G, h’) — (G, hh’) (note that this functor commutes
with the projection). That this is isomorphic, as an H-module, to the description given in the statement
follows from Lemma 2.17. O

2.5. Symmetric sequences

Definition 2.19. We denote by LinSet the category with objects finite sets equipped with a linear
order and morphisms the maps of sets (not necessarily respecting the order), by X := Core(LinSet) its
maximal subgroupoid, and by P the skeleton of X spanned by the objects n := {1 < --- < n} forn € Ny.

Remark 2.20. There exist canonical equivalences of categories LinSet — FinSet, £ — Core(FinSet),
and P — Core(FinSet), though neither of them admit a canonical inverse equivalence. The inclusion
P — X, however, is an equivalence that does admit a canonical inverse equivalence — namely, by
identifying an object § € X with an object in P via the unique map that respects the linear order.

Definition 2.21. Let V be a symmetric monoidal category and V € V. Then there is a functor V®~: P —
V given on objects by n — V" and defined on morphisms via the symmetrizer isomorphism. Pulling
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this back via the canonical equivalence X — P, we obtain a functor £ — )V which we also denote by
Ve,

Similarly, for § € X and (Vy);es a family of objects of V, we write (X) ¢ Vs for Vs(1y ® ... ® Vy(js)),
where s: ﬂ — § is the unique order-preserving bijection. We will also use the notation (X) ¢ Vs to
denote elementary tensors of this tensor product.

Definition 2.22. For ./ a £-module and a: S — T a morphism of LinSet, we write
A (a) = Q) (™ (1),
teT

where a~!(t) C S has the linear order induced from the one of S. This construction is functorial in
a € X | X, with the comma category being taken over LinSet.

Definition 2.23. Let & and @ be two X-modules. Then we can form their composition product — that
is, the X-module & o @ given on objects by

li P(T
S'—>(a:§g;1)n€m( (T) ® Q(a)),

where the slice category S | X is taken over LinSet. A morphism f: § — S’ of X acts via the map

li P (T li P (T
(o $ sy (PN @A) = gy (PN @ Q@)

induced by the functor f~! | X: § | £ — S’ | X as well as the natural transformation 2(T) ® @(a) —
P(T)®@(a o f~') given by the identity of P(T) and the map @(a) — @(a o f~') induced by the
morphism (f,idr):a — ao f~' of £ | X.

2.6. Schur functors
Notation 2.24. Let ./ a X-module. We define a functor . [—]: GrVect — GrVect by

Vi P (™ es,veE)
keNy

and call it the Schur functor associated to /.

Remark 2.25. There is a canonical, and natural in V, isomorphism
MV] = C(lzlil{n (ﬂ(@ ® V®&),
ke

where P acts diagonally on the tensor product. We can also replace P by X since they are canonically
equivalent.

Lemma 2.26. Let & and @ be X-modules. Then there is a natural isomorphism

(P o 6)[-]— P[0[-]]

with an explicit description as given in the proof.

Proof. We define the isomorphism by sending the element of

_ . . QS
(%0 @[V] = colim ((a: colim (T @ @(a)) Qv
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represented by S € Zand (a: S — T) € S | X as well as the elements
PO, crqr € P(T)®GC(a) and R egvs € VES
to € € {£1} times the element of
2l@ lim & lim @ or) ™
~11 = colim P(T) ® (colim &(F) @ V" )
[@[-1] = colim #(T) ® {colim €(F) ®
represented by 7 € T and (F; := a~'(t) € L), as well as the elements
p e P(T) and 4t ® Qe Vs € Q(Fy) ® Ve
where ¢ is the sign incurred by permuting the two expressions

pP® ®teTQf ® ®SESVS and Po® ®[ET (qt ® ®s€F,VS)

into each other. O

2.7. Differential graded Lie algebras

Definition 2.27. Let L be a differential graded Lie algebra. Its positive truncation is the differential
graded Lie subalgebra L* C L given by

L;, for i >2
(L*); ==<ker(6: L1 — Lg), fori=1,
0, for i <0

where § is the differential of L.

Definition 2.28. Let L be a differential graded Lie algebra. We denote by CSE(L) its Chevalley—
Eilenberg complex (i.e., the underlying graded vector space of the free graded commutative algebra
A(sL)), equipped with the differential d = dy + d, where

do(sxy A+ Asxg) :

k
Z(—l)”isx] Ao ASS(X) Ao A SXk
i=1

i-1
L+ ) Jsx|
=1

Z(—l)bi'-’s[x[,xj] ASXT A ASX; A+ ASXj A--- Asxg
i<j

b;

di(sxy A Asxg) :

i-1 J-1
bij =[5 (14 [ ]) + [sxil Y Jsxr] + [ | ' Jsl,
I=1 I=1

where ¢ is the differential of L.

The Chevalley-Eilenberg complex comes equipped with the structure of a cocommutative differential
graded coalgebra. Its counit &: CSE(L) — Q is given by 1 on the empty wedge and 0 on all higher
wedges. The comultiplication A : CSE(L) — CSE(L) ® CSE(L) is given by

A(sti Avee Asx) = D 8(A)(Aaea %) ©(Apegya s5b),
Ack
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where the sum runs over all subsets A of the set k = {1, ..., k}. Here, ¢(A) € {£1} is the sign incurred
by permuting sx| ® . . . ® sxi into ®aeAsxa ® ®b€&\Asxb.

Moreover, we write Hi. (L) for the Chevalley-Eilenberg cohomology of L — that is, the cohomology
of the linear dual of CSE(L), equipped with its graded commutative algebra structure.

Lemma 2.29. Let As denote the E-module given by As(S) = (sQ)®S. Then there is a canonical
isomorphism of graded vector spaces, natural in V € GrVect,

(As)[V] = A(sV)
[D®*@(v1®...®vi)] — (1) svi A - A svg,
where ¢ = Zf.il [vi|(k —1).

Proof. The map lifts to an isomorphism (sQ)®* ® V&* — (sV)®* that is compatible with the X;-
actions. Passing to quotients again, we obtain the desired statement. O

2.8. The convolution Lie algebra

Recall that a cyclic operad is an operad € such that the right action of X,, on € (n) extends to a right
action of X, in a way compatible with the composition operations (see Getzler—Kapranov [GK95,
§2]). Unless explicitly stated otherwise, we will always work in the category of graded vector spaces.

Notation 2.30. For a cyclic operad €, we write € (n) for € (n — 1) equipped with its right X, -action.
We consider a cyclic operad as a P-module via (the opposite of) this extended right action. (Note that
this is different from the P-module associated to the underlying operad.) In particular, the Schur functor
associated to € is €[V] = P, ., €(n) 5, V®".

Definition 2.31. For a cyclic operad ¥, natural numbers k,/ € N, operations p € € (k) and
g€B(l),and1 <i<kandl < j<I,weset

picjqg=poi(qg.t) € G(k+1-2),

where t, := (12...n) € X, is the cyclic permutation and o; denotes the i-th partial composition of the

underlying operad of €. In the case thati = k, we set p ox ¢ == ((p . tx) k-1 q) - t;il_r

Remark 2.32. Via the canonical equivalence £ — P, the operations ;o; of Definition 2.31 generalize
to operations

sor: G(S) @€ (T) — € (S 501 T),
where S, T € X,and s € Sand ¢ € T. Here,
Ssor T = (S\{sh (T \ {z})
equipped with the linear order such that
S<s <T5p <Tey < Ssg

with the linear order on each block inherited from S respectively 7.

Definition 2.33. Let V € Sp™, k,l e Ny, 1 <i < kand 1 < j < . We denote by

ioj . V®k ® V®l — V®k+l—2
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the map given by

(V1®...8vi)io; W1®...0w) = (1) v i 1 ®Wj411®W1 -1 @ Vit ,k{W;, Vi)

¢ = (vigl=m)(lwig| —m) + [wi jllwjcg] + 1,

where, fora < b, weset v, p = v, ® V441 ®...® vy and analogously for w, p.

Lemma 2.34. Let € be a cyclic operad in graded vector spaces that is concentrated in even degrees
and let V € Sp™. Then (s™€)[V] becomes a graded Lie algebra by setting

[s"é@v. s @w] = Y sE©; D)@ (viorw)

ick,jel

for & € B((k), v e VO, ¢ € €(1), and w € V®. This is functorial — that is, the restricted functor
(s7E)[~]lgpm : Sp™ — GrVect lifts to a functor to graded Lie algebras, which we also denote by
(s"E) -]

Proof. Checking antisymmetry and the Jacobi identity are straightforward, though tedious, computa-
tions. The only trick one has to use is that v ;o; w being nonzero implies that |v;| + |w ;| = m. We omit
the details. The claim about the functoriality is clear from the definitions.

In the case € = ZLie, a different proof of this fact can be found in [BM20, equation (6.7)]. O

Remark 2.35. The condition that & is concentrated in even degrees is purely for convenience, as it
simplifies the signs occurring.

3. The directed graph complex

In this section, our goal is to prove a version of Theorem 1.3 with coefficients. That is, we want to
identify (in a stable range)

(5% ®2 ey [s R QT 0.0)

4

where FS is the group of automorphisms of the graded vector space ITI*(Mg,l;Q) that respect the

intersection pairing, Q is some FS—module, and the graded Lie algebra structure on the Schur functor is
obtained from Lemma 2.34.

To this end, we begin, in the first two subsections, with studying (2[H] ® Q) ay(r)» Where & is
a X-module, H is an object of Sp” that is concentrated in two degrees # %, and Q is an Aut(H)-
representation. From the results we obtain for this situation, we will, via Lemmas 2.26 and 2.29, be able
to deduce a description as desired. The arguments we will use are similar to those of [BM20, §9] for the
case where H is concentrated in degree 5. We will restrict ourselves to the case that Q = Vel @ we/
for some finite linearly ordered sets I and J, where V and W are the two nontrivial homogeneous pieces
of H. Identifying the result in this case with its induced (X; X X;)-action allows one to deduce the result
for more general representations via Schur—Weyl duality (see e.g. [FH04, §6.1] or [Eti+11, §5.19]).

Throughout this section, we fix two integers n and m such that m # 2n. (They correspond to k — 1
and k + [ — 2 above.)

3.1. Coinvariants of monomial functors

In this subsection, we let H = V @ W be a finite-dimensional graded vector space such that V is
concentrated in degree n and W is concentrated in degree m — n # n. Moreover, we assume that
H is equipped with a graded symplectic form (—,—) of degree —m (see Notation 2.6). We write
I' := Autgym (H, (-, —)) for the group of degree 0 symplectic automorphisms of H.
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Let S, I and J be finite linearly ordered sets and P a £s-module. Our goal for this subsection is to
identify the coinvariants

((PO]) ®25H®S) ® V®I ® W®J)F
asa (X; XX y)-module only in terms of P, without reference to H. We begin with some basic observations

about the structures of H and I'.

Lemma 3.1. The map W — s™VY given by w +> s"™(w, =) is a degree O isomorphism. After
identifying W with s™VV via this isomorphism, the inner product on H = V & s™VV is given by

((r,87¢), (v/,s™¢)) = p(v') = (=1)" " ¢/ (v).

Proof. The composition

VoW — (Ve W)\ —= Ve wY
h—> (h,-)
¢ ——— (¢lv.dlw)

is a degree —m isomorphism of the form

(>3]

since (v,v’) =0 = (w,w’) forall v,v’" € V and w,w’ € W by our assumption that m # 2n (which also
implies m # 2(m —n)). In particular, f and f’ are degree —m isomorphisms. Noting that f(w) = (w, —),
this implies the first claim. The second follows from f(w)(v) = (w,v) = —(=1)"0"= (y_w). O

Using the preceding lemma we will, in the following, implicitly identify H with V & s™V". We now
give a description of I" in these terms.

Lemma 3.2. The map GL(V) — Aut(V @ s"VV,(—,=)) = T given by f — f& (f~)V is an
isomorphism of groups. (Here, we implicitly identify automorphisms of s™V" with automorphisms of
vVY.)

Proof. Let f € GL(V). Then the computation

(0. ") (£00, 7D "))
= (@0 f ) = (D" (@ o £ ()
= () = (=" ()
= ((1,5"9).(v", 5" "))

shows that the map in the statement is actually well defined. It is clearly injective. We will now show
that it is also surjective. For this purpose, let f ® g € I, where f € GL(V) and g € GL(s™V"). By
using that f~' @ g~! € T as well, we obtain

g(@)(v) = (g(s" vy = (", 7' (1)) = (fT' () = (S )" (#) ()

and hence g = (f~!)V. This shows surjectivity. O

By basic linear algebra, there is a canonical isomorphism of graded vector spaces V @ sV =
s"End(V) (here, End(V) is concentrated in degree O since V is concentrated in a single degree). We
will now use this to identify (H®S ® V® @ W®/). in terms of End(V). To make this precise, we need
to introduce some notation.

https://doi.org/10.1017/fms.2023.113 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.113

14 R. Stoll

Definition 3.3. Let S be a finite linearly ordered set, A and B two disjoint subsets of S suchthat AUB = §
(i.e., an ordered partition of S into two subsets), and V; and V; two graded vector spaces. Then we denote
by (V1, V,)®(A-B) the tensor product ®S65 Vs, where Vg .=V if s€e Aand Vy =V, if s € B.

A morphism f: § — S’ of X induces a map

for (Vo) 2B — (v, vy) o (A5 ()

by permuting the factors. When V| is concentrated in degree n and V, in degree m — n, we denote by
sgny p(f) € {£1} the sign incurred by this permutation — that is, it is chosen such that

f*(®s€SVS) = SgnA,B(f) : ®s’eS’vf'1(s’)
holds.

Definition 3.4. Let S be a finite linearly ordered set. We denote by OM(S) the set of ordered matchings
of S (i.e., (ordered) pairs (A, B) such that A and B are disjoint subsets of S with |A| = |[B|and AUB = ).
(In particular, OM(S) is empty if |S| is odd.) This assembles into a functor OM: X — Set by letting a
morphism f: § — S" act via (A, B) — (f(A), f(B)).

Also note that the linear order of S restricts to a linear order on A and a linear order on B. In particular,
there is a unique order-preserving bijection A — B. We will denote this bijection by 4 5.

Definition 3.5. Let S, 7 and J be finite linearly ordered sets. We denote by OM(S, I,J) € OM(SLI11J)
the subset of those ordered matchings (A, B) such that I C A and J C B. This assembles into a functor
OM: X X X x X — Set by letting a morphism (f, g, #) act via f LI g I h.

Remark 3.6. Note that there is a canonical bijection OM(S, I, J) = OM(S), which is natural in EXXxX.

Lemma 3.7. Let S, I and J be finite linearly ordered sets. Then there is an isomorphism of (s XZyXZy)-
modules

0 - sm'A‘(End(V)®A) i(H®S®V®’®W®J) ,
(A,B)€OM(S.1,J) r r

where g € GL(V) = T acts on f € End(V) via the conjugation g . f = gfg~", and diagonally on
the tensor products. The (Ls X X X Xj)-module structure on the left-hand side is given as follows: a
morphism (f, g, h) of s X X X X; maps the factor corresponding to (A, B) € OM(S, 1, J) into the
factor corresponding to (c(A), c(B)) via the map given by

A A
Sml |[®a€A Eia’ja] = Sm‘ |[SgnA,B(C) ’ ®a’€C(A) Ei(r—l(a/)’j-r—l(a’)]’

where ¢ = fUU gl h, o = cl|y and T = (/VLC(A),C(B))“ oc|g o ua p, and the E; ; are single-entry
matrices with respect to some fixed basis of 'V (the resulting map is independent of this choice).

Moreover, ®1 can be chosen such that, for any basis e of 'V, it fulfills, on the factor corresponding to
(A, B) e OM(S,1,J),

018" @ yen Einiu]) = [ esuriy hs]

e, €V, if seA
hs =4 gmev es™VV, if seB’
Tzl ()

where the E; ; are with respect to e.
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Proof. There is a canonical isomorphism

H®S ®V®[ ®W®J ~ @ (V, va\/)@(A,B),
(A.B)

where (A, B) runs over all (ordered) partitions of S 11/ 11 J into two subsets such that / € A and J C B.
This is an isomorphism of (Xg X X; X X; X I')-modules where a morphism (f, g, h) of Zg X X; X X,
acts on both sides by permuting the factors (on the right-hand side this maps the (A, B) summand into
the (¢(A), ¢(B)) summand, where ¢ := f I g II k) and an element g € GL(V) = I' acts diagonally
(acting on V¥ by (g™1)Y).

Now note that the I'-coinvariants of (V,s”V")®(A-B) are trivial when |A| # |B| since 2 € GL(V)
acts via multiplication by 2"*!/2181. Hence, the inclusion

(V, SmVV)®(A,B) [EN H®S ®V®I ® W®J
(A,B)eOM(S,1,J)

becomes an isomorphism after taking I'-coinvariants.
Now let T be a finite linearly ordered set. Then there is, for any (A, B) € OM(T), a canonical
isomorphism of I'-modules

Wop: (V,s"VY)EAB) _— (smyV gy)®A

given by the following permutation: we consider the tensor product on the right-hand side to be indexed
over the set A X {0, 1} equipped with the lexicographical order and permute according to the bijection
wap:T— Ax{0,1} thatsendsa € A to (a,1) and b € Bto ((ua,p)~"(b),0).

The isomorphisms sgn, g (¥ a,8) - ¥a,p assemble into an isomorphism of (X7 x I')-modules

q;: @ (V, vaV)@(A,B) _E) @ (vav ® V)®A,

(A,B) €OM(T) (A,B)€OM(T)

where an element ¢ € 7 acts on the right-hand side by sending the factor corresponding to (A, B) into
the factor corresponding to (c(A), c(B)) via

cf’3(®aeA(sm¢a ® Va)) = SgnA,B(c) ’ (®aeA(sm¢‘r‘l(a) BVl (a)))’
where o and 7 are as in the statement of the lemma. Said differently, we have

B = sgny g (WA.B) SE0.(a).c(B) We(a).cB)) - (Pe(ay.c(B) @ Cx 0 ‘P;\,IB),

which maybe makes it clearer why ¥ is compatible with the X -action.
Now consider the case that 7 = S LI 7 1T J. Then it is clear that the isomorphism ¥ restricts to an
isomorphism

(‘/7 vaV)@(A,B) _E) @ (sva ® V)®A
(A,B) €OM(S,1,J) (A,B)€OM(S,1,J)

of (X5 x X x X5 x I')-modules.
Lastly, note that there is a ['-module isomorphism

®: "V ®V — s™End(V)

PV I— s (v - ¢(V)v),
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where I' = GL(V) acts on End(V) by conjugation. Together with the canonical isomorphism
(s™End(V))®4 = s"l41(End(V))®A these isomorphisms combine into an isomorphism

0: @ SmlAl(End(V)®A) =, (H®S o Vel ®W®J)
(A,B)€OM(S.1.7) r r

as desired. For the claims made about the induced (X5 X X; X Xj)-module structure on the left-
hand side and the explicit description of ©;, note that, when e = (e1,...,ex) is a basis of V, then
d>(s’"e¥ ®e;) =s™E; j, where E; ; is with respect to e. O

We have now reduced finding a description of (H® ® V®' ® W®/) . independent of H to finding a
description of (End(V) ®A)r that is independent of V. Such a description is provided by the classical
coinvariant theory for the general linear group.

Proposition 3.8 (Fundamental theorem of coinvariant theory). Let k € Ny such that k < dimV. Then
there is an isomorphism of vector spaces

(End(v)®*) = @Izl

such that [E,1),o0(1) ® ... ®Ewk),0 (k)] F w™ o for all w, o € Xy and any basis of V.
Proof. This can, for example, be found in [Lod98, 9.2.5, 9.2.8, and 9.2.10].2 O
Applying this to our situation, we obtain the following corollary.

Corollary 3.9. Let S, I and J be finite linearly ordered sets such that |S| + |I| + |J| < 2(dim V). Then
there is an isomorphism of (Zs X Xy X Xy)-modules

0 P MEawm) S P Mg,
(A,B)€OM(S,1,J) r (A,B)eOM(S,1,J)

where g X X; X X j acts on the left-hand side as in Lemma 3.7 and on the right-hand side as follows: an
element (f, g, h) maps the factor corresponding to (A, B) € OM(S, I, J) into the factor corresponding
to (c(A), ¢(B)) via the map

s"IAQIEA] — s"MAIQ[Z, (4]

$"Aly — s’"'A'(sgnA’B(c) cowt Y,

where ¢ = f U g U h, and o and T are as in Lemma 3.7.
Moreover, ®, can be chosen such that, for any basis of V and w € X4, it fulfills, on the factor
corresponding to (A, B) € OM(S, 1,J), that

0, (SmlAl [El,w(l) ®... ®Ea,w(a)]) = SmlAla),

where we identify A with {1, ...,a = |A|} via the unique order-preserving bijection.

Proof. Oneach summand, @ is given by a shift of the isomorphism in Proposition 3.8. Now let (A, B) €
OM(S, 1,J) and w € X4, and fix a basis of V. We will also use the notation from Lemma 3.7. First note
that by Proposition 3.8, the elements [Ej ,(1) ®...®Eq o (a)] of (End(V) ®A)F, with w running over

2Note that in the proof of 9.2.10, there is a small mistake, leading to the result being stated as o-w™! instead of the correct
-1
w o
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X 4, form a basis. Hence, it is enough to check the compatibility of ®, with the (Zg X X£; X X;)-action
on those elements. To this end, we note that @2(Sm|A| [E1,w()®... ®Ea’w(a)]) = s"Aly and

®2(SgﬂA,B(C) SS"AE o1 (o1 (1)) @ - ®Eo"1(a),w(’r’1(a))])

=" (sgny 5(0) - ocwr™),
which is what we wanted to show. ]

Remark 3.10. Setting 7 = S LI / LI J, we note that ®, restricts to an isomorphism of (X X Z; X Zj)-
modules on the summands indexed by OM(S, I,J) € OM(T).

We have now almost achieved what we set out do to in this subsection, as we have obtained, when
|S| +|I] +|J| < 2(dim V), an isomorphism

(H®S®v®’ ®W®J)l_ = P Mgz 3.1)
(A,B)€OM(S,I,7)

with the right-hand side independent of H as desired. To generalize this to expressions of the form
(PP @y, H®S) @ VE @ W®/) ., we will use the abstract lemmas of Section 2.4. To state the result in
its simplest form, we need to introduce a bit of notation.

Definition 3.11. Let / and J be finite linearly ordered sets. We denote by Match; ; the following
groupoid:

o Objects are tuples (S, A, B, ) with S a finite linearly ordered set, (A, B) € OM(S, I, J) an ordered
matching, and i: A — B a bijection.

o A morphism (S, A, B,u) — (S’,A’,B’, u’) is a tuple (f, g, h) of bijections f: § — S/, g € ¥, and
h € Xy, such that the map ¢ == f U g I 4 fulfills c(A) = A’, c(B) = B’,and c|g o = p’ o c| 4.

Moreover, for § € X, we denote by Matchf» ; S Match, ; the full subgroupoid spanned by objects of
the form (S’, A’, B, u”) with S’ = S. Also note that there is a canonical functor pr; ;: Match; ; —
Xy x X given on morphisms by sending (f, g, /) to (g, h). We denote by Match;q, jq, € Match; ;
the wide subgroupoid of those morphisms that are sent to (id;,id;) by pr; ;, and analogously for
Matchii c Matchf’ 7

1,idy

Definition 3.12. We write sgn,, ,, for the Match; ;-module given by

(S.A, B, ) = (s"Q,s""Q) NP
(see Definition 3.3). Said differently, it is s”!4lQ on which a morphism (f, g, k) acts by sgny p(c),
where ¢ == f I g I A.

With only a little bit more work, the lemmas of Section 2.4 now specialize to the following. (See
[BM20, Corollary 9.8] for a similar statement in the case where H is concentrated in a single degree
and/ =J=92.)

Proposition 3.13. Let S, I and J be finite linearly ordered sets such that |S|+|1|+|J| < 2(dim V) = dim H,

and let P be a Xs-module. Then there is an isomorphism of (X; X X;)-modules

colim (P®sgn,, )— ((P"p ey H®) Ve ¢ W®J) ,
’ r

S
Match; a7 iy

where a morphism (f,idy,idy) of Matchfi, ia, acts on P by f € g, and T acts trivially on P and
diagonally on the tensor product. The action of an element (g, h) € ; X Xj on the left-hand side is
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0,14,
represented by (A, B,c|g o po (c|4)7") and sgny p(c)x, where ¢ = idg L g 11 h.

Moreover, the isomorphism above can be chosen such that, for any basis e of V, it maps the element of
the colimit represented by (A, B, u) € MatChi%,,id, andp®s"ll e P® sgn,, ,, to[p® R esury hul
where

given by sending an element represented by (A, B, u) € Match andx € P®sgn,, ,, to the element

. {ea_l(,)ev, if teA
= Y m,v my;yV :
"€ 41 (1 (1)) €S VY, ifteB
(here a: |A| — A is the unique order-preserving bijection).

Proof. We start by rewriting the expression yielded by Corollary 3.9 and Remark 3.10. We have
isomorphisms of (Xg X £; X X;)-modules

B Mgz = P  asiia, b))

(A,B)€OM(S,1,7) (A,B)€OM(S,1,J)

= D Mo,
(A,B,u)€OM,,(S,1,J)

where, for the first isomorphism, we identify X, with the set of (not necessarily order preserving)
bijections Bij (A, B) viathe map w + pa g ow™". For the second isomorphism, we set OM,(S,1,J) =
Ob(Matcth). Anelement (f, g, h) € g X X; x Xy acts on OM (S, 1,J) via

(4B, 1) — (c(A).e(B),c. = clg o o (el)™),

where ¢ := f 11 g I h, and on Q(u) by sending u to sgn, g(c) - (¢ . w).
Now we have isomorphisms of (£; X X;)-modules

((P"p @y H®S) @ Vel ®W®J) ((P®H®S)ZS o Vel ®W®J)F

F_

IR

((P®H®S o Vel ®W®])F)Z
S

(P ®(H*® oV® @ WW)F)2

IR

S

since the actions of Xg X Xy X Xy and I" commute and since I' acts trivially on P. By Lemma 3.7,
Corollary 3.9 and Remark 3.10, as well as the preceding discussion, the rightmost expression above is
isomorphic to

(P® - sm'A'Q[zA])ZS = ( ) (P® sm|A|Q<,u)))ZS (3.2)
(A,B)€OM(S,1,J) (A,B,u) €OM,, (S,1,7)

as (X7 x Xjy)-modules. To describe the action on the sum on the right-hand side, let (f,g,h) €
Y XXy XXy and set ¢ := f I g L h. Then it sends the summand corresponding to (A, B, i) to the
summand corresponding to (c(A), c(B), c . u) by acting on P via f and on Q(u) as described above.
The quotient is taken with respect to the action of Xg = Xg x {id;y x {id;}.

Now we can apply Lemma 2.16. Noting that there is a canonical isomorphism

~ S
stxZ,xz‘,J OMM(S? 1’ -,) = MatChI7J
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of categories over X; X X, we obtain an isomorphism of the right-hand side of (3.2) with
Lanygyens 5,5, (P ® 580y, )

as (X7 x Xy)-modules, where a morphism (f, g, k) of Matchf,J acts on P by f € Xg. To this we
can, in turn, apply Lemma 2.18 to obtain the desired description in terms of a colimit: given an object
(A,B,u) € Match}g’l and an element (g, h) € X; X X;, we pick the lift (ids, g, h): (A,B,u) —
(A,B,c.u),where ¢ :=idg L g L1 h.

The explicit description of the isomorphism is obtained by chasing through the explicit descriptions
of its constituent parts. m}

3.2. Coinvariants of Schur functors

In this subsection, we want to compute
(@[H] oV oW’ )r

asa (X;xXy)-module, where & is some X-module, and H, V, W and I are as in the preceding subsection.
Noting that [H] is a sum of monomial functors in H, Proposition 3.13 yields an identification as
desired in a range depending on the dimension of H. To obtain a description of the whole thing, we thus
need to let the dimension of H go to infinity.

More precisely, we fix the following notation for the rest of this section:

H1—>H2—>H3—>...

is a sequence of maps of Sp” (see Notation 2.6) such that H; is concentrated in dimensions n and m — n
and such that the sequence dim H; diverges. Moreover, we write I'; := Autgym (H;) and denote by V;
and W; the degree n and m — n parts of H;, respectively.

Note that there are maps I'; — T[4 given by extending an automorphism of H; by the identity
on the symplectic complement of H; in H;,;. Moreover, the maps H; — H;,; become I';-equivariant
when H;, is equipped with the restricted action. In particular, for any functor F from Sp™ to some
cocomplete category C, we obtain a sequence F(Hi)pr, — F(H>)r, — ... and thus can make sense of
the expression colim; e F (H;)r, .

Definition 3.14. A compatible basis of the V; is a sequence ey, e, ... of elements of colim; V; such
that, for each i > 1, each of the elements e, ..., eqimyv, is represented by an (automatically unique)
element of V;, and the set of these representatives forms a basis of V;.

Proposition 3.15. Let I and J be finite linearly ordered sets and &P a X-module. Then there is an
isomorphism of (X1 X Xj)-modules

colim (P(S) ®sgn,, ,,) —> colim (95[Hl~] eV e Wl.®J) ,
(S,A,B, ) eMatchyg, i, ’ ieN L

where a morphism (f,idy,id;) of Matchiq, i, acts on P by f € Zs. The action of an element (g, h) €
X1 X X on the left-hand side is given by sending an element represented by (S, A, B, u) € Matchig, iq,
andx € P(S) ®sgn,, ,,, to the element represented by (S, A, B, c|gouo (clo)") and sgny p(c)x, where
c=ids U glh

Moreover, this isomorphism can be chosen such that, for any compatible basis (ej);en,, of the V,
it maps an element represented by (S, A, B, 1) € Matchyq, iq, and p ® 411 € P(S) ® sgn,, ,, o the
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element [p ® ®165H1H1h,] of

colim (((5)P &, HFS) @V @ W) € colim (#[H] @V @ W)
1e .

i ieN i

where hy is as in Proposition 3.13 (and we use the definition of 9| H;] of Remark 2.25).

Proof. We have

(9)[111'] oV ®Wi®J)r =D ((‘@(@Op @x Hi*) oV ®Wf®J)
b ke '

by definition of [—]. When k < dim H; — |I| — |J|, there is an isomorphism

colim (P (k) ® sgn,, ,,) —> ((@(E)Op &5, Hi®) 0 VP @ WFJ)F 3.3)

k
Matchi dp.idy

i

provided by Proposition 3.13. It is compatible with the maps H; — H;.; (i.e., it is a natural isomorphism
of sequential diagrams, where the left-hand side is considered as a constant functor). To see this, we
chose a basis of V; (the degree n part of H;), extend it to a basis of V;,1, and use the explicit description
of the isomorphism (3.3). Hence we have, for each k € Ny, an isomorphism

colim  ((k) @ sgn,,,) — colim ((9»(@01’ &, H; %) @ V! ®W,.®’) :

k. r;
Match, d7.idy i

. . k . . .
which, by setting Matchilzll i, = Hxer, Matchijl i, © Matchigq, iq,, assemble into an isomorphism

d,

colim (2®sgn, )= @ colim (2 (k) ®sgn, )

P k
Match;y 7.idy keNy Matd‘ﬁ, Jidy

= C(_)lem (QJ[H,-] ®Vi®1 ® Wl-@J)
1€

i

since colimits commute with direct sums. Since the inclusion Matchilzll i, — Matchiq, iq, is an
equivalence of categories, it induces a canonical isomorphism

colim (P ®sgn, ) = colim (P® sgn, )

Ma“hil:l, i Matchiq, ,ia;

which finishes the construction.

We will now prove the claimed explicit description of the composed isomorphism. To
this end, consider the element represented by (S,A,B,u) € Matchyg, iq, and p®s’”|A|1 €
P(S) ®sgn,, ,,. It is equal, for any choice of bijection f: S — |S], to the element represented by

(@, c(A),¢(B), clg oo (c|A)-‘) and sgn, z(c) - (£.(p) ®s™Al), where ¢ = f ITid; ITid,. On
such an element, the isomorphism is, by construction, given by the isomorphism of Proposition 3.13.
The representative one obtains using the explicit description of that isomorphism represents the same

element as the representative we provided in the statement of this proposition (by translating it back to
S via f=1). In the same way, one proves that the action of £; X X is as claimed. O
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3.3. Coinvariants of double Schur functors

In this subsection, our goal is to compute

: i ®1 ®J
colim (P[@H 11 ®VE oW’ )

as a (¥; X £y)-module, where & and @ are X-modules, and H;, V;, W; and I are as in the preceding
subsection. By Lemma 2.26, we have an isomorphism P[@Q[H;]] = (& o Q)[H;]. Hence, we can use

Proposition 3.15 to obtain a description as desired. We now introduce some notation to state the result
in a nice way.

Definition 3.16. Let / and J be finite linearly ordered sets. We denote by DirGraph;g, ;4, the following

groupoid:

o Objects are directed (I,J)-graphs — that is, tuples (F,N,S,T, u,a) with F and N finite linearly
ordered sets, (S,T) € OM(F,1,J) an ordered matching, y: § — T a bijection, and a: F — N a
map of sets.

o A morphism from (F,N,S,T,u,a) to (F',N’,S’,T',u’,a’) is a tuple of bijections (f: F — F’,
k: N — N’)suchthat c(S) =S8",¢(T) =T, c|ly opu =’ oclg,and k oa = a’ o f, where we set
¢ = f1id; 1 idy.

When I = J = @, we just write DirGraph and call its objects directed graphs.

Remark 3.17. We think of a directed (/, J)-graph as a directed graph with / inputs and J outputs. Under
this viewpoint, we have the following: N is the set of vertices (or nodes), F is the set of internal flags (or
half-edges), a describes to which vertex a flag is attached, S is the set of those flags which are sources
(i.e., outgoing) which includes the inputs, similarly 7 is the set of those flags which are targets (i.e.,
incoming) which includes the outputs, and u describes the (directed) edges (i.e., s € S and u(s) € T are
connected and form an edge).

Lemma 3.18. There is an isomorphism from sgn,, ,,, to the Match;_j-module given by
(S.A,B.p) — (s"Q)%%,

where a morphism (f,g,h): (S, A, B,u) — (S, A", B’, u’) of Match; ; acts by permuting the factors
according to c|,: A — A’, where ¢ = f U g U h. This isomorphism maps smAll e sgn,, ,, to
e - ™AL € (s"Q)®A, where ¢ is the sign incurred by permuting

h; into ®(ka ® Nyay)
teSUILS acA
where hy = s"1ift € Aand hy '=s""1ift € B.
Proof. Let p,q: Match; ; — Matchg o be the canonical functors given, on objects, by

p(S,A,B,u) = (SUITIJ, A, B,u
q(S’ A’ B’ /.l) = (T’ A’ B’ ,u)s

where T is equal to S II 7 L1 J as a set but is equipped with the linear order uniquely determined by the
following two properties:

o The element a € A is the predecessor of u(a) € B.
o Its restriction to A agrees with the linear order on A obtained by restricting the one of S LI 7 L1 J.

The identity of the underlying sets determines a natural isomorphism p — ¢. The map in the statement
is obtained by applying sgn,, ,, to this natural transformation. m}
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The following proposition contains the desired description of the (¥; X Xj;)-module
colim;eny (P[Q[H;]] ® Vi®1 ® Wi®J)1_4. (See [BM20, Theorem 9.12] for a similar statement in the case
where H is concentrated in a single degree and [ = J = @.)

Proposition 3.19. Let I and J be finite linearly ordered sets and let P and @ be X-modules. Then there
is an isomorphism of (X; X Xj)-modules

lim (9@0®@wwMWQwﬂ—iagg@ﬁmuﬂn®ww®w?ﬁ ,

co
(F,N,S,T ,u,a) EDirGraphidl Jidy i

where a morphism (f, k) of DirGraphyy, ;q, acts on P(N) by k, on @(a) by (f, k) considered as a
morphism of £ X, and on (s"Q)®S by permuting the factors according to c|s where ¢ = f11id; ITid;.
The action of an element (g, h) € ;XX  on the left-hand side is given by sending an element represented
by (F,N,S,T,u,a) € DirGraphy, 4, and x € $(N) ® Q(a) ®(s™Q)®S to the element represented
by (F,N,S,T,cly oo (clg)™",a) and sgn(g)™x, where ¢ = idp 11 g 11 h.

Moreover, this isomorphism can be chosen such that, for any compatible basis (e j)jen., of the V;, it
maps an element represented by (F,N, S, T, u,a) € DirGraphyy, 4, and

PO, Ny ® $"S1 € P(N) ® G(a) ®(s"Q)®S
to the element

e [P®QX), ey (QV ®X; em'(v)hf) ®Xreushrl € C‘l?&lgn (g’[@[Hi]] oV ®Wi®])r ,

i

where
hy = {es'm €V, fres
° m Vv myyV .
ses,](lrl(f))esV, if feT

and s: |S| — S is the unique order-preserving bijection. The sign € is the sign incurred by permuting

®v€NqV®®sES(hS®hH(S)) into ®V€N (qv®®fea’l(v)hf) ®®f€lU.lhf

according to the Koszul sign rule.

Proof. We have isomorphisms

(20 Q(F) &("Q%) = colim (% 0 Q)[Hi] @V @ W)

i

colim (
(F,S,T,u)eMatchig, ia,

= colim (@[@[Hi]] oV ® Wi®J)

ieN I

by Proposition 3.15 and Lemmas 3.18 and 2.26. Moreover, by definition,

(Po@)(F) = colim (P(N)®Q(a))
(a:F—>N)€eF |X

so that the leftmost colimit above is isomorphic to

li i (@N ®0(a) ®(s" ®5),
S T e (0 P 5 |7 (V) @ 8(a) O(5Q)

and hence, it is enough to show that the Grothendieck construction of the covariant functor
U: Matchyq, 4, — Cat given by (F,S,T,u) — F | X (where a map acts by precomposi-
tion with its inverse) is canonically isomorphic to DirGraphyy, ;4,. For this, we define a functor

https://doi.org/10.1017/fms.2023.113 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.113

Forum of Mathematics, Sigma 23

/ U — DirGraph,y, ;4 given, on objects respectively morphisms, by

((F,S,T,u),a: F - N)+— (F,N,S,T,u,a)
((f: F = F,idp,idy), k: ao ! — a’) —s (f, pr(k)),

where pr: F | X — X is the projection. This is clearly an isomorphism.
The explicit description of the (X; X X;)-action and the explicit description of the isomorphism
follow from the explicit descriptions in Proposition 3.15 and Lemmas 3.18 and 2.26. O

3.4. Coinvariants of CE chains of convolution Lie algebras

In this subsection, our goal is to compute the (£; X X;)-module

colim (CSE((s @) [Hi) @V @ W) (3.4)
where € is a cyclic operad, and H;, V;, W; and I'; are as in the preceding subsections. (For ease of dealing
with signs, we will only consider the case where € is concentrated in even degrees.) The cocommutative
coalgebra structure on the Chevalley—Eilenberg chains induces a cocommutative coalgebra structure on
(3.4) when I = J = @, and the structure of a comodule over this coalgebra for general I and J. We will
also identify this coalgebra (resp. comodule) structure explicitly.

By Lemma 2.29, there is an isomorphism

CEP((s™B) [Hi)) = (As)[(s™6) [Hi]]

of graded vector spaces. Hence, we can apply Proposition 3.19 to obtain a description of the underlying
graded vector space of (3.4). The rest of this subsection is concerned with also identifying its differential
in these terms. We begin with some useful auxiliary definitions.

Definition 3.20. Let / and J be finite linearly ordered sets and (F, N, S, T, u, a) a directed (1, J)-graph.
For a vertex v € N, we set

o [v] i=|a~(v)| its degree.

o [v|° = |a~! (v)N| its out-degree.

o [v|™ = |a~'(v) NT| its in-degree.

o w(v) = n|v|™ + (m — n)|v[" its weight.

Definition 3.21. Let / and J be finite linearly ordered sets, G = (F, N, S, T, u, a) adirected (1, J)-graph,
and s € F N S an internal outgoing flag. Moreover, we set v := a(s) and v’ := a(u(s)) and assume that
v # v’. In this situation, we denote by ctry(G) the directed (I, J)-graph (F’,N’,S’,T’, u’,a’) with

o F'=F\{s,u(s)}and N' := N/(v ~ V'),
o 8" =8\{stand T’ =T\ {u(s)},
o u’ = ul|g and a’ == pro (a|g/), where pr: N — N’ is the quotient map.

Here, N’ has the linear order such that pr(v) = pr(v’) is the smallest element and such that pr is order-
preserving on all other elements. The set F’ is equipped with the linear order determined as follows:
the elements of a~'({v,v’}) are smaller than all other elements; these other elements have the order
restricted from F; on a~!' ({v,v’}), the order is given by

a_l(v)<s < a_l(vl)>/1(s) < a_l(v,)</1(s) < a_l(v)>s,

where on each block the order is the one restricted from F. (This convention is chosen such that it
interacts nicely with the composition operations of a cyclic operad of Remark 2.32.)
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Definition 3.22. Let I and J be finite linearly ordered sets and G = (F, N, S, T, u, a) a directed (1, J)-
graph. A neighbor-closed vertex set of G is a subset N’ C N such that u(S Nna ' (N")) =T na'(N’).
A closed connected component of G is a neighbor-closed vertex set that is inclusion minimal among
nonempty neighbor-closed vertex sets.

A neighbor-closed vertex set N’ of G determines a directed (@, @)-graph and a directed (1, J)-graph

indg(N’) = (F',N",S",T', ulg, al,) € DirGraph
coindg(N’) := (F \F',N\N",S\S" T\T', uls\s a|F\F/) € DirGraphy,, i,

where F’ :==a”'(N’), S’ :==SNa " (N"),and T’ :=T Nna ' (N’).

Remark 3.23. Any neighbor-closed vertex set of G is a disjoint union of a unique set of closed connected
components of G. Moreover, when / =J = @ and N’ C N is a neighbor-closed vertex set of a directed
graph G = (F, N, S, T, u,a), then N\ N’ is one as well, and we have indg (N \ N’) = coindg (N’).

Definition 3.24. Let 7 and J be linearly ordered sets. For a X-module &, we define the (X£; XX ;)-module
of €-decorated directed (1,J)-graphs to be

DG (€); ; .= colim DecZ.
LJ DirGraphyy, jq, @17

(when I = J = @, then we omit them from the notation). Here, Decg‘ ;g 18 the functor

DirGraphidbidJ — GrVect given, on a directed (1, J)-graph G = (F, N, S,T, u,a), by
Decl.; ;(G) = (sQ)®N &(s %) (a) ®(s"Q)®,

where a morphism (f, k) of DirGraph,y, 4, acts on (s™"%)(a) by (f, k) considered as a morphism

of £ | X, on (sQ)®" by permuting the factors according to k, and on (s™Q)®S by permuting the factors

according to (f Ilid; ITid;)|g. The action of an element (g, h) € X; X £; on DG (E); ; is given

by sending an element represented by (F,N,S,T,u,a) € DirGraphy,, ;4, and x € Decg;l’] to the

element represented by (F, N, S, T, c|y o uo (c|g)~!,a) and sgn(g)"x, where ¢ := idr LI g 11 h.
Given a family (£, € €(a™!(v))), .y of elements of &, we call

sV @ @), s @™ € Dec(G)

the element represented by (G and) the decorations &, .

If € is concentrated in even degrees and equipped with the structure of a cyclic operad, then
DG™ (%), ; becomes a chain complex, which we will call the directed (I, J)-graph complex associated
to €. We now describe its differential d. For every directed (I, J)-graph G := (F, N, S,T, u, a), every
y € Dec%’; . ;(G), and every internal outgoing flag s € S N F (or, equivalently, every internal edge

Q

= (s, u(s))), we define an element d¢(y) € DG (F) 1.s by specifying the following properties:

o For every isomorphism y: G — G’ of directed (I, J)-graphs holds that % (y) = df('s) (x.v).

o Ifa(s) = a(u(s)) (i.e., if e is a loop), then d¥ (y) = 0.

o Assume that v := a(s) and v’ := a(u(s)) are, in this order, the first two elements of N. Moreover,
assume that a is order-preserving and that s is the last element of ! (v) and that u(s) is the first element
of a=!(v"). Then d¢ applied to the element represented by some decorations &, is (=1)m (™=
times the element represented by the directed (1, J)-graph ctry(G) decorated by &, s0,(s) £, at the
collapsed vertex pr(v) = pr(v’) and by &,, at all other vertices w.

For x € D6 (€); ; the element represented by G and y, we set d(x) = X csnr d%(y).
When I = J = @, we equip DG (€) with the structure of a cocommutative differential graded
coalgebra. The counit £: DG (€) — Q sends the element represented by the empty graph @ and
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1 € Q = DecZ(2) to 1 and an element represented by any other graph to 0. The comultiplication
A: DG (E) - DO (F) @ DO (€) is given as follows: for an element x € DG (F) represented
by G and (&, ),en, We set

A(x) = ) (=)"NVINWN g (N ) xys @ vy,
N/

where the sum runs over all neighbor-closed vertex subsets N’ of G and x4 is the element of DG (%)
represented by indg (A) and (&, ), ca. The sign e(N’) € {1} is the sign incurred by permuting

DV @ (X)s™é, @ (s"1)%S

veN

into

DV e () s™e @ ("D @ (sD®N W e (X) s @ ("),

veEN’ VEN\N’

where §” := Sna " '(N).

For general I and J, we equip D6 (), ; with the structure of a differential graded left comodule
over DG (%). Its structure map p: DEG"(F); ; — DO (€) ® DG™ (%), ; is given as follows: for
an element x € DG (€);_; represented by G and (£, ), en, We set

o(x) = Z(—l)mlN'”N\Nlls(N’)xN/ ®x).,
Nl

where the sum runs over all neighbor-closed vertex subsets N’ of G, x - is the element of D& (€) rep-
resented by indG (N’) and (&,), en’, and x}, is the element of DG™ () ; represented by coindg (N”)
and (¢,),en\n’. The sign e(N’) € {£1} is the same as above.

Remark 3.25. It will follow from Theorem 3.29 that the differential d of DG™ (%), ; is well defined
and actually a differential, that, in the case I = J = @, the maps € and A actually equip it with the
structure of a cocommutative differential graded coalgebra, and, for general I and J, that p actually
equips it with the structure of a differential graded comodule.

Note that, for defining the counit and comultiplication (respectively, the comodule structure map), it
is not necessary for & to be a cyclic operad. However, our proof below that they yield the structure of a
cocommutative graded coalgebra (respectively comodule) only applies in that case; it is certainly also
true without this assumption though. The condition that & is concentrated in even degrees is purely for
convenience; it avoids having to deal with even more signs.

Remark 3.26. We think of elements of DG (%), ; as being represented by a directed (1, J)-graph
(F,N,S,T, u,a) € DirGraphy, ;4, together with a decoration &, € % (a~'(v)) for every vertex v € N.
To understand the action of an (7, J)-graph isomorphism, we should additionally think of such an
element as being equipped with an orientation on the set of vertices if m is even or an orientation on the
set of edges if m is odd; when an (I, J)-graph isomorphism flips the orientation of the respective set, it
induces an extra sign.

Remark 3.27. The sign (—1)"(Iv =1 in the definition of the differential above corresponds to moving
the to-be-contracted outgoing flag s to the beginning of S.

Remark 3.28. In the case of the cyclic commutative operad € = €om, the directed graph complex
DG (¥) (or versions of it) has appeared in the work of, for example, Willwacher [Wil14, Appendix K],
Zivkovi¢ [Ziv20] and Dolgushev—Rogers [DR 19].

We are now ready to state and prove the main results of this subsection. (See [BM20, Theorem 9.14]
for a similar statement in the case where H is concentrated in a single degree.)
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Theorem 3.29. Let I and J be finite linearly ordered sets and let € be a cyclic operad concentrated in
even degrees. Then there is an isomorphism of differential graded (X; X X;)-modules

.52 DG (%);,; — colim (@) HD eV oWE’)
IAS]

i

where (s™™"€)[H;] is equipped with the graded Lie algebra structure of Lemma 2.34. When I = J = @,
this is an isomorphism of differential graded coalgebras, and, for general I and J, it is compatible with
the comodule structures over these algebras.

Remark 3.30. Tracing the dimension restriction of Proposition 3.13 through our arguments, the pre-
ceding theorem can be strengthened to an unstable isomorphism in a certain stable range that is com-
patible with the stabilization maps. More precisely, we obtain an isomorphism from the differential
graded subcoalgebra (resp. subcomodule) of DG (&); ; spanned by the decorated graphs with at
most dim H; — |I| — |J| internal flags to the differential graded subcoalgebra (resp. subcomodule) of
C*CE((S""‘%) [Hi]® Vl.@l ® Wi®1 )Fi spanned by the elementary tensors involving at most dim H; ele-
ments of H; (including V; and W;).

Proof of Theorem 3.29. Lemma 2.29 and Proposition 3.19 provide us with an isomorphism @} ; on the

underlying (£; X X;)-modules (in graded vector spaces). Let G = (F, N, S, T, u, a) € DirGraphyy, i,
be a directed (7, J)-graph and

x= DN, s E @SS e 5N @ (s7"E)(a) ® (s"Q)®S (3.5)
an element. Denoting by [x] the element represented by G and x, we set

@; s ([x]) = y(G)®; ;([x])
¥(G) = (_1)m%INI(|N\+1>+n|N|

(the sign y(G) serves to cancel out a sign encountered below). We have ®; 7 ([x]) = [be ;(x)], where
we set ®F | (x) = y(G)&(x)y with y given by

y =3 enshy

V= Aven syv

Yo =86 @ Q) fcar vy (3.6)
he = es‘l(f) ev, lf fES

fe sme;ﬁl(#fl(f)) es"VY, if feT

(where s: @ — S is the unique order-preserving bijection) and the sign e(x) € {x1} is the sign
incurred by permuting

(Sl)®N®®s_m§v®®(hs®hﬂ(s)) into ®s(s_m§v® ® hf)® ® hy

veN s€ES veN feal(v) feruJ

according to the Koszul sign rule.
We will now identify the result of pulling the Chevalley—FEilenberg differential d = dy + d; (cf.
Definition 2.28) back to D& (%); ; along the isomorphism ®; ;. To this end, we first evaluate it on
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¥. We have d = 0 (since the differential of (s™%)[H;] is trivial) and

di(5) = Y (D2 s[yv, 3] A Awev ) 9w

v,V EN
v<y’
[Yv,yv] = Z (&, i%j &) ®(hy, i%jf hyr) 3.7
ica™'(v)
jeat(v)
by = Isyul (L Isywr )+ Isyul D Isyel+ Isywrl D Isywl,
weN weN
w<y w<v’

where h, = X) fea (V)h # - In the following, we will, for ease of notation, identify each a~'(v) with
{1,...,|v|} via the unique order-preserving bijection and set h,.; = h¢(, ;), where f(v,i) is the i-th
element of a~! (v). We recall

i,j
hy i%j hyr = (_1)av’vlhv;l,i—l ® hv';j+l,\v’| ® hv’;l,j—l ® hv;i+l,\v|<hv/;j’ hv;i>
a:’lvr = (lhv;i,dcgv| - m)(|hy| —m) + |hv';1,j||hv’;j+1,deg v+ 1

) I
hvwite1 = ®i=k i

and note that, by definition of &, the expression (h,.;, h,;;) is zero unless {i, j} = {s, u(s)} for some
s € SN F. Hence, the same is true for the summand in (3.7) corresponding to (i, j). We thus obtain the
following description:

dy)= > d¢0)
seSNF
a(s)#a(u(s))
d (y) =6y - (S(yam sOu(s) Ya(u(s)) N Avev\(a(s),a(u(s)} Syv) Q) serushs

Vv i0j v =8 (&, o Ev) ® (hy o) hyr),

where 65 € {1} is some sign. We note that d% (CDfJ (%)) = ¥(G)e(x)d¥ () is equal to some sign
6, € {x1} times the image under ®; ; of the element [z] represented by the directed ([, J)-graph
ctrg(G) decorated by £4(s) s9u(s) €a(u(s)) at the collapsed vertex pr(a(s)) = pr(a(u(s))) and by &, at
all other vertices v. (Note that the family of basis elements %, obtained for ctry(G) does not agree with
the family obtained for the noncontracted flags of G. However, they are equivalent under the I';-action.)

We will now determine the sign d5 in a special case. To this end, let s € SN F and ¢ := u(s) such
that a(s) # a(t). Assume that v := a(s) and v’ := a(¢) are, in this order, the first two elements of N.
Moreover, assume that a: F — N is order-preserving and that s is the last element of a~!(v) and that ¢
is the first element of a~!(v"). (Note that any directed (1, J)-graph is isomorphic to one of this form.)
We have

6; = ’}’(G)S(x)(hv';[, hv;s>(_1)67(Ctrs(G))s(z)
c=by(x)+ af}’fv,(x)
by definition. We first note that (/,;, h,.s) = 1, that y(G)y(ctrg(G)) = (=1)™N 7 and that
c= |Syv| + (|hv;s| - m)(|hv’| - m) + |hv’;t||hv’;t+l,degv’| +1
=(1-m+w)+(n-m)(w')—m)+(m-n)(w(v') = (m—-n))+1,

which reduces the question to determining £(x)&(z). To this end, we factor the permutation defining &
into three parts: firstly permuting the 2y among each other, secondly interleaving the s™¢,, and h,, and
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thirdly interleaving the s1 and y,. The deviation between £(x) and £(z) for the first part is given by —1
to the power of

m([v[® = 1) + m(w(v) - n),
for the second part, it is —1 to the power of
([hs|+ 1A D(IN| = 2)(=m) + |hy[(=m) = [N|m + w(v)m(mod 2),
and for the the third part, it is —1 to the power of
(=m + |hs| + [1:)IN| + |yy| = =m + w(v),

so that, putting everything together, we obtain 87 = (—1)"(" =1,
Lastly, we show that, for any isomorphism of directed (7, J)-graphs y: G — G’, we have

[dS (@F ; ()] = [dF,) (@, (x . x))],

which will finish the identification of the differential. The statement is clear up to sign, so it is enough
to show that those agree as well. We write y . x = ax’, where @ € {1} and x’ is the element
represented by G’ and the labels (y . €, -1(,))wen’. Lastly, we define y” analogously to (3.6), so that
®F, (x') = y(G)e(x')y".

By definition, we have [y(G)e(x)y] = @1 s([x]) = @1 s ([x - x]) = [@y(G")e(x")y’]. Noting that
v(G) = y(G’), it follows from the definitions that ay(G)e(x)y(G")e(x’) = ae(x)e(x’) is the sign
induced by permuting

®s(s_m§v® ® hf) into ®s(s_m§X_1(w)® ® hX—l(g))

veN feal(v) weN’ gea1(w)

(here, we use that the families (hf ) cr and (h)’( ( f)) r er are equivalent under the action of I'; for large
enough i; hence, we can assume that they are equal, which we will do from now on). This sign is
the product of the sign @’ incurred by permuting ®v€ N SYv into ®w eN’ SYy-1(w) and the signs @,
incurred by permuting () ¢ -1 () ftr 10 Qg 1y (1)) Ay (0)-

It remains to evaluate the sign difference between d9 (y) and df(/s) (y”). For this, write t := u(s),
and {v,v’} := {a(s),a(t)} such that v < v’. Also let {w,w’} = {x(v), x(v')} such that w < w’. Then
the relevant summands of d () and d;(§’) are the ones indexed by (v, v’) and (w, w’). Note that —1
to the power of b, v + b}, ., the sign difference between A ey (y,v7y SY5 and Ay ey fw wry SY5;» and
a’ and a for v € V'\ {v, v’} cancel each other out, except for, if y swaps the order of v and v’, a sign of
—1 to the power of 1 + |y;, ||y;,.|. Now note that, in the case that y swaps the order of v and v’, we have
[V, Y] = (=)l dys y!,.] in the summand of d;(3’). Hence, the only sign that has not yet
canceled is a, a, .

Thus, it remains to show that the summand of [y, y,-] corresponding to (s, t) equals the summand
of [y;((v) , y)’((v,)] corresponding to (x(s), x(¢)), up to a sign of @, @,-. (For ease of notation, we assume
from now on that a(s) = v, and we set w == y(v), w’ = xy(v’), s’ == x(s), and ¢’ := y(¢), possibly
changing notation from before.) These two summands agree in (s~ ®)[H;] up to sign. The difference
in signs is given by —1 to the power of a‘i’fv, + a‘:; ’fv/v, times the sign incurred by permuting

hv sét hv’ = hv;l,sfl ®hv’;t+1,\v’| ®hv’;l,t71 ®hv;s+1,|v|

into Ay, o3y hj,. Now we note that —1 to the power of ai’fv, +1+m+m(|hys| + |hy]|) is precisely

the sign incurred by permuting 4, ® A, into (h, s&; hy,)® hy ® h,.s and analogously for a‘:;’tvlv/.

https://doi.org/10.1017/fms.2023.113 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.113

Forum of Mathematics, Sigma 29

Noting that |hy;s| = |h;,.,| and |hy/| = |} |, this implies the claim since @y @,- is the sign incurred by
permuting i, ® h,- into Ay, ® hj,,.

Now we prove that @y 5 is a map of graded coalgebras and that ®; ; is compatible with the
comodule structures over these coalgebras. It is clear that @4 o is compatible with the counits. We
will now identify the comodule structure map p of D™ (%); ; obtained by pulling back the one of
the Chevalley-Eilenberg chains. When I = J = @, this also deals with the comultiplication A of the
coalgebra structure since, in this case, we have A = p on both sides (see Remark 3.23). We continue to
use the notation of (3.5) and (3.6). We have

pOY = 3 ) (Nvew 9 @ ((Awewin 90) 8 @ sy ) (3.8)
N'CN

where the sum runs over all subsets N’ of N and §(N’) € {x1} is the sign incurred by permuting
Q) ensyy into &), aSyy ® ®W6N\N,syw. Note that (the equivalence class of) A, cp- sy, is trivial
except when (S Nna™'(N’)) =T na~'(N’). Hence, we can also consider the sum in (3.8) to run only
over all neighbor-closed vertex sets N’ of G. For such an N’, we set

XN = (Sl)®N ®®veN/S_m§V ®smIS'1]
Xy = (Sl)®N\N ®®veN\N’S_m§:V @smIS\S'I1

where S’ := S N a~'(N’). We denote the element of DG (&) represented by indg (N’) and xp- by
[xn-], and the element of D&™ (), ; represented by coindg (N’) and x},, by [x};,]. We have

o0 (Lxnr]) = y(indG (N DEGn) - Ay sy
15 ([ 1) = y(coinda (N De(e) - (Avewine 5w @ @y cyushy )

so that it only remains to see that

¥(G)e(x)6(N")y(indG (N")&(xn-)y (coindg (N'))e(xy,)
is equal to the sign in the definition of the comodule structure of D& (%), ;. Noting that
¥(G)y(indg (N"))y(coindg (N')) = (=1)" IV IINW,
this is clear from the definitions. O

3.5. Coinvariants of the truncation

In this subsection, our goal is to obtain a description of the differential graded (¥; X X;)-module

colim (CSE (s &) [H,]") o V! @ W)
ieN

I

in terms of a graph complex (including the coalgebra/comodule structures, as before). Here, & is a cyclic
operad, H;, V;, W; and I'; are as in the preceding subsections, and (=) denotes positive truncation (see
Definition 2.27). We begin with the following useful definition.

Definition 3.31. Let / and J be finite linearly ordered sets. A directed (1, J)-graph G is truncated if it
has no vertices of valence zero or one, and each vertex of valence two has only incoming edges. We
denote by

DirGraph{{""¢ = C DirGraphyy, ;4

i

the full subgroupoid spanned by the truncated directed (1, J)-graphs.
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We also denote by DGy, .(€);; S DG™(F); ; the differential graded (X; x X;)-submodule

spanned by the elements represented by truncated decorated (/, J)-graphs. When I = J = @, we omit
them from the notation.

Remark 3.32. When I = J = @, we have that D6, (€) € DG™ (%) is a subcoalgebra. For general /
and J, the DG™ (%)-comodule structure of DG™ (%), ; restricts to a DOy, (€)-comodule structure
on D(ﬁglunc(%)l,l'

Corollary 3.33. Let I and J be finite linearly ordered sets and let € be a cyclic operad concentrated in
nonnegative even degrees such that € (0)), € (1)) and € (2)) are concentrated in degree 0. Assume that
2n < m < 3n and set

%, if m=3n-1.
a =
1, otherwise.

Then, for all i € Ny, there is, in homological degrees < a dim H;, an isomorphism of differential
graded (X7 X Xj)-modules

Dine(B)1. = (CE((T"B) [Hi]) @ VE WP’ ) (3.9)
that is compatible with the stabilization maps on the right-hand side. When I = J = @, it is an
isomorphism of differential graded coalgebras. For general I and J, it is compatible with the comodule
structures over these coalgebras.

In particular, after stabilizing, we obtain an isomorphism

D6 irune (€)1, = colim (CSE((s-’"% [Hi]") eV ® W?’)F
1€ i

of differential graded (X; X X y)-modules. When I = J = @, it is an isomorphism of differential graded

coalgebras. For general I and J, it is compatible with the comodule structures over these coalgebras.

Proof. The condition 2n < m < 3n implies that

(s"B)[H]" = (s"E(2) @, (Wi @W))) ® @ s"E (k) ®s, HP* C (s™€)[H;],
k>3

where W; is the degree m—n part of H;. Then the explicit description of the isomorphism of Theorem 3.29,
together with Remark 3.30, implies that there is an isomorphism from the differential graded (£; XX ;)-
submodule D of DGy, (€);.; spanned by the decorated graphs with at most dim H; —|I|—|J| internal
flags to the differential graded (X£; X X;)-submodule C; of the right-hand side of (3.9) spanned by the
elementary tensors involving at most dim H; elements of H; (including V; and W;).

We will now prove that C}, is equal to degree p of the right-hand side of (3.9) when p < @ dim H;.

To this end, we take elements

Yy =XxQ@vew e CSE((s™6)[Hi]*) oV @ WS’
%= Avew (s @ Q) ) € CEE((s™B) [Hi]')

and note that |x| = Y, ey (1 = m +|&,| + W(v)), where w(v) := Zf;l |hy ;. Due to the truncation, we
have that

=2(m—-n), if k,=2
YONS o, if ky >3
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and that k,, > 2. Setting N, := {v € N | k,, = 2} and similarly for N3, we thus obtain
x| > [N2|(1 = m+2(m - n)) + Z (1=m+kyn)
VEN>3
since |&,| = 0 by assumption. We note 1 — m + 2(m — n) > 2 and, when k,, > 3, that

3

m(l —m+kvn) >k,

. 3n .
since 1=, > 1 as =3n <1 —m < 0. Setting

'—max(l 3 )— -1
p= T—m+3n) ¢

we thus obtain

Blxl = INo2+ Y k= > ky

VEN>3 veN

and hence that 8|x|+||+|J| is larger or equal to the number of elements of H; involved in y. Furthermore,
Blx| + I+ 1J] = Blyl + (1 = Bn) | + (1 = B(m = n))|[J| < Byl

since |v| = n|I| and |w| = (m — n)|J|. Hence, 8|y| = a~!|y| < dim H; implies [y] € C..
Using the same argument, we can show that D}, = D6, (¥), for p < a dim H;. (A combinatorial

argument using graphs would produce a better bound here; however, we will not need this.) O

4. The undirected graph complex

Throughout this section, we let m € Ny be a natural number and € a cyclic operad concentrated in
nonnegative even degrees such that € ((2)) = Q(id) with the trivial £,-action. (As in the previous section,
the condition that € is concentrated in even degrees is purely for the convenience of avoiding more
signs.)

Our goal is to obtain a simpler description of the homology of the truncated directed graph complex
D10 (€) of Definition 3.31. In fact, we will obtain a description in terms of undirected graphs. The
rough idea is as follows. Restricting the differential of D®,,.(€) to the two edges incident to a vertex
of valence two (which must be labeled by the identity operation by our assumption on &) yields the

following picture.

SO O R O SR GO R O8

Thus, intuitively, taking homology should kill the difference between the two orientations of an
edge. We formalize this using a spectral sequence argument: filtering DGy, (Zie) by the number of
vertices of valence two yields a spectral sequence, for which we prove that its first page is concentrated
in a single row. We moreover show that this row is isomorphic as a chain complex to a (well-known)
undirected version of the graph complex, which we denote by W®™ (). The spectral sequence then
implies that there is an isomorphism H.(D®,.(Zie)) = H. (UG (¥)). (This argument is similar to

a proof sketched by Willwacher [Wil14, Appendix K].)

Remark 4.1. There should also be a version of everything we do in this section in the more general
situation of the truncated directed (/, J)-graph complex DGy, (€); ;. We will not elaborate on this
here though. It might appear in future work.
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m
trunc

We begin by noting that the degree k part of the graded vector space DGy, (%) splits as a direct sum

D6iyune(B)ic = ) D6 e (B)
1eNy

where DGy, (%) is the subspace generated by elements represented by truncated decorated graphs
with exactly [ vertices of valence two. Note that a truncated decorated graph with N vertices and E edges
represents an element of homological degree k > N(1—m)+Em (since € is concentrated in nonnegative
degrees). Since all of its vertices are at least bivalent we have E > N and hence k > N (since m > 0).
Thus, in the above decomposition, a summand is trivial if [ > k, and hence, the sum is finite.

The differential restricts to a map

m (dl ’dz) m m
d: b(ﬁtrunc(%)k,l - b(ﬁtrunc(%)k—l,l ® D(ﬁtrunc(<g)k—1,l—l
so that regrading via C), 4 = DO, () 4.4 Yields a double complex C. . with a differential d' of
bidegree (-1, 0) and a differential d” of bidegree (0, —1) — that d! 0 d> = —d?* o d' follows immediately
from d o d = 0. The total complex of C, . is canonically isomorphic to D®;,.(€). Moreover, Cp, 4, can
only be nontrivial if 0 < g < p + g. Hence, we obtain a convergent spectral sequence of the following

form:
E} g =Hy(Cpod?) = Hyig (D671,0() “.1)

(see, for example, [Wei95, §5.6]).
We will use this spectral sequence to identify the homology of DGy, .(€). However, we will need
a few preliminaries before we can do so, beginning with an undirected version of Definition 3.16.

Definition 4.2. We denote by Graph the following groupoid:

o Objects are tuples (F, N, i, a) with F and N finite linearly ordered sets, a: F — N a map of sets,
and p a matching of F (i.e., u is a fixed-point-free bijection F' — F' of order two).

o A morphism (F,N,u,a) — (F’,N’,u’,a’) is a pair of bijections (f: F — F’,g: N — N’) such
that fou=pu' o fandgoa=a’o f.

Moreover, we write Graph..; for the full subgroupoid of Graph spanned by those objects (F, N, u, a)
such that |a~!(v)| > 3 forall v € N.

Remark 4.3. Analogously to Remark 3.17, we can think of Graph as the groupoid of undirected graphs
and of Graph 5 as the groupoid of undirected graphs such that each vertex has at least valence 3.
Given G = (F, N, u,a) € Graph, the set F specifies the set of flags, N is the set of vertices (or
nodes), the map a specifies to which vertex a flag is incident, and the matching u specifies how the flags
are connected to form edges. In particular, an edge of G is an orbit of u (i.e., a subset {f, f'} C F such

that u(f) = f" and u(f’) = f).

Definition 4.4. For G = (F, N, u,a) € Graph, we write Edge(G) for the set of edges of G. We equip
it with the linear order pulled back along the injection Edge(G) — F given by {f, f'} + min(f, f”).
This construction yields a functor Edge: Graph — X.

Definition 4.5. Let D = (F,N, S, T, u,a) be a directed graph. Its underlying undirected graph is the
undirected graph (F, N, u’, a), where y’: F — F is the matching given by u’(s) = u(s) fors e SC F
and (1) = u~'(¢t) fort e T C F.

Definition 4.6. For a truncated directed graph D, we define its underlying graph U(D) € Graph,; to
be the underlying undirected graph of D, except that all vertices of valence two together with their two
incident edges are replaced by a single edge.
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Remark 4.7. To be entirely precise, we would need to specify a linear order on the set of vertices and
the set of flags of U(D). This choice will not matter, however, and so we can make it arbitrarily.

We will now study (the homology of) the chain complexes C%’* = (C ,,,*,dz) occurring in the
spectral sequence (4.1). To this end, let D be a truncated directed graph. Note that applying d” to an
element represented by D yields a sum of elements each of which is represented by a directed graph D’
such that U(D") = U(D). Hence, there is a splitting of chain complexes

2 o G
Cpr = EB Cpoe
[G]

where [G] runs over all isomorphism classes of Graph; and CC{* is the subcomplex of CIQ,,* generated
by the elements represented by directed graphs D with U(D) = G. Thus, we can restrict our attention

to the chain complexes C G*

To understand (the homology of) C]?,*, we will construct a functor 5.,* from Graph.; to chain

complexes in graded vector spaces (here, the first grading e is the one of the graded vector space, and
the second grading * is the one of the chain complex) such that

(Ccrt@) =S =P, 2)
p

Aut(G) -

for all G. Since Aut(G) is finite and, in characteristic 0, quotienting by a finite group commutes with
taking homology, we will then be able to deduce the homology of Cf* from the homology of C, .(G)
together with its Aut(G)-action.

More precisely, we will take a ‘coordinate-free’ approach to the isomorphism (4.2) and actually
construct an isomorphism

lim C,, = C2, == Cp.,d*
som, Cev = €2, (@ )

of chain complexes in graded vector spaces. This will be the more convenient approach as it does not
require us to chose representatives of isomorphism classes of Graph.;. We need a few preliminaries
before we can construct C~‘.,*.
Definition 4.8. Let S be a set. We write dir(S) for the set of functions § — {-, 0, +}. For an element
o € dir(S), we set its degree to be |o| = |0~ (0)].

Moreover, for ? € {+,-}, 0 € dir(S), and s € S such that o(s) = 0, we write 0’ € dir(S) for the
function with 0’ (s) = ? and 0’ (s") = o(s”) forall s" € S\ {s}.

Definition 4.9. When G is an undirected graph, we write dir(G) := dir(Edge(G)). This forms a
(covariant) functor dir from Graph to the category of sets by letting an isomorphism y: G — G’ act
on o € dir(G) such that

o(x (), if ¥ ') <xf)

b o)) = {—o(x‘<e>>, it ) > ()

for each edge e = {fi < fo} of G’. (Here, we set —— = +, —0 = 0, and —+ = —, as expected.)

Remark 4.10. We think of the elements of dir(G) as all possible ways to, for each edge of G, either
chose an orientation or leave it undirected.

Definition 4.11. Let ¢ = {f < f’} be an edge of an undirected graph G. We set the vector space Or(e)
of orientations of e to be Q (in degree 0). An isomorphism y: G — G’ of undirected graphs induces a
map Or(e) — Or(y(e)) by setting it to be idg if ¥ (f) < x(f’) and —idg otherwise.
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Definition 4.12. Let G := (F, N, , a) € Graph.; and o € dir(G). We write D(G, o) for the truncated
directed graph obtained from G by, for each edge e = {f < f’}, doing the following:

o if o(e) = +, we orient it from f to f’ (i.e. f € Sand f’ € T).

o if o(e) = —, we orient it from f’ tof (i.e. f' € Sand f € T).

o if o(e) = 0, we replace e by a new vertex v, with two incoming edges (s?,7}) and (s, .) such that
the flag s7 is incident to a(f”), the flag s, is incident to a( f), and the flags ¢} and 7, are incident to v,.

The linear orders on the set of vertices and the set of flags of D(G, o) are inherited from G such that, for
e ={f < f'} with o(e) = 0, the new vertex v, is inserted as the successor of a( f) (if there are multiple
such vertices, they are inserted according to the order of the edges ), the two new flags s7 and ¢} are
successively inserted in this order instead of f’, and similarly for s, ¢, and f.

This construction yields an equivalence of categories D from the Grothendieck construction
fGraphZ3 dir to DirGraph™"¢,
Remark 4.13. Note that U(D(G, 0)) is canonically isomorphic to G for all o.

Definition 4.14. We say that a collection of decorations &,, of the vertices v of G represents the element
of Decg (D(G, 0)) that is represented by the &, and id € €((2)) at all of the added vertices of valence
two.

We are now ready to construct the functor C. «.« 0f (4.2). As a functor to bigraded vector spaces, we set

C(G) = @ Dec!(D(G, 0)) 4.3)

oedir(G)

bigraded by (k — |o|, |o|), where k is the homological degree. An isomorphism y: G — G’ acts on
this in the canonical way (i.e., it maps Dec (D(G, 0)) to Decg; (D(G, x . 0)) via the map induced by
D(, 0)). This is precisely the following left Kan extension

mephZ3 dir %} DirGraph'™n¢

pr\L lDec%’

Graph,; ---<-- BiGrVect

of Decg o D along the projection pr.

Since D is an equivalence of categories and since, by definition of C?, there is an isomorphism of
bigraded vector spaces colimpy;,rapptrne Decg; = C?, we obtain an isomorphism colimgraph_, C = C?
of bigraded vector spaces. (This uses that the colimit of a left Kan extension is isomorphic to the colimit
of the original functor.) _

To construct the differential of C(G), we will use the technical lemma following the next definition.

Definition 4.15. Our standing assumption that €(2) = Q(id) implies that the vector spaces
Dec (D(G, 0)) are independent of o up to isomorphism (when o(e) = 0, the extra vertex v, is labeled
by an element of €((2) = Q). We denote by

€G.e: Dec(D(G, 0})) = Decg (D(G, 0,))

the canonical such isomorphism (by a slight abuse, we do not include o in the notation). It is induced
by the canonical bijection o~ between the set of initial flags of D(G, 0}) and the set of initial flags of
D(G, 0,) (i.e., it is given by id ® (s™Q)®7).
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Lemma 4.16. There exist, for all G € Graph.;, e € Edge(G), and o € dir(G) such that o(e) = 0, two
isomorphisms

dg .+ Decg(D(G, 0)) — Decg (D(G, 0;))
dg..: Decg(D(G,0)) — Decg (D(G, 0,))

such that the following properties hold for all elements ? € {} and x € DecZ (D(G, 0)):

1. Let x: G — G’ be an isomorphism of Graph.; and set 7 := (x . 0>)(x(e)). Then y . d(?; LX) =
.
dG',)((e) (x -x). /
2. Let ¢’ # e be another edge of G such that o(e’) = 0, and let 7 € {x}. Then dz; e,(dz; LX) =
—dg; (dg ,(x)).
3. We have r(dG LX) = dD(G °) (r(x)), where r denotes the canonical map from DecZ(D(G, 0))

respectively Deci (D(G, oe)) to C2.
4. We have that d; , o (d§ ) L. : DecZ(D(G, 07)) — DecZ(D(G, 0,)) is equal to (=1)"cG e.

Assuming this lemma, we can define a differential on C (G) of bidegree (0, —-1) by

d= Y (d5,+dg,) “.4)

ecEdge(G)

(here d ! . is understood to be zero on Decg (D(G, 0)) when o(e) # 0). By the second property above,

we have d od = 0 and hence that C. «(G) = (C (G), d) is a chain complex. Moreover, the first property

implies functoriality of C. > and the third property implies that the isomorphism colimgraph, , C=C?
is compatible with the differentials.

Proof of Lemma 4.16. Tt will be convenient to construct the isomorphisms d(; , and d; , simultaneously
for all elements (G, e) of some fixed isomorphism class of the category of undlrected graphs with a
specified edge. To this end, we fix some pair (Go = (Fy, No, to, ao), €o) in this isomorphism class such
that the one or two vertices incident to e are the first elements of Ny, such that ag is order preserving
and such that the two flags making up e come first in the linear orders of their respective vertices (if
they are incident to the same vertex, we ask these two flags to be the first two elements).

Now let 0 € dir(Go) such that o(eg) = 0 and let x € Decg(D(Go,0)) be the element repre-
sented by some decorations (&, ), en,. Then we set d?co,e(, (x) to be (=1)INVIm+n+br times the element of
Dec (D(Go, 0! )) represented by the &, . Here,

€0

b_=0

b - m, if eq is a loop
+ = .
|out,  otherwise,

m|vl,0

where v, is the first element of Ny considered as a vertex of D(Gy, 0).
We extend this to all pairs (G, ¢) by choosing some isomorphism y: G — Gy such that y(e) = e,
and setting for o € dir(G), x € Decg(D(G,0)), and ? € {+},

dg (x) =D(x.00)™" . dg, . (D(x.0) .x), 4.5)

where ?” == (x.0.)(eo). To see that this is well defined, we need to show that equation (4.5) holds when
(G,e) = (Gy, eg) and y is any automorphism of Go such that y(eg) = eg. This follows directly from
comparing the signs induced by D(y, 0) and D(y, o} ) (distinguishing the cases of e( being a loop or

€0
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not and y flipping the two flags making up e¢ or not). The first property in the statement of the lemma
is thus true by definition.

To prove the third property, it is enough, by equation (4.5) and the fact that r(y . x) = r(x), to do
so for the pair (G, eg). In this case, the equality of the signs involved can be deduced easily from
Definitions 4.12 and 3.24.

The second property follows from similar arguments: by equation (4.5), it is enough to check this for
one member of each of the isomorphism classes of the category of undirected graphs with two distinct
specified edges. Distinguishing various cases, corresponding to the different ways the vertices incident
to the two edges can coincide or not, we choose representatives of the isomorphism classes that behave
nicely with our construction above. In these cases, it is then straightforward (but tedious) to check the
equality directly from the definition.

To show the fourth property, we first note that, for all isomorphisms y: G — G’, the following
diagram of isomorphisms commutes:

Dec(D(G, 0})) ——=*— Dec(D(G, 0}))

x| 1%

? €G’ x(e) )

Dec(D(G', 0%, ) ¢ Dec(D(G",07",)),

where ? := (x . 0)(x(e)). Hence, it is enough to prove this property in the cases of the pairs (Gy, eg).
There, it is true by definition since (—1)?+*?-*" is (regardless of whether e is a loop or not) precisely
the m-th power of the sign of the canonical bijection between the set of initial flags of D(Gy, 0},) and

the set of initial flags of D(Gy, o). O

We now claim that, for any G, the homology of 6.,*(G) is concentrated in bidegrees (p, 0) (which
implies that the spectral sequence (4.1) collapses on the second page). This follows immediately from
the following more general lemma.

Lemma 4.17. Let S be a finite set and (V,)oedir(s) a family of vector spaces. Furthermore, let there be,
foreach s € S and o € dir(S) such that o(s) = 0, two isomorphisms d5 : V, — Vor and d3: 'V, — V.
Assume that, for all ?,? € {+} and s # s’ € S such that o(s) = 0 = o(s’), we have an equality
dlo dz/ = —ds?: od’ of maps V, — V”.ZZ' = V{):if,';.

Let C = P, cdir(s) Vo be graded by the degree of o and equip it with the differential given by
d = Yes(di +d3) (here, we set dZ(VO) = 0 for all o with o(s) # 0). Then C, is a chain complex with
homology concentrated in degree 0.

Proof. First note that the anticommutativity of the partial differentials implies that d o d = 0, so we
only need to show the claim about the homology. Now choose some s € S. Then C can be bigraded via

Cro= P Vo ad Cu= H v

oedir(S) oedir(S)
lo™!(0)|=p 071 (0) |=p+1
o(s)#0 o(s)=0

and Cp,, = 0 for g ¢ {0, 1}. The two differentials d' = Zses\(s}(dy +dg) and d* = df +d; give
this the structure of a first-quadrant double complex with total complex isomorphic to C. Hence, there
is a convergent spectral sequence

E, ,=Hy(Cp..d®) = Hp.g(C) (4.6)
with the differential on the first page induced by d' (see e.g. [Wei93, §5.6]).
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Note that Cp, .. splits as €P,, C}.. where o runs over those elements of dir(S) of degree p + 1 such
that o(s) = 0, and Cy, , is the subcomplex

(d3.d3)
Vo —22 Vs @ Ve

of Cp .. Since df and d are both isomorphisms, the homology of C¢ , is concentrated in degree
0. Moreover, the inclusion V,; — Cy . induces an isomorphism on homology (where the former is
considered as a chain complex concentrated in degree 0). Hence, setting

o=@
oedir(S)
o(s)=+

grading it by the degree of 0 and equipping it with d! as a differential, we obtain an isomorphism of chain
complexes C} — (Hy(C ., d*),d 1). Since the Ej-page of the spectral sequence (4.6) is concentrated
in the row ¢ = 0, there thus is an isomorphism H,(C) = H.(C"). Hence, it is enough to show that the
homology of C* is concentrated in degree 0.

To see this, we note that C* is a chain complex as described in the statement of this lemma, but with
base set S \ {s} instead of S. Thus, we can, by induction, reduce to the case where S is empty. In that
case, the statement is trivially true, as any such chain complex is concentrated in degree 0. O

Let us recap what we did so far. We constructed the spectral sequence (4.1)
2 m
E,,=H, (Cp,*) = Hpig (DOirne ()

and, in (4.3) and (4.4), a functor 5.,* from Graph. ; to chain complexes in graded vector spaces such
that there is an isomorphism colim 5.,* = C,Zs*. Then we proved, in Lemma 4.17, that the pointwise
homology H. o 5.,* is concentrated in bidegrees (p, 0).

Now note that Graph; is a disjoint union of groupoids equivalent to finite groups, and hence that
taking rational homology commutes with Graph. ;-colimits (since rational homology commutes with
direct sums and quotients by finite groups). Hence, there are isomorphisms

H*(C,z ) ~ H( colim 5) =~ colim (H o 5) @.7)
’ Graph. ; Graph.,;
of bigraded vector spaces. In particular, the homology of C,Z’* is also concentrated in bidegrees (p, 0).

The spectral sequence then implies that the differential d' of the double complex C. . induces a
differential on HO(C,Z’*) such that there is an isomorphism

Ha (D675,c(8)) = Ha (Ho(C2.), ") 48)

of graded vector spaces (Lemma 2.10 provides an explicit description of this isomorphism, which we
will use later). Pulling back the differential d' along the isomorphism (4.7) hence yields a differential
on the graded vector space colim (Hg o C, .) such that the homology is isomorphic to the homology of
DO e (€). This colimit, equipped with the pulled-back differential, is the undirected graph complex
we are looking for. To prove this, we will first give an explicit description of the functor Hy o 5.,* and
then also identify the differential in these terms.

Definition 4.18. For an undirected graph G := (F, N, y, a) € Graph.;, we set

UDec(G) = (sQ*N o s "B) (@) ®  (X) s’“(Or(e)W“)
ecEdge(G)
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and call it the (graded) vector space of €-decorations on G. This yields a functor UDecg; : Graph,; —
GrVect. Moreover, we set

UG"(F) := colim UDecy

Graph,;

and call it the (graded) vector space of €-decorated undirected graphs.
Given a family (£, € €(a”!(v))), .y of elements of &, we will call

sVl g ® sTE, @ gMIBde(G)l] ¢ UDecg (G)
veN

the element represented by (G and) the decorations &,,. By a slight abuse of terminology, we will use
the same name for its image in UG (F).

Lemma 4.19. The following composition
UDecg (G) = Deci (D(G, const,)) = Ho(a,*(G))

is a natural isomorphism UDecg — Hoo 5.,* of functors Graph; — GrVect. Here, the left-hand map
is given by sending the element represented by G and some decorations &, to the element represented
by D(G, consty) and the same decorations ¢,. The right-hand map is the composite of the canonical
inclusion of the middle term into C, o(G) followed by the projection onto the zeroth homology.

Proof. That the left-hand map is an isomorphism is clear. Hence, it is enough to show that the right-hand
map is one as well, and that their composition is natural. We begin with the former.
By definition, we have

Ho(C.(G) =| € Dec(D(G,0)) |/~
oedir(G)
lo]=0
where ~ is generated by the relations dae (x) ~ —dg ., (x) for each edge e of G, element o € dir(S)
such that 0=1(0) = {e}, and x € Decg (D(G, 0)). The relation ~ can be equivalently described as being
generated by x ~ —d&’e((dz;’e)_l(x)) for each edge e, element o € dir(S) with |o| = 0 and o(e) = +,
and x € Decg (D(G, 0)).

By the last property of Lemma 4.16, we have an equality of isomorphisms _dé,e o (dz;’e)‘1 =
(—1)'"“6(;,@. We also have, by definition, that cG . © ¢G,er = €G.e’ © €G.e- This implies that each of the
canonical maps Decg (D(G, 0)) — Ho(C.(G)) is an isomorphism.

We will now identify the functorial structure of Hyp o 5.,* in these terms, which will imply the desired
naturality. Let y: G — G’ be an isomorphism and let x € Decg (D(G, const,)) be represented by some
decorations (£,),ecn, where N is the set of vertices of G. Then y . x is € € {1} times the element

y of Decg (D(G, x . const,)) represented by the decorations (x . &,-1(,))ven’, where N” is the set of
vertices of G’. This element y is equivalent under ~ to

(=1)kOmD) (C—Gl,’ek 0eio cz;l,,el)(y) € Dec”(D(G', const,.)),
where {ej,...,ex} = {e € Edge}(G’) | (x . const,)(e) # +. We hence obtain that y . x is equiva-
lent under ~ to &(—1)K"*D sgn(o)™ times the element of Deci (D(G’, const,)) represented by the

decorations (y . &,-1(y))ven’, Where o is the canonical bijection between the set of initial flags of
D(G’, x . const,) and the set of initial flags of D(G’, const,.). Finally, we note that, under the canonical
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identification of Edge(G) with the initial flags S of D(G, const,) and the analogous identification for
G’ (both of which are order preserving), the composition o o D(y, const,.)|s corresponds precisely to
the map Edge(G) — Edge(G’) induced by y. This finishes the proof. O

Combining Lemma 4.19 with the isomorphism (4.7), we obtain an isomorphism

UG (E) = colim UDecy = colim (Hp o C..) = Hg(Cf’*) 4.9)

Graph.; Graph_;

of graded vector spaces. As explained after (4.8), we will now identify the result of pulling back the
differential d' of HO(CE’*) to UG () along the isomorphism (4.9). Moreover, note that, via the
isomorphisms (4.8) and (4.9), the graded coalgebra structure of H, (DG, (€)) determines a graded
coalgebra structure on H (UG (%)). We will also describe this graded coalgebra structure explicitly.

Definition 4.20. Let G = (F, N, u,a) € Graph.; be an undirected graph. A neighbor-closed vertex
set of G is a subset N’ C N such that u(a™'(N")) = a~'(N’). A connected component of G is a
neighbor-closed vertex set that is inclusion minimal among nonempty neighbor-closed vertex sets.

A neighbor-closed vertex set N’ of G determines an undirected graph

indg(N’) = (F',N’, t| g+, a|ps) € Graph.s,

where F’ := a” ' (N').

Remark 4.21. When N’ C N is a neighbor-closed vertex set of an undirected graph G = (F, N, u, a),
then N \ N’ is one as well. Moreover, any neighbor-closed vertex set of G is a disjoint union of a unique
set of connected components of G.

Definition 4.22. We equip the graded vector space UG (€) of &-decorated undirected graphs with
the structure of a cocommutative differential graded coalgebra in the following way. The differential is
given by

dxl) = ), dZw,

ecEdge(G)

where G = (F, N, y1,a) € Graph,; is an undirected graph and x € UDecZ(G). Here, the d% (x) are
elements of UG (¥) uniquely determined by the following properties:

o For every isomorphism y: G — G’ of undirected graphs holds d¥ (x) = df(/e) (x . x).

o If e is a loop, then d9 (x) = 0.

o If eisnot aloop, let f < f’ be the two flags making up e and assume that v := a(f) and v’ := a(f")
are, in this order, the first two elements of N. Moreover, assume that a is order-preserving and that
f is the first element of F (in particular, e is the first element of Edge(G)). Then d applied to the
element represented by G and some decorations (&, ), en is the element represented by the graph

ctre(G) i= (F\ e.N/(v ~ '), il n @’ = proalp.

(obtained from G by contracting e) decorated by w . (£, oy £,/) at the collapsed vertex v := pr(v) =
pr(v’) and by &,, at all other vertices w. Here, w is the canonical bijection between the linearly ordered
seta'(v) ro,(r) a ' (v’) of Remark 2.32 and a '(§) CF\e.

The counit £: UG (%) — Q sends the element represented by the empty graph to 1 and an element
represented by any other graph to 0. The comultiplication A: UG™(€) — UG () @ UG (F) is
given as follows: for an elementx € UG (¥) represented by G = (F, N, u, a) and decorations (£, )yepn
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we set

A) = ) (D"ININWIS(N )y @ v
N!

where the sum runs over all neighbor-closed vertex subsets N’ of G and x4 is the element of UG (¥)
represented by indg (A) and (£,),ea. The sign 6(N’) € {£1} is the sign incurred by permuting

(Sl)®N ® ® S—mé;v ® (Sm1)®Edge(G)
veN

into

(s1)®1\]’ ® ® S—mé_-v ®(Sm1)®Edge(G1) ® (Sl)®N\N’ ® ® S—mé_-v ® (Sml)@)Edge(Gz)’
veEN’ VEN\N’

where G| = indg (N’) and G, = indg (N \ N’).

Remark 4.23. Note that it is easy to see that A is well defined (i.e., that A(y . x) = A(x) for any
isomorphism y: G — G’). In the proof of Theorem 4.28, we will show that the elements d% (x)
actually exist, which in particular implies that d is a well-defined map. Moreover, we will construct a
surjection from a cocommutative differential graded coalgebra onto UG™ (%) that is compatible with
the differentials, the counits and the comultiplications. This implies that the maps above indeed equip
UG™ (¥) with the structure of a cocommutative differential graded coalgebra.

Remark 4.24. The (undirected) graph complex UG (€), equipped with the differential graded coalge-
bra structure of Definition 4.22, is a well-known object. Variants of it were first described by Kontsevich
[Kon93, Kon94] and have, since then, appeared in the works of many different authors. Using the lan-
guage of modular operads due to Getzler—Kapranov [GK98], one alternative description is

UG™(€)" = Frim(E7"E) = 2™ 'Fp 0-m(B),

where F denotes the ‘Feynman transform’, T and Det are certain ‘hyperoperads’, and X denotes a degree
shift. Other descriptions have been given for example by Lazarev—Voronov [LV0S, §3.1] (though with
a different grading convention) and, in the case m = 0, by Conant—Vogtmann [CV03, §2.3].

The homology of WG (¥) is in general very complicated and in most cases of interest, only partial
information is known. See, however, the following remarks for a couple of basic observations. Also see
Remark 4.30 for an overview of what is known about this homology in the case of the cyclic Lie operad
€ = Lie.

Remark 4.25. Note that, up to a regrading, the differential graded coalgebra UG (€), and hence its
homology, only depend on the parity of m.

Remark 4.26. It follows from the description of the coalgebra structure of WG (%) that the cohomology
H*(UG™(®)") of its linear dual is a free graded commutative algebra generated by the cohomology of
the dual of the subcomplex UG () € UG (¥) spanned by the connected graphs. This subcomplex
splits as a direct sum

UG, (6) = (P UG, (F),

g€Ny

where UG . ¢(©) denotes the subcomplex spanned by connected graphs of genus g (here, the genus
of a graph is 1 plus the number of edges minus the number of vertices). Hence, understanding the
homology of U®™ (&) (or the cohomology of its dual) is equivalent to understanding the homology of

UGT . (€) for all g (or the cohomologies of their duals).

conn;g
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Remark 4.27. Let G € Graph; be a connected graph with N vertices, E edges and genus g = 1 -N+E.
Since every vertex is at least trivalent, we have E > %N , which implies £ < 3(g — 1). Since G is
nonempty, we have N > 1, which implies g < E. (In particular, there are no such graphs with g < 1.)
Now assume that € is concentrated in degree 0. Then an element of U®™ () represented by G has
homological degree p = (1 — m)N + mE = E + (m — 1)(g — 1). This implies that, in this case, the
subcomplex UG, . g(%) of Remark 4.26 is concentrated in those homological degrees p such that
mg-1D+1<p<(m+2)(g-1).

Theorem 4.28. Let m € Ny be a natural number and € a cyclic operad concentrated in nonnegative
even degrees such that € (2)) = Q(id) with the trivial Xy-action. Then there is an isomorphism of graded
coalgebras

H,(U6™ (%)) = H.(D1nc(6)).

where UG (¥) is equipped with the differential graded coalgebra structure of Definition 4.22.

Proof. We first show that there is an isomorphism U®™ (%) — Hy(C ,2*) of chain complexes, where the
domain is equipped with the differential of Definition 4.22 and the target with the differential induced
by d'. Together with (4.8), this yields the desired isomorphism on the level of the underlying graded
vector spaces.

The isomorphism ®: UG (€) — HO(CE,*) of (4.9) maps the element [x] € UG™(F) repre-
sented by G = (F,N, u,a) and decorations (&,),en to the element [y] of HO(C,Z’*) represented
by the directed graph D.(G) := D(G,const,) and the decorations &,,. By Definition 3.24, we have
d' ([y]) = Sses d?*(G) (y), where S is the set of initial flags of D, (G). There is a canonical bijection

G: Edge(G) — S (which is order preserving). We now define, for ¢ € Edge(G),

dg (x) = o7 ([a249) @ )] ),

where ®F : UDecZ (G) — Deciz(D+(G)) is the isomorphism from Lemma 4.19. We will now prove
that these elements d% (x) fulﬁll the properties of Definition 4.22. This implies that the map @ is an
isomorphism of chain complexes as desired.

First note that, if e is a loop, then dDg((G; (<1)(x)) = 0 and hence d%(x) = 0. Hence, the second
property of Definition 4.22 is fulfilled.

Now we show that d% (x) = df('e) (x -x) for any isomorphism y: G — G’ andedge e = {f; < f2} €
Edge(G). This is clear when e is a loop. Hence, it is enough to consider the case where G fulfills that a
is order preserving, that v{ = a(f) and v, := a(f;) are (in this order) the first two elements of N, and
that f; is the last element of a~'(v) and f> the first of @' (v3). (This is enough since any isomorphism
of undirected graphs with a distinguished non-loop edge factors through a graph of this form.) We need
to show that

20 @ 0] = [a257) ) (@7 (x . 0)] (4.10)
as elements of Ho(Cf,*). We first note that the left-hand side is equal to (—1)"(" I™=1 times the
equivalence class of the element y represented by ctr ;. () (D+(G)) and the decorations £, 05 £y, atthe
collapsed vertex pr(v;) = pr(v,) and by &,, at all other vertices w. Now, we set D’ := D(G, y ! .const,)
and write ¢ : D’ — D(G’, const,) = D, (G’) for the isomorphism induced by y. We further denote by
S’ the linearly ordered set of initial flags of D’ and set s’ := ' (0% (x(e))) € §’. Then the right-hand
side of (4.10) is equal to [d2'(y~" . @ (x . x))]. It follows from the definitions that y~' . @' (x . x) is

sgn(w)™(=1)*(1+m times the element x” of Deci (D’) represented by the decorations (&), en, Where
k is the number of edges whose orientation is flipped by y, and w: S — S’ is the canonical bijection.
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There are now two cases: either y preserves the orientation of e (i.e., we have y(f1) < x(f2))
or it reverses it. In both cases, we have that dSD,' (x") is some sign &£ € {1} times the element y’
represented by ctry(D’) and the decorations &,, ;05 &,, (in the first case) or &,, oy &), (in the
second case) at the collapsed vertex pr(v;) = pr(vz) and &, at all other vertices w. In the first
case, we have ¢ = (—1)’"“””“’“”, where vi = v; considered as a vertex of D’. In the second

| out

case, we have £ = (—1)"**"IVI™ (to see this, one transforms D’ into the form necessary to read
off dSD,' and then identifies the result of the contraction with ctry(D”)). It follows from the proof
of Lemma 4.19 that [y’] = 6[y] € Ho(C2,), where ¢ = sgn(®)™(~1)k(*") in the first case, and
8 = sgn(d)™(—1)k=DU+m) in the second. Here, & is the canonical bijection S \ {s} — S\ {5}, and k
is the number of edges flipped by y, as above. Lastly, we note that commutativity of

{s}L(S\ {s}) L)j
{sFU(S"\{s') —— &

1'\0"1—1

implies that the product sgn(w)sgn(®) equals (—1)M [ =1+]v in the first case, and
(=1 *=1+/{I*" in the second. This finishes the proof of (4.10).

We now prove that the elements d¥ (x) fulfill the third property of Definition 4.22. We assume that
e ={f1 < fo}is not aloop, that v| = a(f}) and v, := a(f2) are (in this order) the first two elements
of N, that a is order-preserving, and that f; is the first element of F. We also assume that f> is the
first element of a~!(v,) (we can arrange this without introducing a sign). Now, we let D’ be equal to
D, (G) except that the linear order of F has been changed such that f; is the last element of a~!(v)
instead of the first. Moreover, we denote by y: D.(G) — D’ the canonical isomorphism. We have
d?*(G) (®(x)) = dell()( .®(x)) and that y . @ (x) is (=1)™(" "~ times the element represented by D’
and the decorations (&, )y en - By definition, we thus have that d?} (x . E)(x)) is the element represented
by ctrg (D’) and the decorations (0| ,-1(y,) - év) 594 &y, at the collapsed vertex and &,, at all other
vertices w. Here, o is the canonical bijection from F to the linearly ordered set F’ of flags of D’. Lastly,
we note that ctrg; (D’) = D(ctr.(G), consty) and that (o [4-1(y,) - €v)) fiop Ev, = @ . (& fiop &),
where w is as in Definition 4.22. Thus, the third property is fulfilled as well.

It remains to prove that the isomorphism is compatible with the graded coalgebra structures. By
Lemma 2.10, the isomorphism (4.8) is induced by the surjection of chain complexes

¥ DG, (E) — (Ho(ci*),d')

that is given by the canonical projections D®,,.(€)ro — HO(CE’*) and the trivial maps on
DO {1yne () for I > 0. Hence, it is enough to show that the surjection

©:=0'o¥: DO (F) — UG™(F)

is a map of graded coalgebras.

Itis clear that © is compatible with the counits. Now note that the comultiplication A of DGy, (€) is
compatible with its bigrading. In particular, (¥ ® ¥)(A (x)) is trivial for an element DGy, (€); ; with
I > 0. Hence, it is enough to check that ® is compatible with the comultiplication of DG, (). .
Let D = (F,N,S,T,u,a) be a truncated directed graph without vertices of valence two and let
x € DOy, (€). o be the element represented by D and some decorations (£, )ven . Letop € dir(U(D))
be defined by setting op ({f1 < f2}) to be + if f; € S and — otherwise. Then D(U(D), op) is equal
to D. By the proof of Lemma 4.19, this implies that ®(x) is a(D) = sgn(op)™(=1)1+™) times
the element of UG (¥) represented by U(D) and the decorations &,. Here, kp = |02)1(—)| and
op: S — Edge(U(D)) is the canonical bijection.
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Recall that

Ax) = ) (=)"VINWN g (N Yxys @ vy,
&

where the sum runs over all neighbor-closed vertex subsets N’ of D and x4 is the element of DG (¥)
represented by indp (A) and (£,),ea. The sign £(N’) is specified in Definition 3.24. Applying ® ® ®
to the right-hand side, we obtain

D U)ININN g (N )y @y,
N/

where y, is @(indp (A)) times the element of UG™ (%) represented by U(indp(A)) = indy(p)(A)
and (&,)yea. Note that a subset N” C N is a neighbor-closed vertex subset of D if and only if it is a
neighbor-closed vertex subset of U(D). Lastly, we observe that

a(D)a(indp (N'))a(indp (N \ N')e(N’) = 6(N’),
where §(N’) is the sign of Definition 4.22. This finishes the proof. O

Remark 4.29. A proof of Theorem 4.28 for DG (€) instead of DGy, (%) has been sketched by

Willwacher [Will4, Appendix K] (in the case of the commutative cyclic operad € = ®om). Other
related statements have been proven in detail by Zivkovi¢ [Ziv20] and Dolgushev—Rogers [DR 19].

Remark 4.30. We quickly survey what is known about the homology of the undirected graph complex
UG (Zie) associated to the cyclic Lie operad. By work of Kontsevich [Kon93] (see also Conant—
Vogtmann [CV03, Theorem 2 and §3.1]) and Lazarev—Voronov [L.V0S8, Corollary 3.13], there are, for
g > 2, isomorphisms

HP (U6, (F1€)) = Hiniay (g1 (Out(Fe): 3°),
where UG, (ZLie) is as in Remark 4.26. (Note that it follows from Remark 4.27 that UG¢,,,., (Lie)

is trivial for g < 1.) Here, Out(F,) is the group of outer automorphisms of the free group on g generators,
and Q is the one-dimensional Out(F,) representation given by

det

Out(Fy) -5 Out(F¥) = GL4 (Z) ~5 GL,(Z) — GL1(Q)

(which is sometimes called the ‘determinant representation’).

The homology H. (Out(F,); Q), occurring when m is even, has been studied intensively. A recent state
of the art is summarized in [CHKV 16, §1], including certain stability results and computer calculations
for small g. The only nontrivial homology (outside of degree 0) with g < 4 is H4(Out(F4); Q) = Q. More
recently, Borinsky—Vogtmann [BV23] obtained a formula and asymptotics for the Euler characteristic
of H,(Out(Fg); Q).

The homology H. (Out(F,); @) occurring when m is odd, is less well studied. The only structural
results known to the author are Euler characteristic computations and asymptotics, again from [BV23],
as well as that

Hp (OUt(Fg); @) = @olnasg) =0 and H. (OUt(Fz); @) =0,
the latter of which follows from the fact that Out(F;) = GL;(Z) and the Eichler—Shimura isomorphism;

see Conant—Hatcher—Kassabov—Vogtmann [CHKV 16, §3.5]. Apart from this, there are computer cal-
culations for small g by Brun—Willwacher [BW23, Figure 9]. Their work shows that the only nontrivial
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homology with g < 4 is H3(Out(Fy); @) = Q. Using Remark 4.27, this implies that H, (UG (Z1ie)) is
trivial for 0 < p < min(3m + 2,4m) when m is odd.

5. Connected sums of products of spheres

Throughout this section, we let 3 < k < [ < 2k — 2 be two integers. We set
MEL = #(S* x S\ [1 DA
8 r

that is, a g-fold connected sum of S¥ x S* with r disjoint (k + [)-dimensional open disks removed (we
will often omit k£ and / from the notation and simply write M, ,). We are interested in the stable
cohomology of

BaUta(Mg,l);

that is, of the classifying space of the group-like topological monoid of homotopy equivalences from
M, 1 to itself that fix the boundary pointwise. To make sense of this, we need to specify stabilization
maps Bauts (Mg 1) — Bautyg(Mg.41,1). To this end, we note that there is a canonical inclusion

tg: Mg 1 = Mg \Dk+l — Mg o#My| = Mgy
(where # denotes connected sum), which induces a map of topological monoids
$g: autyg(Mg 1) — auty(Mgi1,1)

by extending an element of auty (M 1) by the identity.

We will now introduce some related objects, which we will need for stating and proving our main
result. We start by fixing some basepoints of S¥ and S. Then, for 1 < i < g, we denote by aig €
Hy (M, 1;Z) the homology class represented by the canonical inclusion of Sk into the i-th summand,
and by (arf Y e H{(M .15 Z) the class represented by the canonical inclusion of S into the i-th summand
(we assume that these inclusions do not intersect the disks used to form the connected sum). These
classes form bases of Hy (M, 1;Z) = Z8 and H; (M, 1; Z) = Z#, respectively. We choose the orientations

such that the intersection pairing fulfills (a;g, (a/;.g ))a = 1. Also note that (a;.g , (@) =0wheni # j.

J
For 1 <i < g, we moreover have (). (af) = af“ and (). ((@¥)*) = (a/f.”“)#.

Using this, we can define a stabilization map of groups
/PS Aut(ﬁ*(ngl;Z)) — Aut(ﬁ*(MgH,l;Z))

by letting ¥, ( f) be the unique automorphism such that /4 (f) o (t5)« = (t5)« © f and such that 4 (f)
g+1 g+1

e+l p +1)#. (Here, Aut denotes automorphisms of graded abelian groups.) We

is the identity on @°; and («a

now set

Iy = im(ﬂo(auta(Mg,l)) — Aut(H, (Mg,l;Z)));
that is, it is the group of those automorphisms of the reduced integral homology of M, ; that can be
realized by a homotopy automorphism that fixes the boundary pointwise. Together, the maps ¢, and

induce a stabilization map of groups yg: I'y — I'g41. The group I'y has been identified explicitly by
Grey [Grel9].
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Proposition 5.1 (Grey). We have
Ty = Aut(FL(My152), (=, —)n ) € Aut(FL(Mg,132)),
where (—, =) is the intersection pairing. Moreover, the canonical map
7o (auty (Mg 1)) — Tg

has finite kernel.

Proof. This is [Grel9, Proposition 5.1]. (The extra structure Jgq mentioned there is necessarily trivial.
When k + [ is odd, it is trivial by definition. When k + [ is even, it is trivial since Huw), (Mg 152) = 0
ask #1.) m]

This implies, by the same arguments as in the proofs of Lemmas 3.1 and 3.2, that
[y = Aut(Hx (M, 15Z))

acts on Hy (Mj 1 Z) via the standard action and on H; (M 1;Z) = Hy (M, 1;Z)" via its dual. The bases
aig of Hi (Mg 1;Z) constructed above yield isomorphisms I'y = GL,(Z) compatible with the y, and
the standard inclusions GL4 (Z) — GLg41(Z). Similarly, we obtain isomorphisms

g = Aut(FL(Mg.1:Q), (- -)n) = GLg(Q)

compatible with the stabilization maps.
Lastly, we set

gg = Der,, (]L(S_lﬁ*(Mg’l ; Q)))+;

that is, it is the positive truncation of the graded Lie algebra of derivations that annihilate the element
w = Y [Bi, BY], where Bi,...,Bg is some basis of s"'Hyx (Mg 1;Q) and B, ... ,ﬁg is the basis of
s‘lHl(Mg,l; Q) dual to it with respect to the intersection pairing; see [BM?20, §3.4 f.] for more details.
We note that the canonical action of FS on s‘lﬁ*(M 4,15 Q) preserves the element w. Hence, we obtain
an action of FS on g, by conjugation. Restricting along the canonical inclusion Iy — FS, we also
obtain an action of I'; on gg.

We now construct a stabilization map §g: g; — gg+1. For 6 € g,, the derivation 6, (6) is uniquely

determined by requiring it to restrict to 6 along the map induced by ¢, and asking that 64 (6) (s‘ ! ai::i ) =0

and ch(G)(s‘1 (az:})#) = 0. Here, af“ is the basis of Hg(Mg+1,1;Z) € Hx(Mgs1,1; Q) from above. It

is clear from the definition that §4(6) (w) = 0, so that ¢, indeed defines a map gz — §4+1 of graded Lie
algebras. Moreover, this becomes a map of Fg—modules when the target is equipped with the Fg—action
obtained by restricting along y,.

Remark 5.2. The graded Lie algebra g, is a Lie model for the homotopy fiber of the map
Bauty(Mg,1) — BI'g, and one can think of the action of I'y on g, as modeling the action of
I'; = m(BI,) on this fiber; see [BM20, Proposition 5.6] and [BS] for precise statements (for non-
relative self-equivalences this is [BZ22, Theorem 3.40]).

Berglund—Zeman [BZ22] recently developed methods for identifying the cohomology of a classifying
space of self-equivalences Baut(X) in terms of certain group cohomology. The details of applying this
to the relative situation will appear in the upcoming paper [BS] joint with Berglund. In particular, the
following statement is proved there; one can think of it as a strengthening of collapse of the Serre
spectral sequence associated to the fiber sequence of Remark 5.2.
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Proposition 5.3 (Berglund—Zeman, Berglund-Stoll). There are, for any g € No and I'g-module P,
isomorphisms of graded vector spaces

@, (P): H*(Bauty(M,,1); P) — H*(Tg; Hip (9¢) ® P)

that are compatible with the stabilization maps induced by ¢g_1, Yg-1, and 64_1, in the sense that the
diagram

B, (P)

H*(Bauty(My 1); P) > H*(Ty: He(a) ® P)

I

¢y H* (Fg_1 1Y g1 (Heg () © P))

I

Og-1(vg_,(P)) N . N
H (Fg—l; HCE(gg—l) ® 7g_1 (P))

H* (Bauta(Mg_l,l); 7’;_] (P))

commutes when g > 1. The map ©4(P) is an isomorphism of graded algebras when P = Q is trivial,
and an isomorphism of modules over these algebras for general P.

Proof. For P = Q and without the compatibility with the stabilization maps, this is stated (without a
detailed proof) as [BZ22, Theorem 4.40]. A full proof will appear in the upcoming paper [BS] joint
with Berglund. O

The rest of this section is devoted to providing, for certain I'g-modules P, an explicit description of
H*(T'g; Hi;(g) ® P) in a stable range of degrees.

5.1. Reduction to invariants

In this subsection, our goal is to prove that there is an isomorphism of bigraded algebras

x ry
HP (Fg?HgE(gg) ® P) = HP(I4: Q) ®Hq((CCE(9g) ®P) J’)
in a stable range of degrees. This will mainly rely on a result of Li—Sun [LS19]. We need some
preliminaries.
Definition 5.4. A Schur bifunctor is a functor F': Vect X Vect — Vect of the form
Fi,Va) = @ st (n,m) s, x 2, (V" @ V™),
ny,nz €Ny

where the #(n;,n;) are some right (Z,, X X,,)-modules in Vect. We say F has degree < d if
M (ny,ny) = 0 for all pairs (ny, ny) such that ny + ny > d. We say F is of finite type if each M (ny,ny)
is finite dimensional.

Lemma 5.5. Let F be a finite type Schur bifunctor of degree < d. Then the canonical inclusion

F(V, VV)GL(V) _ F(V, V\/)SL(V)

is an isomorphism for all finite-dimensional vector spaces V such that dimV > d. Here, f € GL(V)
acts on V¥ by (f~1)Y and diagonally on F(V,VV).

Proof. Using, for G a group and W a G-module, the natural (in both W and G) isomorphism (Wg)" =
(WY)C, we can pass to the dual situation (i.e., take coinvariants instead of invariants). (To see that
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F(V,VY)V is again a Schur bifunctor, we use that X := Xp, X Zy, is finite and that we are working in
characteristic zero, so that (M®zN)Y = MV®sN".)

Both the GL(V)-action and the SL(V)-action are compatible with the direct sum composition of
F(V,VV), so that it is enough to prove for a single summand

W = .ﬂ(l’l], nz) ®2n] XZn, (V®n1 ® (Vv)®n2)

with ny + ny < dimV that Wer (v) — Wgr(v) is an isomorphism. Denote by e, ..., e, some basis of
V. Then the equivalence relation defining Wgp (v) is generated by

ni ny ny n
m®®e,~j®®e:§, ~m®®f(eij)®®(f_l)v(e?;) 5.1
j=1 J=1 j=1 J=1

forall f € GL(V), m € M (ny,ny) and 1 < ij,i}, < g. Choose some 1 < i < g such thati # i;,i’, for
all j and j' (this is possible by our assumption that dimV > n; + n;). Now let f’ := f o h € GL(V),
where £ is defined by h(e;) = (det f)~'e; and h(ej) = ej forall j #i. Then f’ € SL(V) and it yields
the same relation (5.1) as f did. Hence, Ws.(vy — WL (v) is injective. Since it is clearly surjective, it
is thus an isomorphism. O

Now we are ready to prove the main result of this subsection. See [BM20, Theorem 8.4] for the
analogous statement in the case k = [; the stable range occurring in their result has been improved by
Krannich [Kra20] using an argument similar to the one we will employ.

Proposition 5.6. Ler Q be a finite type Schur bifunctor of degree < r and set P =
Q(Hk (Mg,1;Q),H;(Myg,1;Q)) as a Fg-module. Then the canonical map of bigraded vector spaces

H (1 Q @ ((Conao) 0 ) ) = 1 (s (Cepta 7)) ) —

H? (rg; HY(Cg(0,) ® P)) = HP (Tys Y (0) @ P)

is an isomorphism for g > max(p +1, %(q +1)+ r).

Proof. A result of Li—Sun [L.S19, Example 1.10] implies that the canonical map
HP (g HY (Ci(gg) © P)* | — HP ([ HY (Cie(a) © P))

is an isomorphism for g > p+2. This uses that [Gre 19, (Proof of) Proposition 7.1] implies that CZE(gg),
and hence also H? (C’(“:E(gg) ® P), is a finite dimensional rational representation of the reductive group
GL, and thus completely reducible (see, for example, [Mil17, Theorem 22.42]).

Now, by [Gre19, Lemma 3.4], the group Iy, is rationally perfect (cf. [BM20, Definiton B.3]). Hence,
taking I'g-invariants is exact when restricted to the category of finite dimensional representations. In
particular, the canonical map

HY((Cep(ae) ©1P)") — HY(Cop (o) @ P)

is an isomorphism.

Lastly we use that, by a result of Borel [Bor66, Theorem 1], the arithmetic subgroup SLg (Z) is Zariski
dense in SL (Q) (note that the condition of the theorem is fulfilled since SL is almost simple for g > 2).
Hence, we have V53¢ (?) = VSLs(Q for any rational representation V of SL, over Q. In particular, for F
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a finite type Schur bifunctor of degree < d and V := F(Q8, (Q8)"), we thus have, when g > d, that
zx zx zx
yOLe(2) (VSLg<Z>) - (VSLg (Q)) - (VGLg (Q)) - yOLe(Q

where the third equality uses Lemma 5.5. Now we note that, by [Grel9, (Proof of) Proposition 7.1],
there exists a finite type Schur bifunctor F, of degree < % such that there is an isomorphism

CgE(gg) = Fq (Hk(Mg,l;Q)»Hl(Mg,NQ))

of Fg-modules (where the action on the right-hand side is diagonally). Hence, CZE(gg) ® P is, in the
same way, the value of a Schur bifunctor of degree < £ +r. This finishes the proof. For the condition on g
given in the statement, note that an isomorphism of chain complexes in a range induces an isomorphism
of homology in a range smaller by 1. O

5.2. The main theorem

We are now ready to deduce our main theorem from everything we have done so far.

Theorem 5.7. Let3 < k < < 2k—-2and?2 < g be integers and let I and J be finite linearly ordered sets.

Furthermore, set Hq; = Hi(Mg’f;Q) as a m (auta(M;"f))-module. Then there is, in cohomological
degrees,

S 182 when |I]+]J] < 1g

T |2(g - -1 - 1), otherwise

an isomorphism of graded (X; X Xj)-modules
« kly. pyeI e\ ~
H* (Bauta (M) HE @ HEY ) =

SOOI (GL(Z); Q) @ HY (D kare (Zie);. ) ) @ sgnf* ! © sgnf!™!
compatible with the stabilization maps on the left-hand side (here, the shift refers to the cohomological
grading). It is an isomorphism of algebras when [ = J = @, and an isomorphism of modules over these
algebras for generall and J. Here, GL(Z) = colimgeny GLg (Z) and sgnyg is the sign representation of Zs.
Also, recall that @(ﬁﬁfl;z(gie) 1.7 is the truncated directed (1, J)-graph complex (see Definition 3.31)
associated to the cyclic Lie operad.

In particular, after stabilizing, we obtain an isomorphism

. * k,Iy. oI ®J) ~
lim H (Bauta(ML): HE) © HEY) =
s=DIH-DI Ig*(GL(Z); Q) ® H* ((b@{‘rﬂ;z(yie)hj)v) ® Sgnf"‘_1 ® sgn?l_1

of graded (X; X Xy)-modules. It is an isomorphism of algebras when I = J = @, and an isomorphism
of modules over these algebras for general I and J.

Proof. Combining Propositions 5.3 and 5.6, we obtain, in the stable range

1 _ 1
¢ > prggzsmax(p+ Lig+1)+|11+ |J|) —max(s+ LAGs+ 1)+ 1]+ |J|)
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an isomorphism of graded (¥; x X;)-modules

re
H“(Bautg(Mkl) He ® Hgi) = P HP(rg;Q)cqu((cgE(gg)@Hgf®H§{) Z’),
p+q=s

which is compatible with the stabilization maps and the algebra/module structures. It follows from
work of Borel [Bor74] (see also [KMP22, Theorem A]?) that the canonical map HP (GL(Z); Q) —
H?(GL4(Z); Q) is an isomorphism for g > p + 2; in particular, we can replace H” (I'y; Q) =
H? (GL¢(Z); Q) with H? (GL(Z); Q) in the formula above.

Now, by [BM20, Proposition 6.6], there is an isomorphism of Lie algebras

9o = Derw(L(s_lﬁ*(Mg,1;Q)))+ = (s~ (=2 pie) [S_I’FLF(Mg,l;Q)]Jr

that is compatible with the Fg-actions and the stabilization maps. Here, the right-hand side is equipped

with the graded Lie algebra structure of Lemma 2.34, where s‘lﬁ*(Mg,l;Q) is equipped with the
anti-symmetric pairing given by (s"'a,s™'b) = (=1)!4*1(a, b)4. Then Corollary 3.33 implies that, in
degrees g < %g —1ifl =2k—-2o0rq <2g—-1ifl # 2k — 2, there is an isomorphism of graded
(27 X Zy)-modules

Hy ((CF(00) ® (8 He)® © (' He)® ) ) = Hy (D640 (i), )
:

compatible with the stabilization maps on the left-hand side as well as the coalgebra/comodule structures.
(Note that an isomorphism of chain complexes up to degree p induces an isomorphism on homology up
to degree p — 1.) Dualizing this yields the desired statement since there is an isomorphism

(s5 1H 0 ® (s 1H & = (k=D 1+ (- 1)|J|H®I ®H®J ®Sgn?k 1®sgn§’l‘1

of (1“;;Q x Xy X Xj)-modules and Hg., and Hy;; are dual to each other. m]

Remark 5.8. Via Schur—Weyl duality (see, for example, [FH04, §6.1] or [Eti+11, §5.19]), Theorem 5.7
can be used to deduce descriptions of H* (Bauta(Mg’f ); P) for more general Fg-modules P.

Corollary 5.9. Let 3 < k <1 <2k —2 and 2 < g be integers. Then there is, in cohomological degrees
< g — 2, an isomorphism of graded algebras

H* (Bauty (M}]): Q) = H'(GL(2): Q) o H' (U6**? (Zie))
compatible with the stabilization maps on the left-hand side. (Recall that UG*72 (Zie) denotes the
undirected graph complex associated to the cyclic Lie operad; see Definition 4.22.)
In particular, after stabilizing, we obtain an isomorphism
lim H' (Bauta(Mif’f ); Q) ~ H*(GL(Z): Q) ® H* (u(sak*l-2 (gie)v)
g€ ’
of graded algebras.

Proof. This follows from Theorem 5.7 with I = J = @ and Theorem 4.28. O

Remark 5.10. It should be possible to obtain a version of this corollary for cohomology with nontrivial
coefficients by generalizing the arguments of Section 4 (see Remark 4.1).

3They actually prove a slightly better range than Borel, which we will not need.
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Remark 5.11. Note that
H*(GL(Z); Q) = AQ{x; | i € N51) where |x;| =4i+1

by a classical result of Borel [Bor74, p. 11.4]. The homology of U®**'~2 (Zie) is more mysterious.
See Remark 4.30 for a summary of what is known.
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