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ON THE DISTRIBUTION OF
WINNING MOVES IN RANDOM GAME TREES

J.A. FLANIGAN

In a natural way, associated with each rooted tree there exists a

pair of two-person games, each game possessing the root as

initial position. When a rooted tree is selected at random from

the set of all rooted trees which possess {l, 2, ..., n} as

vertex set, the number of winning moves available to the first

player to move in each of the associated games is a random

variable. For fixed n , we determine the distribution of this

random variable. As an immediate consequence, we find the

probability that the first player to move has no winning move at

all. The "saddlepoint method" is applied to a certain contour

integral to obtain the asymptotic distribution of the number of

winning moves as n -*•<*>.

1. Introduction

Let T denote the set of rooted trees which have
n

V = {l, 2, ..., n} as vertex set. To each T € T associate the

following two-person game. The vertices of T are the positions of the

game, the root being the initial position. The edges represent the legal

moves, provided that moves are made in the direction away from the root.

The players alternate moves. Play ends when a player is unable to move on

his turn. In this paper, except in Section 5, the normal play rule is

adopted: a player unable to move on his turn is the loser. These rules of
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play determine a partition of the nodes of T into two sets.

One set is composed of those positions from which the first player to move

can force a win. The other set is composed of those positions from which

the second player to move can force a win. For normal play, a position

represents a first-player win if and only if there is a move to a second-

player win position. Such a move is a winning move. If the edges of T

are oriented away from the root, then the kernel of the resulting digraph

is the set of second-player win positions ([/], Chapter ih). It is also

the set of positions with normal Grundy number equal to zero (['], Chapter

Ik). It can be found by a simple inductive procedure.

Suppose that T is selected at random from T . Let the random

variable X [T j [Y \T JJ equal the number of moves [winning moves] from

the root of T . The distribution of X and its limiting distribution

as n -*• °° are well-known [see formulae (l) and (ll)]. The main purpose of

this note is to determine the (limiting) joint distribution of X and Y

(Sections 2, 3, *+)• From this, some other probabilities of interest can be

found immediately (Corollaries 3.1 to 3.^). Finally (Section 5), we

determine the (limiting) joint distribution of X and Y when the

normal play rule is replaced by the misere play rule: the player unable to

move on his turn is the winner.

2. Notation

For n > 1 and 0 5 p 5 k < n , set

t (k, p) = \{T € T | there are k moves from the root of T ,

p of which are winning moves}| ,

t (k, •) = \{T € T I there are k moves from the root of T }\ ,

* ( " ) P ) = | { ^ ^ T I there are p winning moves from the
it ri ri

root of Tn)\ ,
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l(x) = Y t (•, 0){xn/n<) , t(x) = I t (•, -){xn/n<) ,
n=l n n=l

*(*, y, z) = I I I t (k, p){xn/n<)ykzP .
n=l k=0 p=0

Note that t (•, 0) represents the number of trees in T whose

roots are second-player wins. It is well-known [2] that t (•, •) = n

and that, [3], t (k, •) = n ""^ (n-l)""^"1 for 1 5 k £ n-1 . Thus,

(1) P(*B = k] = [l-_l]{l-(l/n))
n-2-{k-l)(l/n)k-1 .

X - 1 has a binomial distribution with parameters n.- 2 and l/n .

3. Enumerative analysis

In this section, first we find expressions for the generating

CO

functions £ t (k, p)[xn/nl) (Corollary l.l) and
k n

Y. t (', p)[x fn\) (Corollary l.U) in terms of the generating functions
n=p+l n

t(x) and l(x) for all k and p . Then an explicit formula for

t (•, 0) is found (Theorem 2).

THEOREM 1.

(2) * ( * , * , *) =

Proof. For n > fe > 0 and 0 < p £ ?t , consider

T (fe, p) = {T € T I there are k moves from the root of T ,

p of which are winning moves} .

There is a one-to-one correspondence between members of T (k, p) and

forests whose vertex sets are subsets of V of size n - 1 and which

consist of k rooted trees, p of which possess roots which are second-

player wins. There are n ways to select a subset of V containing
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n - 1 elements. Given any such subset as vertex set, by an elementary

counting argument, the number of ways to form a forest of k rooted trees,

p of which possess roots which are second-player wins is

(n-l)-(fc-p)

Up
n-1 1/P!

.3V"3J 3-,
. \l. I.

(n-l)-i

<-P

nn~w h e r e Z- = £ ( • , 0 ) a n d W = n n ~ - I f o r n i l . T h u s

, P) =
(.n-1)-(k-p)

I

>k-p

= (l/fc!){coefficient of (xn/n')3P in *[t(a;

a n d s o

Jk-p]

(3) = yk I I t(k, p){xn/rtl)zP .
n=k+l p=0

Since t (0, 0) = 1 , (3) holds for al l k > 0 . The proof is completed by

summing both sides of (3) over 0 S k < °° and then changing the order of

summation on the right hand side. D

COROLLARY 1 .1 . For k 2 1 and 0 s p s fc ,

(>*)
n=k+l

t (fc,-p)(*n/nl) = Wkl)[k)l(x)p[t(x)-l(x)]k-p .
n P

Proof. Observe that the left hand side of (1*) is

(l/k\pl){cP/dsP) (dk/dyk)$(x, y , z ) \ _ which can be calculated from
y—z—u

( 2 ) . a

COROLLARY 1.2 [ 6 ] .

( 5 ) t(x) = xet(x)
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P r o o f . S e t y = z = 1 i n ( 2 ) . D

COROLLARY 1 . 3 .

( 6 ) t{x) = l(x)eUx) .

P r o o f . S e t y = 1 , 3 = 0 i n ( 2 ) a n d t h e n a p p l y ( k ) . D

COROLLARY 1 . 4 . F o r p > 0 ,

00

(7) I *,(•, p){xn/n\) = Kx^/pi .
n=p+l n

Proof. Observe that the left hand side of (7) is

(l/p!)(8P/32P)$(x, 1, s)| which can be calculated by using (2). Then

use (6) to get (7). •

The remainder of this section is devoted to determining l(x) . Apply

the Lagrange inversion formula ([7], p. 135) to (5) to get Cay ley's result:

n=l

It is well-known ([5], p. 3^) that this power series converges for all

i i - 1 —z

complex z satisfying \z\ 5 e , where it is also the inverse of ze

Thus, for \z\ 2 e~ , in addition to (5)> we have

(8) t{ze~z) = 2 .

In the sequel, t(z) will represent the analytic continuation of this

power series from {z | |z \ < e~ } to fi = C - {r € R | r > e~ } .

Relations (5) and (8) remain valid in fl .

LEMMA.

(9) Ux) = -*(-*(*)) .

Proof. By (6) and ( 8 ) , x = l[xe~x)/e~l^Xe > . Use t h e Lagrange

CO

inversion formula to get l[xe~X) = £ {-\)n~1nl~1{xn/n\) = -t(-x) . By
«=1

(5), Ux) = -t[-t(x)) . D
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THEOREM 2 . For n > 1 , t ( • , 0 ) = Y ( - l ) * - 1

n k=l K

Proof. Note that t(0) = 0 and {d/dz)t(z)\ = 1 . There exists
2—0

an open disc A about the origin of C in which t i s a homeomorphism.

Let C be any c i r c l e contained in A with the origin as center. Then

t( C) i s a simple closed curve around the or igin .

For n 2 1 , by the Cauchy integral formula, (5) and (9) ,

*„(', 0) = (n-l)!/27Ti I {{d/dz)l{z)/zn)dz

= (n-l)l/2-ni I {-{d/dz)t{-t(z))/\t{z)e't{z)]n)dz .
>C

Make the change of variable W = t{z) to get

*„<-. 0)

I [[-{d/dw)t(-w)]em>/wn)dw

n-1 •= (n-l)l<coefficient of W in
k=Q

(-i)k(k+i)k[wk/kl) I [nk/k\)»l
k=0

= I (-l)k-1£)kknn-k~1 . 0
k=i k

Theorem 2 can also be proved by using (9) and the following result

(proved on pp. 181-182 of [7]) which will be needed in Section 5:

OO

(10) t(x)k = £ fc^-V^ (**/«!) -
n=k

It will be seen in Corollary 3.3 that

t (-, 0) ~nn~1(.d/dx)t(x)\^ , = (.362-)*""1 .

4. Asymptotic analysis

For large n , it is not practical to use the results of Section 3 to

make exact computations. Observe from (l) that
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(11) lim P[X = k] = e 'VU-l)! .

The limiting distribution of X - 1 is Poisson with mean one. The main

task of this section is to determine the limiting joint distribution of X

and 1 . Here a will denote -t(-l) = .56T+ .

THEOREM 3. For k > 1 and 0 S p S k ,

(12) lim P[Xn = k, Y = p] = (l/k\e)[(k-ap)/[l-a
2)][k)0P{l-a)

k-p .

Proof. Let C be as in the proof of Theorem 2, n > k > 0 ,

0 < p S k , and A = «(£)[(n-2)!]/fc! . Use (h), Cauchy's integral formula,

(5), and (9) to get

*„(*, P)

= A/Zni I [(d/dz){[l(z)f[t(z)-l(z)]k-p}/zn-1)dz
>C

>C

Now make the change of variable w = t(z) to get

t• (fc, p) =
n >t(c)

where

<p(w) = p[-t(-u)]p"1[u+t(-u)]fe"p(d/A;)[-t(-u)]

+ (k-p)[-t(-y)]P[!l;+t(-U)]
fe-P-1[

and

j, u) =

Note that e l"'w^ has a saddlepoint at wQ(n) = 1 . <f>(w) and

, u) satisfy certain conditions ([4], pp. U6—U7) which permit the

application of the saddlepoint method to get an asymptotic estimate for

tn(k, p) . According to a result of ([4], p. 1»7),
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h(n,w (n)) I
~<p(«0(n))e /

Thus

tn(k, p)/tn(-, •) ~ (/l/n""1) (cp(l)en-1/V2TT(n-l)Jtn(

By (5), (d/dz)t(z)\ _ . = a/(l+a) . Now apply this fact, Stirling's
S—X

estimate (n-l)l ~ (w-l) V2ir(n-l)e~ ~ , and some elementary algebra to

complete the proof. •

COROLLARY 3.1. For p > o ,

(13) lim P[YM = p] = ((p+l)/(l+a))(ci
P+1/p!) .

Proof. Sum both sides of (12) over p 5 fe < °° and then note that, by

(5), e~a = a . D

We observe from (l) that EX = 2(«-l)/n , and so lim EX = 2 . From

(13), lim tfY = a + cc/(l+a) = .929+ .

COROLLARY 3 . 2 . For k > 1 a«d 0 5 p £ k ,

l im P[Y = p | x = fc] = ( l / k ) [ ( k a p ) / ( l a ) ] (
P

Proof. Use (ll) and (12). D

From (lit) it follows that lim E[Y \ X = k] = ka - a /(l+cx) .

Consequently, for large n , suppose T is selected at random from T ,
n n

x
n[

T
n) = * > a « d t h e first player to move (perhaps being too lazy to find a

winning move) selects a move at random from the k possible moves. Then

o
he will select a winning move with approximate probability a - a /fc(l+a) .
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COROLLARY 3.3. lim P\?n = o] = (d/dx)t{x)\x=_1 .

P r o o f . S e t p = 0 i n ( 1 3 ) . Then u s e e~ = a a n d

a/(a+l) = (d/dx)t(x)\x=_1 . O

We note that {d/dx)t(x)| = .362" .

COROLLARY 3.4. For k > 1 ,

lim P[y = 0 | X = k] = (1-a)
n-xx> n n

Proof. Set p = 0 in ( l i t ) . D

5. Misere analysis

For misere play, a position represents a first-player win if and only

if either it is a terminal position or there exists a move to a second-

player win position. For the misere analysis, with one exception, we

retain the notation of Section 2. Unlike in normal play, in misere play

terminal positions are not second-player wins. Thus, in misere play we

00

take l(x) = Y, * ('» 0)[xn/nl) . The misere analysis will parallel that
n=2

presented for normal play in Sections 3 and It.

Equations (2) and (It) hold for misere play. Their proofs for misere

play are the same as for normal play, except that in the proof of (2),

\

Now set y = 1 and z = 0 in (2) to get the misere analogue of (6):

(15) t(x) = [l{x)+x]eUx) .

To get the misere analogue of (7), use (2) and (15) to get

oo

I *,(•, p)[xn/n<) = (l/p!)[Z(x)+x]Z(x)P .
n=p+l

To determine l(x) , rewrite (15) as eXt(x) = [l(x)+x]e'- ^x'+xi ) o r

equivalently, as x = y/e~° , where y = l[<f~ (x)) + cp~ (x) ,

<p(x) = e t(x) . Then apply the Lagrange inversion formula to get the

I. = t A ' , 0) = 1 i s r e p l a c e d by 1 = 0 .
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misere analogue of (9):

(16) l(x) = -t[-ext(x)) - x .

THEOREM 4 . For n > 2 ,

y . o) = i (-D*-1 i Odk)
n k=l Z=k *• *

Proof. Apply (10) to (l6).

The proofs of the remaining results are similar to the proofs of their

normal play analogues. Set

= -t[-ee ) - e"1 and y = ee (d/dx)t(x)

& = .3^2+ and y = .

THEOREM 5. For k 2 l and 0 s p s k ,

lim P[> = fc, y =

COROLLARY 5 . 1 . For p 2 0 ,

(IT) lim P[r = p] = ((YP/3)+l-Y)(ePe"6/p!) .

From (IT) i t follows that for misere play lim EY = g> + Y = .T5T .

COROLLARY 5.2. For k > l and 0 < p £ k ,

(18) lim P | / n = p | Xn = k]

From (18) i t follows tha t lim E[Y | X = k] = (k-l)B + Y

COROLLARY 5 . 3 . l i m P [ > M = o] = y = . U i 5 + .

COROLLARY 5 . 4 . For k > l ,

l i m P [ ^ = 0 | Xn = k ] = C
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