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Abstract

Let G be a locally compact amenable group and A(G) and B(G) be the Fourier and the Fourier–Stieltjes
algebras of G, respectively. For a power bounded element u of B(G), let Eu := {g ∈ G : |u(g)| = 1}. We
prove some convergence theorems for iterates of multipliers in Fourier algebras.

(a) If ‖u‖B(G) ≤ 1, then limn→∞ ‖unv‖A(G) = dist(v, IEu ) for v ∈ A(G), where IEu = {v ∈ A(G) : v(Eu) = {0}}.
(b) The sequence {unv}n∈N converges for every v ∈ A(G) if and only if Eu is clopen and u(Eu) = {1}.
(c) If the sequence {unv}n∈N converges weakly in A(G) for some v ∈ A(G), then it converges strongly.
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1. Introduction and preliminaries

The main purpose of this note is to prove some convergence theorems for iterates of
multipliers in Fourier algebras.

We begin with some notations and definitions. Let X be a complex Banach space
and let B(X) be the algebra of all bounded linear operators on X. Let X(1) denote the
closed unit ball of X.

Let G be a locally compact group with a fixed left Haar measure. The Fourier–
Stieltjes algebra B(G) and the Fourier algebra A(G) of G, introduced by Eymard in
[3], are central objects in harmonic analysis. The Fourier–Stieltjes algebra B(G) is
the linear span of the set of all continuous positive-definite functions on G. In fact,
for every u ∈ B(G), there exist a unitary representation π of G and vectors ξ and η in
the representation space of π such that u(g) = 〈π(g)ξ, η〉 for all g ∈ G. Equipped with
pointwise multiplication and the norm

‖u‖B(G) = inf{‖ξ‖ · ‖η‖},

where the infimum is taken over all pairs (ξ, η) of such representations of u, B(G) is a
commutative semisimple Banach algebra [3].

c© 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 $16.00

487

https://doi.org/10.1017/S0004972717000351 Published online by Cambridge University Press

http://orcid.org/0000-0003-2498-3884
https://doi.org/10.1017/S0004972717000351


488 H. S. Mustafayev [2]

The Fourier algebra A(G) is the linear space of all functions of the form f := h ∗ k̃,
where h, k ∈ L2(G) and k̃(g) = k(g−1). With pointwise multiplication and the norm

‖ f ‖A(G) = inf{‖h‖2‖k‖2 : f = h ∗ k̃},

A(G) is a commutative semisimple regular Tauberian Banach algebra. The Gelfand
space of A(G) can be identified with G via Dirac measures. Moreover, A(G) is a
closed ideal of B(G) [3]. If h ∈ L2(G) and s ∈ G, define Lsh(g) = h(s−1g). Let VN(G)
denote the closure in the weak operator topology of the linear span of {Lg : g ∈ G} in
B(L2(G)). The algebra A(G) is the unique predual of the von Neumann algebra VN(G).
Each f = h ∗ k̃ in A(G) can be regarded as an ultraweakly continuous linear functional
on VN(G) defined by

〈S , h ∗ k̃〉 = 〈S h, k̃〉, S ∈ VN(G).

It follows that 〈Lg, f 〉 = f (g) for all f ∈ A(G) and g ∈ G.
Let A be a commutative Banach algebra. We will denote by ΣA the Gelfand space

of A equipped with the w∗-topology and by â, where â(γ) = γ(a) (γ ∈ ΣA), the Gelfand
transform of a ∈ A. A linear mapping T : A→ A is called a multiplier of A if

T (ab) = (Ta)b (= a(Tb)) for all a, b ∈ A.

When A is semisimple, the set of all multipliers of A is a commutative, unital, closed
and full subalgebra of B(A) [9].

For each u ∈ B(G), the operator Lu : A(G)→ A(G), defined by Luv = uv (v ∈ A(G)),
is a multiplier of A(G). If G is amenable, then every multiplier of A(G) is of this form
and the map u 7→ Lu is isometric [1].

A commutative Banach algebra A is said to be regular if given a closed subset
K of ΣA and γ ∈ ΣA�K, there exists an a ∈ A such that â(γ) , 0 and â(K) = {0}. A
semisimple regular Banach algebra A is said to be Tauberian if A00 = A, where

A00 := {a ∈ A : supp â is compact}.

The Tauberian condition for A implies that every proper closed ideal of A is contained
in a maximal modular ideal.

Let A be a regular semisimple Banach algebra. For a closed subset K of ΣA, there
are two distinguished closed ideals in A with hull equal to K:

IK := {a ∈ A : â(K) = {0}}

is the largest closed ideal whose hull is K and JK := J0
K is the smallest closed ideal

whose hull is K, where

J0
K := {a ∈ A00 : supp â ∩ K = ∅}.

The set K is said to be a set of synthesis for A if IK = JK [10, Section 8.3].
An element a of a Banach algebra A (not necessarily commutative) is said to be

power bounded if supn≥0 ‖a
n‖ <∞.

The following results are well known (the assertion (d) is contained in [2]).
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Proposition 1.1. Let X be a Banach space and let T ∈ B(X).

(a) For every x ∈ X,

dist(x, (I − T )X) = sup{|〈ϕ, x〉| : T ∗ϕ = ϕ, ϕ ∈ X∗(1)}.

(b) If T is power bounded, then

(I − T )X =

{
x ∈ X : lim

n→∞

∥∥∥∥∥1
n

n−1∑
k=0

T k x
∥∥∥∥∥ = 0

}
.

(c) If T is a contraction, then, for every x ∈ X,

lim
n→∞

∥∥∥∥∥1
n

n−1∑
k=0

T k x
∥∥∥∥∥ = dist(x, (I − T )X).

(d) If T is a contraction, then, for every x ∈ X,

lim
n→∞
‖T nx‖ = sup

{
|〈ϕ, x〉| : ϕ ∈

∞⋂
n=0

T ∗n(X∗(1))
}
.

(e) If T is power bounded and x ∈ X, then (1/n)
∑n−1

k=0 T k x → 0 weakly implies
(1/n)

∑n−1
k=0 T k x→ 0 strongly as n→∞.

2. Convergence theorems

In this section, we present some results concerning convergence in Fourier algebras.
If u ∈ B(G), then

Ju := (1 − u)A(G)

is a closed ideal in A(G) associated with u and hull (Ju) = Fu, where

Fu = {g ∈ G : u(g) = 1}.

If u ∈ B(G) is power bounded, then

Iu := {v ∈ A(G) : lim
n→∞
‖unv‖A(G) = 0}

is another closed ideal in A(G) associated with u. Notice also that |u(g)| ≤ 1 for all
g ∈ G. We put

Eu := {g ∈ G : |u(g)| = 1}.

As proved in [7, Theorem 2.6] and [11, Proposition 2.1], hull(Iu) = Eu. Since the
algebra A(G) is Tauberian, Eu = ∅ if and only if ‖unv‖A(G) → 0 for all v ∈ A(G). Hence,
we may assume that Eu , ∅.
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The coset ring of a locally compact group G, denoted by R(G), is the smallest
Boolean algebra of subsets of G containing left cosets of all subgroups of G. As in [5],
define the closed coset ring Rc(G) of G by

Rc(G) = {E ∈ R(Gd) : E is closed in G},

where Gd is the algebraic group G with the discrete topology. From [7, Theorem 4.1],
if u ∈ B(G) is power bounded, then Eu ∈ Rc(G). On the other hand, if G is amenable,
then every subset inRc(G) is a set of synthesis for A(G) [5, Lemma 2.2]. Consequently,
if u ∈ B(G) is power bounded, then Eu is a set of synthesis for A(G) in the case when
G is amenable. Furthermore, since (1 + u)/2 is power bounded and Fu = E(1+u)/2, the
set Fu is also a set of synthesis for A(G).

Proposition 2.1. If G is amenable, then, for arbitrary u ∈ B(G)(1) and v ∈ A(G),

lim
n→∞

∥∥∥∥∥1
n

n−1∑
k=0

ukv
∥∥∥∥∥

A(G)
= dist(v, IFu ),

where IFu = {v ∈ A(G) : v(Fu) = {0}}.

Proof. Applying Proposition 1.1(c) to the operator Lu on the space A(G),

lim
n→∞

∥∥∥∥∥1
n

n−1∑
k=0

ukv
∥∥∥∥∥

A(G)
= dist(v,Ju).

On the other hand, since Fu is a set of synthesis for A(G) and hull(Ju) = Fu, we have
Ju = IFu , where IFu = {v ∈ A(G) : v(Fu) = {0}}. �

Proposition 2.2. If u ∈ B(G) is power bounded, then the sequence{1
n

n−1∑
k=0

ukv
}

n∈N

converges in A(G) for every v ∈ A(G) if and only if Fu is clopen (closed and open).

Proof. Notice that

Ku :=
{
v ∈ A(G) : lim

n→∞

1
n

n−1∑
k=0

ukv exists
}

is a closed ideal in A(G). Let

Lu := {v ∈ A(G) : uv = v}.

By [8, Ch. 2, Theorem 1.3], we can write Ku = Ju ⊕ Lu, where Ju = (1 − u)A(G).
Further, if v ∈ Lu, then it follows from the identity

[(1 − u(g))]v(g) = 0 for all g ∈ G
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that

Lu = {v ∈ A(G) : v(g) = 0, for all g ∈ G�Fu}.

Since A(G) is regular, hull(Lu) = G�Fu. Now assume that the sequence{1
n

n−1∑
k=0

ukv
}

n∈N

converges for every v ∈ A(G). As Ku = A(G), we have A(G) = Ju ⊕ Lu, so that
hull(Ju) ∩ hull(Lu) = ∅. Since hull(Ju) = Fu, we can write

G�Fu = hull(Lu) ⊆ G�hull(Ju) = G�Fu.

It follows that Fu is a clopen set.
Assume that Fu is clopen. Then hull(Lu) = G�Fu and, therefore,

hull(Ku) = hull(Ju) ∩ hull(Lu) = ∅.

Since the algebra A(G) is Tauberian, we have Ku = A(G). �

The main result of this note is the following theorem.

Theorem 2.3. If G is amenable, then, for arbitrary u ∈ B(G)(1) and v ∈ A(G),

lim
n→∞
‖unv‖A(G) = dist(v, IEu ),

where IEu = {v ∈ A(G) : v(Eu) = {0}}.

Proof. For arbitrary u ∈ B(G) and S ∈ VN(G), define u ◦ S ∈ VN(G) by

〈u ◦ S , v〉 = 〈S , uv〉, v ∈ A(G).

Clearly, u ◦ S = L∗u(S ). Now let u ∈ B(G)(1) be given. Applying Proposition 1.1(d) to
the operator Lu on the space A(G),

lim
n→∞
‖unv‖ = sup

{
|〈S , v〉| : S ∈

∞⋂
n=0

un ◦ VN(G)(1)

}
for all v ∈ A(G).

Let us show that
∞⋂

n=0

un ◦ VN(G)(1) = {S ∈ VN(G)(1) : |u|2 ◦ S = S}.

Let S ∈ VN(G)(1) be such that |u|2 ◦ S = S . Since

S = |u|2n ◦ S = un ◦ (un
◦ S ) (n = 0, 1, 2, . . .)

and un
◦ S ∈ VN(G)(1), we see that S ∈

⋂∞
n=0 un ◦ VN(G)(1).
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For the reverse inclusion, let

S ∈
∞⋂

n=0

un ◦ VN(G)(1).

For arbitrary v ∈ A(G), the function w := (1 − |u|2)v vanishes on Eu and therefore
w ∈ IEu , where

IEu = {v ∈ A(G) : v(Eu) = {0}}.

As we have noted above, hull(Iu) = Eu and Eu is a set of synthesis for A(G).
Consequently, IEu = Iu and, therefore, w ∈ Iu. So, ‖unw‖A(G) → 0. Further, for every
n ∈ N, there exists S n ∈ VN(G)(1) such that S = un ◦ S n. Thus,

|〈S ,w〉| = |〈un ◦ S n,w〉| = |〈S n, unw〉| ≤ ‖unw‖A(G) → 0.

Now, since

〈S , (1 − |u|2)v〉 = 0 for all v ∈ A(G),

we obtain |u|2 ◦ S = S . Consequently,

lim
n→∞
‖unv‖ = sup{|〈S , v〉| : |u|2 ◦ S = S , S ∈ VN(G)(1)}.

On the other hand, by Proposition 1.1(a),

sup{|〈S , v〉| : |u|2 ◦ S = S , S ∈ VN(G)(1)} = dist(v,J|u|2 ),

where

J|u|2 = (1 − |u|2)A(G).

Since hull(J|u|2 ) = Eu and Eu is a set of synthesis for A(G), we have J|u|2 = IEu . Thus,

lim
n→∞
‖unv‖A(G) = dist(v,J|u|2 ) = dist(v, IEu ). �

Let u ∈ B(G) be power bounded and Cu := supn≥0 ‖u
n‖B(G). Define a new norm ‖v‖1

on A(G) by ‖v‖1 = supn≥0 ‖u
nv‖A(G). Then

‖v‖A(G) ≤ ‖v‖1 ≤ Cu‖v‖A(G),

so that the norms ‖v‖A(G) and ‖v‖1 on A(G) are equivalent.
The following result is an immediate consequence of Theorem 2.3.

Corollary 2.4. Suppose that G is amenable and u ∈ B(G) is power bounded. Define
Cu := supn≥0 ‖u

n‖B(G). For arbitrary v ∈ A(G),

1
Cu

dist(v, IEu ) ≤ lim
n→∞
‖unv‖A(G) ≤ lim

n→∞
‖unv‖A(G) ≤ Cudist(v, IEu ),

where IEu = {v ∈ A(G) : v(Eu) = {0}}.
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From Proposition 1.1(e), if u ∈ B(G) is power bounded, then (1/n)
∑n−1

k=0 ukv→ 0
weakly in A(G) implies (1/n)

∑n−1
k=0 ukv→ 0 strongly as n→∞.

Corollary 2.5. Let G be amenable, u ∈ B(G) be power bounded and v ∈ A(G). If the
sequence {unv}n∈N converges weakly in A(G), then it converges strongly.

Proof. It suffices to show that unv→ 0 weakly implies ‖unv‖A(G) → 0. Since

|u(g)|n|v(g)| = |〈Lg, unv〉| → 0 for all g ∈ G,

it follows that v vanishes on Eu, that is, v ∈ IEu . By Corollary 2.4,

lim
n→∞
‖unv‖A(G) → 0. �

Proposition 2.6. Let G be amenable and u ∈ B(G) be power bounded. The sequence
{unv}n∈N converges for every v ∈ A(G) if and only if Eu is clopen and u(Eu) = {1}.

Proof. Assume that Eu is clopen and u(Eu) = {1}. Note that the condition u(Eu) = {1}
means that the sets Fu and Eu coincide. As Fu is clopen, by Proposition 2.2, for
arbitrary v ∈ A(G), there exists w ∈ A(G) such that

lim
n→∞

1
n

n−1∑
k=0

ukv = w.

Since uw = w, this implies that

lim
n→∞

∥∥∥∥∥1
n

n−1∑
k=0

uk(v − w)
∥∥∥∥∥

A(G)
= 0.

On the other hand, applying Proposition 1.1(b) to the operator Lu on the space A(G),

Ju =

{
v ∈ A(G) : lim

n→∞

∥∥∥∥∥1
n

n−1∑
k=0

ukv
∥∥∥∥∥

A(G)
= 0

}
,

so that v − w ∈ Ju. Since Eu = Fu and the set Eu (or Fu) is a set of synthesis for A(G),
the identities hull(Iu) = Eu = Fu = hull(Ju) yield Iu = Ju. Consequently, v − w ∈ Iu
and, therefore,

unv − w = un(v − w)→ 0.

Assume that the sequence {unv}n∈N converges for every v ∈ A(G). It follows from
Proposition 2.2 that Fu is clopen. Further, since

lim
n→∞
‖un+1v − unv‖A(G) = 0,

we have

|u(g)n+1v(g) − u(g)nv(g)| → 0

for all v ∈ A(G) and g ∈ G. On the other hand, for every g ∈ G, there exists v ∈ A(G)
such that v(g) , 0. It follows that

|u(g)|n|u(g) − 1| → 0 for all g ∈ G.

For g ∈ Eu, since |u(g)| = 1, we have u(g) = 1. Hence, Eu ⊆ Fu and so Eu = Fu. �
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As usual, M(G) and L1(G) denote the measure algebra and the group algebra of G,
respectively. When G is abelian, L1(G) ' A(Ĝ), M(G) ' B(Ĝ) and L∞(G) ' VN(Ĝ),
where Ĝ is the dual group of G. Here, ' stands for ‘isometrically isomorphic’.
Consequently, every result about A(G) or B(G) entails a corresponding statement for
the L1 or the measure algebra, respectively.

Let f̂ and µ̂ denote the Fourier and the Fourier–Stieltjes transforms of f ∈ L1(G)
and µ ∈ M(G), respectively. For arbitrary µ ∈ M(G), set

Eµ := {χ ∈ Ĝ : |̂µ(χ)| = 1}.

For n ∈ N, let µn denote the nth convolution power of µ ∈ M(G), where µ0 := δ0 is the
Dirac measure concentrated at {0}. The classical Foguel theorem [4] states that a power
bounded measure µ ∈ M(G) is mixing by convolution in the sense that ‖µn ∗ f ‖1 → 0
for all f ∈ L1(G) with f̂ (0) = 0 if and only if Eµ = {0}. In [6, Theorem 2], Granirer
proved that if µ ∈ M(G) is power bounded and f ∈ L1(G), then ‖µn ∗ f ‖1 → 0 if and
only if f̂ vanishes on Eµ.

We have the following quantitative generalisations of these results.

Corollary 2.7. Let G be a locally compact abelian group, µ ∈ M(G) be power
bounded and Cµ := supn≥0 ‖µ

n‖1. For arbitrary f ∈ L1(G),

1
Cµ

dist( f , IEµ) ≤ lim
n→∞
‖µn ∗ f ‖1 ≤ lim

n→∞
‖µn ∗ f ‖1 ≤ Cµdist( f , IEµ).

In particular, if µ ∈ M(G)(1), then

lim
n→∞
‖µn ∗ f ‖1 = dist( f , IEµ) for all f ∈ L1(G),

where IEµ = { f ∈ L1(G) : f̂ (Eµ) = {0}}.

If G is a compact abelian group, then Lp(G) (1 ≤ p < ∞) with the convolution as
multiplication and the usual norm is a commutative, semisimple and regular Banach
algebra. The Gelfand space of Lp(G) is Ĝ and the Gelfand transform of f ∈ Lp(G) is
just the Fourier transform of f . As Ĝ is discrete, every subset of Ĝ is a set of synthesis
for Lp(G).

The proof of the following proposition is similar to the proof of Theorem 2.3.

Proposition 2.8. Let G be a compact abelian group, µ ∈ M(G) be power bounded and
Cµ := supn≥0 ‖µ

n‖1. For arbitrary f ∈ Lp(G) (1 < p <∞),

1
Cµ

dist( f , IEµ) ≤ lim
n→∞
‖µn ∗ f ‖p ≤ lim

n→∞
‖µn ∗ f ‖p ≤ Cµdist( f , IEµ).

In particular, if µ ∈ M(G)(1), then

lim
n→∞
‖µn ∗ f ‖p = dist( f , IEµ) for all f ∈ Lp(G),

where IEµ = { f ∈ Lp(G) : f̂ (Eµ) = {0}}.
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