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ON USING LINEAR QUANTILE
REGRESSIONS FOR CAUSAL

INFERENCE

RYUTAH KATO AND YUYA SASAKI
Johns Hopkins

We show that the slope parameter of the linear quantile regression measures a
weighted average of the local slopes of the conditional quantile function. Extending
this result, we also show that the slope parameter measures a weighted average of the
partial effects for a general structural function. Our results support the use of linear
quantile regressions for causal inference in the presence of nonlinearity and multi-
variate unobserved heterogeneity. The same conclusion applies to linear regressions.

1. INTRODUCTION

Is it appropriate to use the linear quantile regression (QR) for causal inference? To
answer this question, we study relationships among the linear QR, the conditional
quantile function (CQF), and general structural functions. First, we show that the
slope parameter of the linear QR represents a weighted average of the local slopes
of the CQF. Second, we cite an existing result demonstrating that the slope of
the CQF represents a weighted average of the structural partial effects. Third, by
chaining these two arguments, we show that the slope parameter of the linear QR
represents a weighted average of the structural partial effects. Our results imply
that the linear QR can be used for structural causal inference in the presence of
nonlinearity and multiple unobserved heterogeneity.

Endogeneity and misspecification could be two major obstacles in using the
linear QR for causal inference. Since an extensive body of the econometrics liter-
ature has solved the endogeneity issue in various contexts,1 we assume exogeneity
and focus on the misspecification problem throughout this paper. The linear QR
generally misspecifies the true causal structure in two ways. First, the linearity
of the linear QR fails to capture the nonlinearity of general structural functions.2

Second, the monotonicity of the linear QR with respect to a scalar latent variable
fails to capture the nonmonotonicity of general structural functions with respect
to generally multivariate unobservables. Despite these two sources of potential
misspecification, what we develop in this paper reconciles the linear QR with the
true causal structure.
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It is a well-known feature of the ordinary least squares (OLS) method that it
minimizes the average squared distance between the linear regression function
and the conditional expectation function (CEF). In fact, the OLS does not only
minimize the fit. Yitzhaki (1996) and Angrist and Krueger (1999) show that the
OLS slope coefficient under misspecification can be explicitly written as weighted
average derivatives of the CEF. This result is viewed by empirical researchers to
be useful for an interpretation of regression coefficients.3 One contribution of this
paper is to provide a generalization of this weighted-average-derivatives interpreta-
tion for arbitrary linear functions that minimize weighted mean squared distances.
Our result applies to the linear QR in particular, since Angrist, Chernozhukov,
and Fernández-Val (2006) show that the linear QR parameters minimize a weighted
average of squared distances between the linear function and the CQF.4

In Section 2, we show that the slope parameter of the linear QR equals a
weighted average of the local slopes of the CQF. In Section 4, we use the existing
result that the slope of the CQF equals a weighted average of the structural partial
effects. We provide a framework for claiming the two auxiliary results together
to show that the slope parameter of the linear QR equals a weighted average of
the structural partial effects, even if the underlying structural function is nonlin-
ear in the explanatory variable and/or is nonmonotone with respect to possibly
multivariate latent variable(s). We therefore conclude in Section 6 that linear QR
(Koenker and Bassett, 1978)5 is a useful tool for causal inference in the presence
of unobserved heterogeneity, even if it misspecifies the true structure both in terms
of nonlinearity and nonmonotonicity. A couple of extensions to the baseline result
are presented in Section 3, and we also argue that the same conclusion applies to
the linear regression in Section 5 as well as the linear QR.

2. RELATIONSHIP BETWEEN LINEAR AND NONLINEAR FUNCTIONS

2.1. General Setting

We first introduce basic definitions and fix relevant notations. Let Y and X de-
note dependent and independent variables supported on Y ⊂ R and X ⊂ R, re-
spectively. Let B(X ) denote the Borel sigma algebra on X . First, we present an
auxiliary lemma that a nonlinear function and a linear function related by a min-
imum weighted mean squared distance have at least two intersection points. Let
M : X → R be a general function and L : X → R be an affine function specified
by the parametric form L(x) = α + βx . We state the following assumption for
these two functions and the distribution of X .

Assumption 1. (i) E[M(X)2] and E[X2] are finite. (ii) (α,β) uniquely solves
min(a,b) E[ω(X) · (M(X) − a − bX)2] for some weight function ω : X → R,
where ω(x) ≥ 0 a.e. (iii) ω(X) is bounded a.s. (iv) M is continuous. (v) X is
convex. (vi) X is continuously distributed.

In this assumption, the linear function L is characterized as the unique weighted
least squares approximation to the nonlinear function M . This applies to the
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relation between the linear regression function L and the CEF M , for example. In
addition, this also applies to the relation between the linear QR function L and the
CQF M by Angrist, Chernozhukov, and Fernández-Val (2006). The current sec-
tion proceeds with a general setting, and we will branch into these two concrete
examples in Sections 2.3 and 2.4.

We first obtain the following auxiliary lemma with Assumption 1.

LEMMA 1 (Existence of Two Intersection Points). If Assumption 1 is true, then
M and L intersect at least at two points in X .

A proof of this lemma is provided in Section A.1 in the appendix. We also
present an intuitive illustration of this lemma in Section 2.2, describing how the
minimum weighted mean-squares characterization leads to the existence of two
intersection points. Applying Lemma 1, we next claim that the slope β of L is a
weighted average of the local slopes M ′ of M . To this end, we invoke an additional
assumption that ensures that this derivative M ′ of interest exists.

Assumption 2. M is continuously differentiable.

An application of Lemma 1 and the Fundamental Theorem of Calculus yields
the following result.

THEOREM 1. If Assumptions 1 and 2 are true, then there exist x1,x2 ∈X with
x1 < x2 such that

β = E
[
wx1,x2(X) · M ′(X)

∣∣ x1 � X � x2
]

holds, where the weight function wx1,x2 is given by

wx1,x2(x) :=
1

fX (x)∫ x2
x1

1
fX (ξ) d FX (ξ)

for all x ∈ X .

A proof of this theorem is provided in Section A.2 in the appendix, but it is
straightforward from Lemma 1. This result characterizes β as a weighted average
of M ′. Furthermore, note that the weight function wx1,x2 is strictly positive on
[x1,x2]. In other words, the slope β of L represents a strict convex combination
of the local slopes M ′ of M within an interval [x1,x2] ⊂ X , which is guaranteed
to be nonempty.

To mathematically formalize the weighted-average interpretation, we define the
function λx1,x2 : B(X ) → R by

λx1,x2(T ) =
∫

T ∩[x1,x2]
wx1,x2(x)d FX (x) for each T ∈ B(X ). (2.1)

Note that this λx1,x2 can be shown to be a probability measure. With this notation,
the conclusion of Theorem 1 can be restated as

β = Eλx1,x2

[
M ′(X)

]
. (2.2)
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In other words, the slope β of L is the mean of the local slopes M ′ of M with
respect to the probability measure λx1,x2 defined in (2.1).

A remaining question is whether there can exist more than two intersection
points. In general, there may exist more than two. For example, in the extreme
case where M is also an affine function, the minimum weighted mean squared
distance restriction necessarily leads to L = M , and there exists a continuum of
intersection points. Note that, in this affine case, one can take any pair of points,
x1 and x2, from X to form the weight function wx1,x2 defined in Theorem 1,
since β = L ′ = M ′ holds globally. In general, when there exist more than two
intersection points between L and M , we can choose any pair of those intersection
points, x1 and x2, to form the weight function wx1,x2 . In this sense, the weight
function need not be unique.

2.2. Intuition

We provide an intuitive illustration for Lemma 1, where we claim that there exist
at least two intersection points of M and L in X . Since L minimizes the weighted
mean squared distance from M , no other affine function can have a strictly
smaller w-weighted mean squared distance from the function M than the affine
function L. This restriction plays the major role in our theoretical and intuitive
arguments.

By way of contradiction, assume that L and M have less than two intersection
points in X . We can then branch into three representative cases, illustrated by
(a)–(c) in Figure 1. Panel (a) shows a case where there is no intersection point.
In this case, either L − M > 0 or L − M < 0 is true by the continuity of M . If
L − M < 0 like the graph, then shifting L upward to produce L̃ would achieve
a smaller weighted mean squared distance between M and L̃ than between M
and L, contradicting the premise that L minimizes the weighted mean squared
distance from M . Thus, we rule out case (a) of zero intersection point.

Panels (b) and (c) show cases where there is only one intersection point. In these
cases, rotating and/or shifting L to produce L̃ would achieve a smaller weighted
mean squared distance between M and L̃ than between M and L, contradicting
the characterization of L as the minimizer of the weighted mean squared distance
from M . Thus, we rule out cases (b) and (c) of one intersection point.

While this illustration is intuitive, establishing the existence of such a rotation
and/or shift to achieve a strictly smaller weighted mean squared distance is not
necessarily a trivial problem, except in case (a). We refer readers to Section A.1
in the appendix for mathematical details of this illustration.

2.3. Linear QR and CQF

We demonstrate an application of Theorem 1 to the case of quantile regressions.
For a given τ ∈ (0,1), the τ -th CQF Qτ : X → Y is defined by

Qτ (x) = inf
{

y | FY |X (y | x) � τ
}
,
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FIGURE 1. Illustrations of why M and L must have at least two intersection points. Panel
(a) shows a case where there is no intersection point. Panels (b) and (c) show cases where
there is only one intersection point. In each of these cases, moving L to L̃ may reduce
the weighted mean squared distance from M , and hence L cannot minimize the weighted
mean squared distance.
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where FY |X (y | x) denotes the conditional cumulative distribution function of Y
given X , which is assumed to be regularly defined throughout the paper. The τ -th
linear QR Lτ provides the best linear prediction of Y given X under the loss
function ρτ (u) : R → R defined by ρτ (u) = (τ −�(u � 0)) · u, called the check
function. In other words, Lτ (x) = α(τ)+β(τ)x where (α(τ ),β(τ )) satisfies(
α(τ),β(τ )

) ∈ arg min
(α,β)∈	

E
[
ρτ

(
Y −α−β X

)]

for some parameter set 	 ⊂ R
2. Note that we have Qτ 	= Lτ in general.

Angrist, Chernozhukov, and Fernández-Val (ACF, 2006; Theorem 2) show
that, under the following assumption, the linear QR minimizes a weighted mean
squared distance from the CQF. We state their results below.

Assumption 3 (ACF, 2006). (i) The conditional density fY |X ( · | X) exists
and is bounded a.s. (ii) E[Y ], E[Qτ (X)2], and E X2 are finite. (iii) (α(τ ),β(τ ))
uniquely solves min(α,β) E[ρτ (Y −α−β X)].

THEOREM 2 (ACF, 2006; Theorem 2). If Assumption 3 is true, then
(α(τ ),β(τ )) uniquely solves the weighted least squares problem

min
α,β

E[ω̄τ (X,α(τ ),β(τ )) · (Lτ − Qτ )
2(X,α,β)], (2.3)

where ω̄τ (x,α(τ ),β(τ )) is defined by

ω̄τ

(
x,α(τ ),β(τ )

)
:= 1

2

∫ 1

0
fY |X

(
uLτ (x)+ (1 − u)Qτ(x) | x

)
du.

To claim that the slope β(τ) of the τ -th linear QR Lτ is a weighted average
of the slopes Q′

τ of the CQF, we now invoke an additional assumption that the
support of X is convex and that the derivative Q′

τ of interest exists.

Assumption 4. (i) X is convex. (ii) Qτ is continuously differentiable. (iii) X
is continuously distributed.

Note that Assumptions 3 and 4 imply Assumption 1 by Theorem 2. Note also
that Assumption 4(ii) implies Assumption 2. Combining Theorems 1 and 2 to-
gether, therefore, we get the following corollary that the slope β(τ) of the τ -th
linear QR Lτ is a weighted average of the slopes Q′

τ of the CQF.

COROLLARY 1 (Weighted Average: CQF). If Assumptions 3 and 4 are true,
then there exist x1,x2 ∈ X with x1 < x2 such that

β(τ) = E
[
wx1,x2(X) · Q′

τ (X)
∣∣x1 � X � x2

]
holds, where the weight function wx1,x2 is defined in Theorem 1.

As in the general case, this result can be formally interpreted as a weighted
average based on the probability measure defined in (2.1). Specifically, the
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conclusion of Corollary 1 can be restated as

β(τ) = Eλx1,x2

[
Q′

τ (X)
]
. (2.4)

2.4. Linear Regressions and CEF

While the main focus of this paper is on quantile regressions, we demonstrate in
the current subsection an application of Theorem 1 to the case of mean regres-
sions. The linear regression Lm is a linear function which gives the minimum
mean-squared-errors prediction of Y given X , i.e., Lm(x) = α +βx where

(α,β) ∈ arg min
(a,b)

E
[
(Y − a − bX)2].

In addition, the linear regression also provides the minimum mean-squared-
distance approximation to the CEF, i.e., Lm also satisfies

(α,β) ∈ arg min
(a,b)

E
[
(m(X)− a − bX)2],

where m : X → R denotes the CEF. The approximation properties of the lin-
ear regression have been emphasized by White (1980), Chamberlain (1984),
Goldberger (1991), and Angrist and Krueger (1999), among others. To apply The-
orem 1 to the mean regressions, we state the following assumptions.

Assumption 5. (i) E[Y 2] and E[X2] are finite. (ii) (α,β) uniquely solves
min(a,b) E[(Y − a − bX)2]. (iii) X is convex. (iv) X is continuously distributed.
(v) m is continuously differentiable.

Note that, if (α,β) uniquely solves min(a,b) E[(Y −a −bX)2], then (α,β) also
uniquely solves min(a,b) E[(m(X)−a −bX)2]. Therefore, Assumption 5 implies
Assumptions 1 and 2, and we consequently obtain from Theorem 1 the following
corollary that the slope β of the linear regression Lm is a weighted average of the
slopes m′ of the CEF.

COROLLARY 2 (Weighted Average: CEF). If Assumption 5 is true, then
there exist x1,x2 ∈ X with x1 < x2 such that

β = E
[
wx1,x2(X) ·m′(X)

∣∣ x1 � X � x2
]

holds, where the weight function wx1,x2 is defined in Theorem 1.

As in the general case, this result can be formally interpreted as a weighted av-
erage based on the probability measure defined in (2.1). The conclusion of Corol-
lary 2 can be restated as

β = Eλx1,x2

[
m′(X)

]
.

We conclude this section with a remark about existing results that derive
weighted average interpretations for the OLS slope parameter. Yitzhaki (1996;
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Proposition 2) shows that the OLS slope parameter can be written as a weighted
average of the local slopes of the CEF with the weight function wY defined by

wY (x) = 1

Var(X)

[
E[X] · FX (x)−	X(x)

] = FX (x)

Var(X)

(
E[X] − E[X |X ≤ x]

)
,

where 	X (x) = ∫ x
−∞ t f (t)dt = FX (x)E[X |X ≤ x]. Likewise, Angrist and

Krueger (1999; page 1311) show that the OLS slope parameter can be written as

β = E

[
X2

E[X2]
m′(ξ(X))

]
,

where ξ(x) derives from the mean value expansion around 0, and is thus between
0 and x . If ξ is invertible and continuously differentiable, then the resultant weight
function wAK can be defined by

wAK (x) = ξ−1(x)2 · fX (ξ−1(x))

ξ ′(ξ−1(x)) · fX (x) ·E
[
X2

] .

The weight function wY of Yitzhaki, the weight function wAK of Angrist
and Krueger, and our weight function wx1,x2 defined in Theorem 1 are different
from each other. The linear regression slope parameter can thus admit multiple
weights for the weighted-average interpretation. Each of the different weights
can provide a unique way of interpretation. For example, wY has an advantage
in that it is strictly positive on the support X , while wx1,x2 has a truncated
support [x1,x2] ⊂ X . Thus, Yitzhaki’s result is useful for interpreting the slope
parameter as a weighted average over the entire population. A similar remark
applies to the weight of Angrist and Krueger, except for the zero weight at the
point x = 0. On the other hand, wx1,x2 allows for a more intuitive interpretation
as the inverse probability weighting. Thus, our result is useful for interpreting
the slope parameter as a standardized average over a subpopulation. Because all
the weights are true anyway, empirical practitioners can take advantage of all the
convenient interpretations.

3. EXTENSIONS

This section presents a couple of extensions to the baseline result. First, we
demonstrate that our basic idea also applies to the case of discrete regressors.
Second, we demonstrate that our result also extends to the case of multivariate
regressors.

3.1. The Result for the Case of Discrete Regressors

The main result (Theorem 1) was obtained assuming that the regressor X is con-
tinuously distributed. In the current section, we argue that a similar idea applies to
the case of a discrete regressor, which is very common in economic applications.6

As we move from a continuous distribution to a discrete distribution, we also
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change the object of interest from derivatives to differences. The following short-
hand notations are introduced.

β = 
L(x) := L(x ′)− L(x)


M(x) := M(x ′)− M(x),

where x ′ = min{x̃ ∈ X |x̃ > x}. As in the continuous case, we first prove an aux-
iliary lemma under the following assumption.

Assumption 6. (i) E[M(X)2] and E[X2] are finite. (ii) (α,β) uniquely solves
min(a,b) E[ω(X) · (M(X)− a − bX)2]. (iii) ω(X) is bounded for all x ∈ X . (iv)
X ⊂ Z and |X | � 2.

This assumption is analogous to Assumption 1, which we made for the case
of continuous X . Compared to that assumption, the current assumption drops the
continuity of M and the continuous distribution of X . Instead, it adds the re-
striction that X is integer-valued, although it can be relaxed to arbitrary discrete
supports with isolated points. Under this assumption, we obtain the following
auxiliary lemma.

LEMMA 2. If Assumption 6 is true, then there exist two distinct points x1,x2 ∈
X such that (
L(x1)−
M(x1)) · (
L(x2)−
M(x2)) � 0 holds.

A proof is found in Section A.3 in the appendix. It is proved analogously to the
logic used in the proof of Lemma 1, which we developed for the case of continu-
ous X . This lemma claims that there is some point x1 ∈X at which β = 
L(x1)�

M(x1) is true and another point x2 ∈X at which β = 
L(x2)�
M(x2) is true.
In other words, the slope parameter β of the linear function is bounded from both
above and below by the differences 
M . This property immediately implies that
β can be written as a convex combination of {
M(x) | x ∈X }, as formally stated
in the following theorem.

THEOREM 3. If Assumption 6 is true, then

β(τ) = E
[
w̃(X) ·
M(X)

]
holds for a non-negative weight function w̃ such that E[w̃(X)] = 1.

A proof is provided in Section A.4 in the appendix. While our proof constructs
a particular weight function w to establish the equality, such a weight function
need not be unique.

Like the case of continuous regressors, we can apply Theorem 3 to quantile re-
gressions in particular. Let 
Qτ (x) := Qτ (x ′)− Qτ (x). The following corollary
follows from Theorem 3.

COROLLARY 3. If Assumption 3 and Assumption 6(iv) are true, then

β(τ) = E
[
w̃(X) ·
Qτ (X)

]
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holds for a non-negative weight function w̃ such that E[w̃(X)] = 1.

Likewise, we can apply Theorem 3 to mean regressions as well. Let 
m(x) :=
m(x ′)− m(x). The following corollary follows from Theorem 3.

COROLLARY 4. If Assumption 5(i)–(ii) and Assumption 6(iv) are true, then

β(τ) = E
[
w̃(X) ·
m(X)

]
holds for a non-negative weight function w̃ such that E[w̃(X)] = 1.

3.2. The Result for the Case of Multivariate Regressors

The main result (Theorem 1) was obtained assuming that the regressor X is uni-
variate. In the current section, we argue that a similar idea applies to the case of a
multivariate regressor. To this goal, we make the following assumption.

Assumption 7. (i) E[M(X)2] and E ‖X‖2 are finite. (ii) α ∈ R and β ∈ R
k

uniquely solve min(a,b) E[ω(X) · (M(X)− a − X ′b)2] for some weight function
ω : X →R, where ω(x) ≥ 0 a.e. (iii) ω(X) is bounded a.s. (iv) M is twice contin-
uously differentiable. (v) X = R

k . (vi) X is continuously distributed. (vii) There

exists C > 0 such that
∂2 M(x)

∂x2
i

> C for all 1 ≤ i ≤ k for all x ∈ X .

Parts (i)–(vi) of this assumption are analogous to Assumption 1. In addition,
part (vii) requires the nonlinear function M be convex.7 In econometrics, it is not
unusual to impose such shape restrictions, in light of the fact that many functions
in economics must be convex or concave to satisfy important economic properties.
We can substitute the assumption that M is concave, and arguments below then
can be straightforwardly modified by reversing the inequalities. With x−1 denot-
ing the (k − 1)-dimensional subvector (x2,x3, ...xk)

′ of x , we state the following
two auxiliary lemmas that follow from the preceding assumption.

LEMMA 3. If Assumption 7 is true, then there exists x ∈ X such that L(x) >
M(x).

LEMMA 4. Under Assumption 7, if there exists x∗ ∈ X such that L(x∗) >
M(x∗), then L( · ,x∗−1) and M( · ,x∗−1) intersect at two distinct points.

Proofs of Lemmas 3 and 4 are provided in Sections A.5 and A.6 in the ap-
pendix, respectively. Like the main result, an application of the Fundamental
Theorem of Calculus together with these auxiliary lemmas yields the following
weighted-average interpretation result.

THEOREM 4. If Assumption 7 is true, then

β1 = E

[
wD(X) · ∂M(X)

∂ X1

∣∣∣∣ X ∈ D
]
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holds for the weight function wD defined by

wD(x) :=
1

x ′′
1 (x−1)−x ′

1(x−1)
· 1

fX (x)∫
ξ∈D−1

1
f X−1 (ξ)d FX−1(ξ)

for all x ∈ X ,

where

D := {
x ∈ X |L(x) > M(x)

}
,

D−1 := {
x−1 ∈ R

k−1| ∃x1 ∈ R s.t. L(x) > M(x)
}
,

x ′′
1 (x−1) = max

{
x1 ∈ R|L(x1,x−1) = M(x1,x−1)

}
, and

x ′
1(x−1) = min

{
x1 ∈ R|L(x1,x−1) = M(x1,x−1)

}
.

A proof is provided in Section A.7 in the appendix. We remark that this proof in
particular shows that the weight function wD is well-defined, as its denominator
is strictly positive.

4. LINEAR QR AND STRUCTURAL FUNCTIONS

A general class of structural functions can be expressed by a nonseparable func-
tion g : X ×U → Y where U ⊂R

M . The cumulative distribution function of U is
denoted by FU . Letting U denote an M-dimensional random vector of unobserved
variables supported on U , we can use g to write the relation among (Y, X,U) by

Y = g
(
X,U

)
.

In the subsequent subsections, we explore relationships between the slopes of the
linear QR and the structural partial effects ∂g/∂x , where the latter object measures
the ceteris paribus causal effects of X on Y .

4.1. Monotone Structural Functions

It is known that, if X is exogenous and g is monotone with respect to a scalar U ,
i.e., M = 1, then the CQF Qτ can be used to represent the structural function g.
Specifically, if M = 1 and g(x, · ) is increasing for each x ∈ X , then Qτ (x) =
g(x,u) holds for all x ∈ X where τ = FU (u). In this case, Corollary 1 implies
that the slope β(τ ) of the τ -th linear QR Lτ identifies a weighted average of
the structural partial effects ∂g/∂x . We formally present this implication as the
following corollary.

COROLLARY 5 (Weighted Average: Monotone Structural Function). Sup-
pose that M = 1, g(x, · ) is monotone for each x ∈ X , g is continuously differen-
tiable, and X is exogenous. If Assumptions 3 and 4 are true for τ := FU (u) and
u ∈ U , then there exist x1,x2 ∈ X with x1 < x2 such that

β(τ) = E

[
wx1,x2(X) · ∂g(X,u)

∂x

∣∣∣∣ x1 � X � x2

]
holds, where the weight function wx1,x2 is defined in Theorem 1.
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This result shows that the linear QR parameter β(τ) is useful for us to learn
about the structural partial effects ∂g/∂x when the structural function g is mono-
tone with respect to a scalar latent variable U . In the next subsection, we explore
an interpretation of β(τ) while relaxing this monotonicity assumption.

4.2. General Structural Functions

We claim that the linear QR parameter can be still expressed as a weighted aver-
age of the structural partial effects even if the monotonicity assumption used in
Corollary 5 is dropped. To this end, we combine our Corollary 1 with a result that
exists in the literature, which connects the slope Q′

τ of the CQF to the structural
partial effects ∂g/∂x under an arbitrary dimension M of the latent variables U .

We define the lower contour set V (y,x) = {u ∈ R
M | g(x,u) � y}. Its bound-

ary is denoted by ∂V (y,x). Next, we define the algebra B(y,x) := {S∩∂V (y,x) |
S ∈ B(RM )} on ∂V (y,x), where B(RM) is the Borel σ -algebra. Note that every
element S ∈ B(y,x) is also a Borel set. Let mM denote the Lebesgue measure
on R

M , and let H M−1 denote the (M − 1)-dimensional Hausdorff measure re-
stricted to (∂V (y,x),B(y,x)). The velocities of the boundary ∂V (y,x) at u with
respect to a change in y and a change in x are denoted by ∂υ(y,x ; u)/∂y and
∂υ(y,x ; u)/∂x , respectively. With � denoting an (M − 1)-dimensional rectan-
gle, the boundary ∂V (·, ·) can be represented by a map � ×Y ×X → R

M , i.e.,
the (M −1)-dimensional manifold ∂V (y,x) can be parameterized through a map
π(y,x) : � → ∂V (y,x) for each (y,x) ∈ Y×X . The velocity ∂υ(y, · ; ·)/∂x of the
boundary with respect to a change in x can be represented by a map X → L1(�)
for each y ∈ Y , provided that the function ∂υ(y,x ; ·)/∂x : ∂V (y,x) → R

M

is absolutely integrable with respect to the parameterization over � for each
(y,x) ∈Y×X . Similarly, ∂υ(·,x ; ·)/∂y can be represented by a mapY → L1(�)
for each x ∈ X , provided absolute integrability. We cite the following assumption
and auxiliary lemma, which follows from an application of a conservation law for
fluid mechanics—details and discussions can be found in Sasaki (2015).

Assumption 8. (i) g is continuously differentiable. (ii) ‖∇u g(x, ·)‖ 	= 0 on
∂V (y,x). (iii) The distribution of U is absolutely continuous with respect to mM .
(iv)

∫
∂V (y,x) fU (u)d H M−1(u) > 0. (v) ∂V (y, ·) ∈ C1(�×X ;RM ) holds for each

y ∈Y , and ∂V (·,x) ∈ C1(�×Y;RM ) holds for each x ∈X . (vi) ∂υ(y, · ; ·)/∂x ∈
C1(X ; L1(�)) holds for each y ∈ Y , and ∂υ(·,x ; ·)/∂y ∈ C1(Y; L1(�)) holds
for each x ∈ X . (vii) X is exogenous. (viii) There exist values p � 1 and
q � 1 satisfying p−1 + q−1 = 1 such that ‖γ (x, · )‖L p(∂V (y,x),H M−1) < ∞ and

‖ fU ‖Lq (∂V (y,x),H M−1) < ∞ hold, where γ (x,u) := ‖∇u g(x,u)‖−1.

LEMMA 5 (Sasaki, 2015). If Assumption 8 is true, then the function μy,x :
B(y,x) → R defined by

μy,x(S) :=
∫

S
fU (u)

‖∇u g(x,u)‖d H M−1(u)∫
∂V (y,x)

fU (u)
‖∇u g(x,u)‖d H M−1(u)

for all S ∈ B(y,x)
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is a probability measure on (∂V (y,x),B(y,x)), and the slope Q′
τ of the CQF at

τ = FY |X (y|x) can be written as the weighted mean structural partial effect with
respect to μy,x :

Q′
τ (x) = Eμy,x

[
∂g(x,U)

∂x

]
.

To make this auxiliary result applicable to our framework, we take an addi-
tional step of translating the constructed probability measure μy,x into a regular
conditional probability measure on B(U) given the events in B(X ). We define the
function μτ : B(U)×X → [0,1] by

μτ (S,x) = μQτ (x),x
(
S ∩ ∂V (Qτ (x),x)

)
. (4.1)

By the following lemma, claiming that this μτ is a regular conditional probability
measure, we can rewrite the conclusion of Lemma 5 formally in terms of the
conditional expectation

Q′
τ (x) = Eμτ

[
∂g(X,U)

∂x

∣∣∣∣ X = x

]
. (4.2)

LEMMA 6. If Assumption 8 is satisfied, then μτ is a regular conditional prob-
ability measure on B(U) given the events in B(X ).

A proof of this lemma is found in Section A.8 in the appendix. We remark
that this weighted measure μτ need not be the unique conditional probability
measure that relates Q′

τ and ∂g/∂x . For instance, Chernozhukov, Fernández-Val,
Hoderlein, Holzmann, and Newey (2015) show that Q′

τ can be written as an
unweighted average of ∂g/∂x under a partial monotonicity assumption in the
presence of multiple unobservables. Since the measure μτ does not necessar-
ily simplify to the uniform measure under the partial monotonicity assumption,
weights connecting Q′

τ and ∂g/∂x need not be unique.
Thus far, we have developed a marginal probability measure λx1,x2 on B(X )

defined in (2.1), and a regular conditional probability measure μτ on B(U) given
the events in B(X ) defined in (4.1). Combining the respective mean (2.4) and the
conditional mean (4.2) using the law of iterated expectations, we obtain

β(τ) = Eλx1,x2

[
Eμτ

[
∂g(X,U)

∂x

∣∣∣∣ X

]]
= Eμτ ×λx1,x2

[
∂g(X,U)

∂x

]
.

We formally state this result as the following theorem.

THEOREM 5 (Weighted Average: General Structural Function). If Assump-
tions 3, 4, and 8 are true, then there exist a marginal probability measure λx1,x2

on B(X ) and a regular conditional probability measure μτ on B(U) given the
events in B(X ) such that

β(τ) = Eμτ ×λx1,x2

[
∂g(X,U)

∂x

]
holds.
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This result formally characterizes the slope parameter β(τ) of the τ -th linear
QR Lτ as a weighted average of the structural partial effects ∂g/∂x with respect to
the measure μτ ×λx1,x2 . Because the weights are strictly positive on the interval
[x1,x2], the slope parameter of the linear QR represents a strict convex combina-
tion of the structural partial effects within the interval. This implies that, if β(τ)
is positive, for example, there exists a nontrivial subpopulation in [x1,x2] such
that the structural partial effects are positive. In other words, even if the linear
QR is quite different from the structural function, the linear QR can be useful for
inference of the structural causal effects.

5. LINEAR REGRESSIONS AND STRUCTURAL FUNCTIONS

While the main contribution of this paper is about quantile regressions, we show
in this section that the linear regression parameter can be similarly expressed as a
weighted average of the structural partial effects. Let λU be the probability mea-
sure of U supported on U . We state the following assumption.

Assumption 9. (i) g is continuously differentiable. (ii) g(x, · ) ∈ L1(λU ) for

every x ∈ X . (iii) There exists some function h ∈ L1(λU ) such that

∣∣∣∣∂g(x,u)

∂x

∣∣∣∣ �
h(u) for all (x,u) ∈ X ×U .

Under this assumption, the slope of the CEF equals the conditional mean of the
structural partial effects, i.e.,

m′(x) = EλU

[
∂g(X,U)

∂x

∣∣∣∣ X = x

]
.

Thus, from Corollary 2, we obtain

β = Eλx1,x2

[
EλU

[
∂g(X,U)

∂x

∣∣∣∣ X

]]
= EλU ×λx1,x2

[
∂g(X,U)

∂x

]
.

We formally state this result in the following theorem.

THEOREM 6 (Weighted Average: Linear Regression and General Structural
Function). If Assumptions 5 and 9 are true, then there exists a probability measure
λx1,x2 on B(X ) such that

β = EλU ×λx1,x2

[
∂g(X,U)

∂x

]

holds.

This result formally characterizes the slope parameter β of the linear regression
Lm as a weighted average of the structural partial effects ∂g/∂x with respect to
the measure λU ×λx1,x2 . Because the weights are strictly positive on the interval
[x1,x2], the slope parameter of the linear regression represents a strict convex
combination of the structural partial effects within the interval. Therefore, even if
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the linear regression is quite different from the structural function, it can be useful
for inference of the structural causal effects.

6. CONCLUSION

The slope parameter of the linear QR can be written as weighted averages of the
local slopes of the CQF among a nontrivial subpopulation of individuals. Like-
wise, the slope parameter of the linear regression can be written as weighted aver-
ages of the local slopes of the CEF among a nontrivial subpopulation of individu-
als. These results follow from the property that the linear and nonlinear functions
related by weighted least squares must have at least two intersection points. We
present an intuitive illustration as well as a formal derivation of this result.

When the structural function g is monotone with respect to a scalar latent vari-
able U , the structural function can be represented by the CQF Qτ . Therefore, our
first result directly implies that the slope parameter β(τ) of the τ -th linear QR
measures a weighted average of the structural partial effects ∂g/∂x . Furthermore,
even if the structural function g fails to exhibit monotonicity, we establish that the
slope parameter β(τ) still measures a weighted average of the structural partial
effects ∂g/∂x . We also obtain a similar result for the linear regression.

From these findings, we conclude that the linear regression and the linear QR
can be used for causal inference even if they misspecify the true structure both in
terms of nonlinearity and nonmonotonicity.

NOTES

1. See Chernozhukov and Hansen (2005) and many subsequent papers.
2. In addition to causal interpretation, the linear misspecification of the linear QR can cause the

problem of quantile crossing. Chernozhukov, Fernández-Val, and Galichon (2010) propose rearrange-
ment as a solution.

3. Furthermore, even under endogeneity, the two-stage least squares have the weighted-average
interpretation for discrete treatment effects (Angrist and Imbens, 1995).

4. Lee (2014) provides an alternative measure of fit for the linear QR parameters.
5. See also Koenker and Hallock (2001), Koenker (2005), and Chernozhukov and Hansen (2013)

for surveys.
6. We thank K. Kato for suggesting this extension.
7. We impose this additional assumption as we move from univariate X to multivariate X , because

multivariate extension is not straightforward otherwise. Similar difficulties arose also for the weighted-
average interpretations of the linear regressions by Yitzhaki (1996) and Angrist and Krueger (1999).
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A Mathematical Appendix

A.1. Proof of Lemma 1

Proof. By way of contradiction, suppose that M and L intersect at most at one point of x .
Define the short-hand notation


(x,α,β) := α +βx − M(x) = L(x)− M(x).

Under the current assumption, we have at most one zero for 
( · ,α,β) in X . By Assump-
tion 1(iv)–(v), it follows that either one of the following three cases is true.

(I) There exists a point x∗ ∈ X such that 
(x,α,β) ·
(x ′,α,β) < 0 for all x ∈ X ∩
(x∗,∞) and for all x ′ ∈ X ∩ (−∞, x∗).

(II) There exists a point x∗ ∈X such that 
(x∗,α,β) = 0, but 
(x,α,β) ·
(x ′,α,β) >
0 for all x, x ′ ∈ X such that x 	= x∗ and x ′ 	= x∗.

(III) 
(x,α,β) ·
(x ′,α,β) > 0 for all x, x ′ ∈ X .

We claim below that each of the cases (I)–(III) contradicts Assumption 1(ii) that (α,β)

uniquely solves min(a,b) E[ω(X) · (M(X)−a −bX)2].
First, consider case (I). Without loss of generality, we normalize the location to x∗ = 0

and assume 
(x,α,β) < 0 for all x > 0. For each ε > 0, define the set

A(ε) = {x ∈ R++ ∩X | 
(x,α,β +ε) � 0}∪{x ∈ R−− ∩X | 
(x,α,β +ε) � 0} .
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We let B1 and B2 denote arbitrary compact intervals contained in X ∩R−− and X ∩R++,

respectively. Note that minx∈B1∪B2

{

(x,α,β)

−x

}
exists due to the compactness of B1 ∪ B2

and the continuity of 
(x,α,β)
−x with respect to x on B1 ∪ B2. Thus, if we choose ε :=

minx∈B1∪B2

{

(x,α,β)

−x

}
, then 
(x,α,β + ε) � 0 for all x ∈ B1 and 
(x,α,β + ε) � 0

for all x ∈ B2. Hence, for any compact intervals B1 ⊂ X ∩R−− and B2 ⊂ X ∩R++,
there exists ε > 0 such that (B1 ∪ B2) ⊂ A(ε). Furthermore, note that ε > 0 is true. Now,
observe from the definition of A(ε) that the inequality

E
[

2(X,α,β) ·ω(x)

]− E
[
(
2(X,α,β +ε

) ·ω(x)
]

=
∫
X

(−2
(x,α,β)εx − (εx)2) ·ω(x) d FX (x)

�
∫

A(ε)
(εx)2 ·ω(x) d FX (x)−

∫
X \A(ε)

(εx)2 ·ω(x) d FX (x) (A.1)

holds for any ε > 0. Let Bn := X ∩
([

−n,− 1
n

]
∪

[
1
n ,n

])
for each integer n > 1. Then for

each n > 1, the above argument implies that there exists εn > 0 such that Bn ⊂ A(εn). But
then, for each n > 1, there exists εn > 0 such that∫

Bn

x2 ·ω(x) d FX (x)−
∫
X \Bn

x2 ·ω(x) d FX (x)

�
∫

A(εn )
x2 ·ω(x) d FX (x)−

∫
X \A(εn)

x2 ·ω(x) d FX (x). (A.2)

By Assumption 1 (i) and (iii) and the Monotone Convergence Theorem,

lim
n→∞

∫
X \Bn

x2 ·ω(x) d FX (x)

= lim
n→∞

∫
X

x2 ·ω(x) · fX (x) ·�{
x ∈ X \ Bn

}
dx

=
∫
X

lim
n→∞ x2 ·ω(x) · fX (x) ·�{

x ∈ X \ Bn
}

dx = 0 (A.3)

is true. Likewise, Assumption 1 (i) and (iii) and the Monotone Convergence Theorem yield

lim
n→∞

∫
Bn

x2 ·ω(x) d FX (x) =
∫
X

x2 ·ω(x) · fX (x) dx =: c. (A.4)

Note that c � 0, and it holds with equality only if ω(x) · fX (x) = 0 almost everywhere on
X . But it is not true that ω(x) · fX (x) = 0 almost everywhere on X , from Assumption 1(ii)
that (α,β) uniquely minimizes the weighted mean squared distance. Thus, it follows from
(A.1)–(A.4) that

lim
n→∞

E
[

2(X,α,β) ·ω(x)

]− E
[
(
2(X,α,β +εn) ·ω(x)

]
ε2

n
� c > 0

is true. But then, there exists n∗ > 1 such that

E
[

2(

X,α,β
) ·ω(x)

]− E
[
(
2(

X,α,β +εn∗
) ·ω(x)

]
ε2

n∗
> 0.
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This inequality implies that

E
[

2(X,α,β) ·ω(x)

]
> E

[
(
2(X,α,β +εn∗ ) ·ω(x)

]
,

and it contradicts Assumption 1(ii), that (α,β) uniquely minimizes the weighted mean
squared distance.

Next, consider case (II). Without loss of generality, we normalize the location to x∗ = 0
and assume 
(x,α,β) > 0 for all x 	= 0. For each ε > 0, define the set

A′(ε) = {x ∈ X |
(x,α −ε,β) � 0} .
Let B1 and B2 denote arbitrary compact intervals contained in X ∩R−− and X ∩R++,
respectively. Note that minx∈B1∪B2 {
(x,α,β)} exists due to the compactness of B1 ∪
B2 and the continuity of 
(x,α,β) with respect to x on B1 ∪ B2. If we choose ε :=
minx∈B1∪B2 {
(x,α,β)}, then 
(x,α − ε,β) � 0 for all x ∈ B1 ∪ B2. Hence, for any

compact intervals B1 ⊂ X ∩R−− and B2 ⊂ X ∩R++, there exists ε > 0 such that (B1 ∪
B2) ⊂ A′(ε). Furthermore, note that ε > 0 is true. It follows that the inequality

E
[

2(X,α,β) ·ω(x)

]
− E

[

2(X,α−ε,β) ·ω(x)

]
=

∫
X

(
2
(x,α,β)ε −ε2

)
·ω(x) d FX (x)

�
∫

A′(ε)
ε2 ·ω(x) d FX (x)−

∫
X \A′(ε)

ε2 ·ω(x) d FX (x) (A.5)

holds for any ε > 0. By the same argument as the one used in case (I), for each integer
n > 1, there exists εn > 0 such that∫

Bn

ω(x) d FX (x)−
∫
X \Bn

ω(x) d FX (x)

�
∫

A′(εn)
ω(x) d FX (x)−

∫
X \A′(εn)

ω(x) d FX (x), (A.6)

where

lim
n→∞

∫
X \Bn

ω(x) d FX (x) = 0 and (A.7)

lim
n→∞

∫
Bn

ω(x) d FX (x) =
∫
X

ω(x) · fX (x) dx =: c′ > 0. (A.8)

Thus, it follows from (A.5)–(A.8) that

lim
n→∞

E
[

2(X,α,β) ·ω(x)

]− E
[
(
2(X,α−εn ,β) ·ω(x)

]
ε2

n

� c′ > 0

is true. But then, there exists n∗∗ > 1 such that

E
[

2(X,α,β) ·ω(x)

]− E
[
(
2(X,α −εn∗∗ ,β) ·ω(x)

]
ε2

n∗∗
> 0.
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This inequality implies that

E
[

2(X,α,β) ·ω(x)

]
> E

[
(
2(X,α−εn∗∗ ,β) ·ω(x)

]
,

and it contradicts Assumption 1(ii), that (α,β) uniquely minimizes the weighted mean
squared distance.

Lastly, consider case (III). Without loss of generality, assume that 
(x,α,β) > 0 for all
x ∈X . As in case (II), if B1 and B2 are arbitrary compact intervals contained in X ∩R−−
and X ∩R++, respectively, then there exists ε > 0 such that (B1 ∪ B2) ⊂ A′(ε). Thus,

E
[

2(X,α,β) ·ω(x)

]− E
[
(
(X,α−ε,β))2 ·ω(x)

]
�

∫
A′(ε)

ε2 ·ω(x) d FX (x)−
∫
X \A′(ε)

ε2 ·ω(x) d FX (x) (A.9)

holds for any ε > 0 similarly to case (II). By the same argument as the one used in case (I),
for each integer n > 1, there exists εn > 0 such that

∫
Bn

ω(x) d FX (x)−
∫
X \Bn

ω(x) d FX (x)

�
∫

A′(εn)
ω(x) d FX (x)−

∫
X \A′(εn)

ω(x) d FX (x), (A.10)

where

lim
n→∞

∫
X \Bn

ω(x) d FX (x) = 0 and (A.11)

lim
n→∞

∫
Bn

ω(x) d FX (x) =
∫
X

ω(x) · fX (x) dx =: c′ > 0. (A.12)

Thus, it follows from (A.9)–(A.12) that

lim
n→∞

E
[

2(X,α,β) ·ω(x)

]− E
[
(
2(X,α−εn ,β) ·ω(x)

]
ε2

n

� c′ > 0

is true, similarly to case (II). But then, there exists n∗∗ > 1 such that

E
[

2(X,α,β) ·ω(x)

]− E
[
(
2(X,α −εn∗∗ ,β) ·ω(x)

]
ε2

n∗∗
> 0.

This inequality implies that

E
[

2(X,α,β) ·ω(x)

]
> E

[
(
2(X,α−εn∗∗ ,β) ·ω(x)

]
,

and it contradicts Assumption 1(ii), that (α,β) uniquely minimizes the weighted mean
squared distance. �
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A.2. Proof of Theorem 1

Proof. From Lemma 1, Assumption 1 guarantees the existence of two points x1, x2 ∈ X
such that L(x1) = M(x1) and L(x2) = M(x2) are both true. Without loss of generality, let
x1 < x2. By Assumption 2, we have M(x2)− M(x1) = ∫ x2

x1
M ′(ξ) dξ by the Fundamental

Theorem of Calculus. Similarly, we have L(x2)− L(x1) = ∫ x2
x1

L ′
τ (ξ) dξ = β · (x2 − x1).

Combining all these equalities together yields∫ x2

x1

M ′(ξ) dξ = β · (x2 − x1).

By Assumption 1(v), fX > 0 almost everywhere on [x1, x2]. Thus, we can write

β =
∫ x2

x1
M ′(ξ) dξ∫ x2
x1

dξ
=

∫ x2
x1

M ′(ξ)
fX (ξ) d FX (ξ)∫ x2

x1
1

f X (ξ) d FX (ξ)
= E

[
wx1,x2(X) · M ′(X)

∣∣x1 � X � x2
]
.

�

A.3. Proof of Lemma 2

Proof. By way of contradiction, suppose that β − 
M(x) < 0 is true for all x ∈ X . We
consider the following two cases.

(I) There exist x, x ′ such that L(x)− M(x) < 0 and L(x ′)− M(x ′) > 0.

(II) L(x)− M(x) � 0 for all x ∈ X .

We derive a contradiction under each of these two cases to complete a proof. Specifically,
we show below that each of the cases (I) and (II) contradicts Assumption 6(ii) that (α,β)
uniquely solves min(a,b) E[ω(X) · (M(X)−a −bX)2].

First, we consider case (I). Since β −
M(x) < 0 for all x ∈ X , if 
(x,α,β) < 0 for
some x ∈ X , then 
(x̃,α,β) < 0 for all x̃ > x . Also, if 
(x ′,α,β) > 0 for some x ′ ∈
X , then 
(x̃,α,β) > 0 for all x̃ < x ′ . Hence, there exists a unique x∗ ∈ X such that

(x,α,β) � 0 for all x � x∗ and 
(x,α,β) < 0 for all x > x∗. Without loss of generality,
we normalize the location to x∗ = 0. For each ε > 0, define the set

A(ε) = {x ∈ X ∩Z+ | 
(x,α,β +ε) � 0}∪{x ∈ X ∩Z− | 
(x,α,β +ε) � 0} .
We let B denote an arbitrary nonempty finite subset of X .

If we choose ε := minx∈B

{

(x,α,β)

−x

}
, then 
(x,α,β + ε) � 0 for all x ∈ B ∩X+ and


(x,α,β + ε) � 0 for all x ∈ B ∩X−. Hence, for any finite subset B , there exists ε > 0
such that B ⊂ A(ε). Furthermore, note that ε > 0 is true. Now, observe from the definition
of A(ε) that the inequality

E
[

2(X,α,β) ·ω(X)

]− E
[
(
2(X,α,β +ε) ·ω(x)

]
=

∑
x∈X

(−2
(x,α,β)εx − (εx)2) ·ω(x) · p(x)

�
∑

x∈A(ε)

(εx)2 ·ω(x) · p(x)−
∑

x∈X \A(ε)

(εx)2 ·ω(x) · p(x) (A.13)
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holds for any ε > 0. Let Bn := {x ∈ X | − n � x � n} for each integer n > 1. Then for
each, n > 1, the preceding argument implies that there exists εn > 0 such that Bn ⊂ A(εn).
But then, for each n > 1, there exists εn > 0 such that∑
x∈Bn

x2 ·ω(x) · p(x)−
∑

x∈X \Bn

x2 ·ω(x) · p(x)

�
∑

x∈A(εn)

x2 ·ω(x) · p(x)−
∑

x∈X \A(εn )

x2 ·ω(x) · p(x). (A.14)

By Assumption 6 (i), (iii),

lim
n→∞

∑
x∈X \Bn

x2 ·ω(x) · p(x) = 0 (A.15)

is true. Likewise, Assumption 6 (i), (iii) yield

lim
n→∞

∑
x∈Bn

x2 ·ω(x) · p(x) =
∑
x∈X

x2 ·ω(x) · p(x) =: c(τ). (A.16)

Note that c(τ) � 0, and it holds with equality only if ω(x) · p(x) = 0 for all x ∈ X But it
is not true that ω(x) · p(x) = 0 for all x ∈ X , from the property of (α,β) that it uniquely
solves min(a,b) E[ω(X)(M(X)−a −bX]. Thus, it follows from (A.13)–(A.16) that

lim
n→∞

E
[

2(X,α,β) ·ω(X)

]− E
[
(
2(X,α,β +εn) ·ω(X)

]
ε2

n
� c(τ) > 0

is true. But then, there exists n∗ > 1 such that

E
[

2(X,α,β) ·ω(X)

]− E
[
(
2(X,α,β +εn∗ ) ·ω(X)

]
ε2

n∗
> 0.

This inequality implies that

E
[

2(X,α,β) ·ω(X)

]
> E

[
(
2(X,α,β +εn∗ ) ·ω(X)

]
,

and it contradicts Assumption 6(ii), that (α,β) uniquely solves min(a,b) E[ω(X) ·(M(X)−
a −bX)2].

Next, we consider case (II). Suppose there exists x∗∗ such that 
(x∗∗,α,β) = 0. If x∗ =
maxX , we can derive a contradiction from an argument similar to case (I). If x∗ 	= maxX ,
then since β −
M(x) < 0 for all x ∈ X , 
(x,α,β) < 0 for all x > x∗∗. This contradicts

(x,α,β) � 0 for all x ∈ X . Hence, 
(x,α,β) > 0 for all x ∈ X . For each ε > 0, define
the set

A′(ε) = {x ∈ X |
(x,α −ε,β) � 0} .

Let B denote an arbitrary nonempty finite subset of X . If we choose ε :=
minx∈B {
(x,α,β)}, then 
(x,α − ε,β) � 0 for all x ∈ B. Hence, for any finite subset
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B ⊂ X , there exists ε > 0 such that B ⊂ A′(ε). Furthermore, note that ε > 0 is true. It
follows that the inequality

E
[

2(X,α,β) ·ω(X)

]− E
[

2(X,α−ε,β) ·ω(X)

]
=

∑
x∈X

(
2
(x,α,β)ε −ε2) ·ω(x) · p(x)

�
∑

x∈A′(ε)
ε2 ·ω(x) · p(x)−

∑
x∈X \A′(ε)

ε2 ·ω(x) · p(x) (A.17)

holds for any ε > 0. Let Bn = {x ∈ X |−n � x � n} for each integer n > 1. Then, for each
n > 1, there exists εn such that Bn ⊂ A′(εn). But then, for each n > 1, there exists εn > 0
such that,∑
x∈Bn

ω(x) · p(x)−
∑

x∈X \Bn

ω(x) · p(x)

�
∑

x∈A′(εn)

ω(x) · p(x)−
∑

x∈X \A′(εn)

ω(x) · p(x). (A.18)

Since
∑

x∈X ω(x) · p(x) < ∞,

lim
n→∞

∑
x∈X \Bn

ω(x) · p(x) = 0 and (A.19)

lim
n→∞

∑
x∈Bn

ω(x) · p(x) =
∑
x∈X

ω(x) · p(x) = c′(τ) > 0. (A.20)

Thus, it follows from (A.17)–(A.20) that

lim
n→∞

E
[

2(X,α,β) ·ω(X)

]− E
[
(
2(X,α−εn ,β) ·ω(X)

]
ε2

n

� c′(τ) > 0

is true. But then, there exists n∗∗ > 1 such that

E
[

2(X,α,β) ·ω(X)

]− E
[
(
2(X,α −εn∗∗ ,β) ·ω(X)

]
ε2

n∗∗
> 0.

This inequality implies that

E
[

2(X,α,β) ·ω(X)

]
> E

[
(
2(X,α−εn∗∗ ,β) ·ω(X)

]
,

and it contradicts Assumption 6(ii), that (α,β) uniquely solves min(a,b) E
[
ω(X) ·(M(X)−

a −bX)2]
. �

A.4. Proof of Theorem 3

Proof. First, consider the case where there exists x̃ ∈X such that 
L(x̃)−
M(x̃) = 0. In
this case,

β = 
L(x̃) = 
M(x̃) = E
[
w̃(X) ·
M(X)

]
(A.21)

holds, where w̃(x) = 1/p(x) if x = x̃ and w̃(x) = 0 otherwise.
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Next, consider the case where 
L(x)−
M(x) 	= 0 for all x ∈ X . By Lemma 2, there
exist x1, x2 ∈ X such that (
L(x1)−
M(x1)) · (
L(x2)−
M(x2)) < 0. Thus,

β = β −
M(x2)


M(x1)−
M(x2)
·
M(x1)+ 
M(x1)−β


M(x1)−
M(x2)
·
M(x2)

= E
[
λ(X) ·
M(X)

]
holds, where λ(x1) = β−
M(x2)


M(x1)−
M(x2)
· 1

p(x1)
, λ(x2) = 
M(x1)−β


M(x1)−
M(x2)
· 1

p(x2)
, and

λ(x) = 0 for all x ∈ X \{x1, x2}. Note that this weight function λ is non-negative because
of (
L(x1)−
M(x1)) · (
L(x2)−
M(x2)) � 0. �

A.5. Proof of Lemma 3

Proof. Define the short-hand notation


(x,α,β) := α + x ′β − M(x) = L(x)− M(x).

By way of contradiction, suppose M ≥ L for all x ∈ X . Then, either one of the following
two cases is true.

(I) There exists a point x∗ ∈ X such that 
(x∗,α,β) = 0.

(II) 
(x,α,β) < 0 for all x ∈ X .

We claim below that each of the cases (I)–(II) contradicts Assumption 7 that (α,β)
uniquely solves min(a,b) E[ω(X) ·
2(X,α,β)].

First, consider case (I). We show that x∗ is unique. Suppose there exists x∗∗ 	= x∗ such
that 
(x∗∗,α,β) = 0. Since M is strictly convex from Assumption 7(vii), for any 0 <
λ < 1, M(λx∗ + (1 −λ)x∗∗) < λ · M(x∗)+ (1 −λ)M(x∗∗) = α + (λx∗ + (1 −λ)x∗∗)′β.
This contradicts M ≥ L for all x ∈ X . Hence, x∗ is unique. Without loss of generality, we
normalize the location to x∗ = 0. For each ε > 0, define the set

A(ε) = {x ∈ X |−ε −
(x,α,β) � 0} .
Let B1 denote an arbitrary compact rectangle in X and B2 denote an open rectangle in
X such that B2 ⊂ B1 and 0 ∈ B2. Let B := B1 \ B2. Note that B is compact in X and
minx∈B {−
(x,α,β)} exists due to the compactness of B and the continuity of 
(x,α,β)
with respect to x on B.

If we choose ε := minx∈B {−
(x,α,β)}, then −ε−
(x,α,β)� 0 for all x ∈ B. Hence,
for any B1, B2 which satisfies the aforementioned property, there exists ε > 0 such that
B ⊂ A(ε). Furthermore, note that ε > 0 is true. Now observe from the definition of A(ε)
that the inequality

E
[

2(X,α,β) ·ω(X)

]− E
[
(
2(X,α +ε,β) ·ω(X)

]
=

∫
X

(−2
(x,α,β)ε −ε2) ·ω(x) d FX (x)

�
∫

A(ε)
ε2 ·ω(x) d FX (x)−

∫
X \A(ε)

ε2 ·ω(x) d FX (x) (A.22)
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holds for any ε > 0. Let B1
n := [−n,n]k , B2

n := (− 1
n , 1

n )k , and Bn = B1
n \ B2

n for each
integer n > 1. Then, for each integer n > 1, there exists εn > 0 such that Bn ⊂ A(εn). But
then, for each n > 1, there exists εn > 0 such that∫

Bn

ω(x) d FX (x)−
∫
X \Bn

ω(x) d FX (x)

�
∫

A(εn)
ω(x) d FX (x)−

∫
X \A(εn )

ω(x) d FX (x). (A.23)

By Assumption 7(iii) and the Monotone Convergence Theorem,

lim
n→∞

∫
X \Bn

ω(x) d FX (x) = 0 and (A.24)

lim
n→∞

∫
Bn

ω(x) d FX (x) =
∫
X

ω(x) · fX (x) dx =: c′ > 0. (A.25)

Thus, it follows from (A.22)–(A.25) that

lim
n→∞

E
[

2(X,α,β) ·ω(X)

]− E
[

2(X,α+εn ,β) ·ω(X)

]
ε2

n
� c′ > 0

is true. But then, there exists n∗∗ > 1 such that

E
[

2(X,α,β) ·ω(X)

]− E
[

2(X,α +εn∗∗ ,β) ·ω(X)

]
ε2

n∗∗
> 0.

This inequality implies that

E
[

2(X,α,β) ·ω(X)

]
> E

[

2(X,α+εn∗∗ ,β) ·ω(X)

]
,

and it contradicts Assumption 7(ii), that β uniquely minimizes the weighted mean squared
distance.

Next, we consider case (II). As in case (I), if B1 and B2 satisfy the property mentioned
in case (I), then there exists ε > 0 such that (B1 \ B2) ⊂ A(ε). Thus,

E
[

2(X,α,β) ·ω(X)

]− E
[
(
2(X,α +ε,β) ·ω(X)

]
�

∫
A(ε)

ε2 ·ω(x) d FX (x)−
∫
X \A(ε)

ε2 ·ω(x) d FX (x) (A.26)

holds for any ε > 0 similarly to case (I). By the same argument as the one used in case (I),
for each integer n > 1, there exists εn > 0 such that∫

Bn

ω(x) d FX (x)−
∫
X \Bn

ω(x) d FX (x)

�
∫

A(εn)
ω(x) d FX (x)−

∫
X \A(εn )

ω(x) d FX (x). (A.27)

Assumption 7(iii) and Monotone Convergence Theorem yield

lim
n→∞

∫
X \Bn

ω(x) d FX (x) = 0 and (A.28)
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lim
n→∞

∫
Bn

ω(x) d FX (x) =
∫
X

ω(x) · fX (x) dx =: c′. (A.29)

Note that c � 0, and it holds with equality only if ω(x,α,βτ) · fX (x) = 0 almost ev-
erywhere on X . But it is not true that ω(X) · fX (x) = 0 almost everywhere on X , from
Assumption 7(ii) that (α,β) uniquely minimizes the weighted mean squared distance.

Thus, it follows from (A.26)–(A.29) that

lim
n→∞

E
[

2(X,α,β) ·ω(X)

]− E
[

2(X,α+εn ,β) ·ω(X)

]
ε2

n
� c′ > 0

is true, similarly to case (II). But then, there exists n∗∗ > 1 such that

E
[

2(X,α,β) ·ω(X)

]− E
[

2(X,α +εn∗∗ ,β) ·ω(X)

]
ε2

n∗∗
> 0.

This inequality implies that

E
[

2(X,α,β) ·ω(X)

]
> E

[

2(X,α+εn∗∗ ,β) ·ω(X)

]
,

and it contradicts Assumption 7(ii), that β uniquely minimizes the weighted mean squared
distance. �

A.6. Proof of Lemma 4

Proof. From Assumption 7(vii), there exist x ′
1 > x∗

1 and x ′′
1 < x∗

1 such that
∂M

(
x ′

1, x∗−1

)
∂x1

> β1 and
∂M

(
x ′′

1, x∗−1

)
∂x1

< β1.

If M(x ′
1, x∗−1) > L(x ′

1, x∗−1), then by the Intermediate Value Theorem there exists x̃1 ∈
[x∗

1 , x ′
1] such that M(x̃1, x∗−1) = L(x̃1, x∗−1). Now consider the case where M(x ′

1, x∗−1) <

L(x ′
1, x∗−1). Let β̄1 := ∂M(x ′

1, x∗−1)

∂x1
. Recall that β̄ > β. From Assumption 7(vii), for all

x1 > x ′
1,

M(x1, x∗−1) > β̄1(x1 − x ′
1)+ x∗−1β−1 + M(x ′

1, x∗−1). (A.30)

Note that β̄1(x1 −x ′
1)+x∗−1β−1 + M(x ′

1, x∗−1), as a function of x1, is the tangent line to the

curve M(·, x∗−1) at the point x1 = x ′
1. Since β̄1 > β1, β̄1(x1 −x ′

1)+x∗−1β−1 + M(x ′
1, x∗−1)

and L(x1, x∗
1 ) cross at the point x1 = M(x ′

1, x∗−1)

β̄ −β
. Further note that

M(x ′
1, x∗−1)

β̄ −β
> x ′

1.

Hence, from equation (A.30), we have

M

(
M(x ′

1, x∗−1)

β̄ −β
, x∗−1

)
> β̄1

(
M(x ′

1, x∗−1)

β̄ −β
− x ′

1

)
+ x∗−1β−1 + M(x ′

1, x∗−1)

= L

(
M(x ′

1, x∗−1)

β̄ −β
, x∗−1

)
.
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From the Intermediate Value Theorem, there exists x̄1 ∈
[

x ′
1,

M(x ′
1, x∗−1)

β̄ −β

]
such that

M(x̄1, x∗−1) = L(x̄1, x∗
1 ).

Similarly we can show that there exists x1 < x∗
1 such that M(x1, x∗−1) = L(x1, x∗

1 ). �

A.7. Proof of Theorem 4

Proof. From Lemma 3, there exists x∗ ∈ X such that L(x∗) > M(x∗). Since M is con-
tinuous, there exists ε > 0, such that for all x ∈ Bε(x∗), L(x) > M(x) where Bε de-

notes the open ε-ball of x∗ ∈ X . Hence,
∫

x∈D
dx ≥

∫
x∈Bε

dx > 0. Further note that∫
x−1∈D−1

dx−1 > 0.

From Lemma 3 and 4, for each x−1 ∈ D−1, there exist x ′
1(x−1) ∈ R and

x ′′
1 (x−1) ∈ R such that x ′

1(x−1) < x ′′
1 (x−1), L(x ′

1(x−1), x−1) = M(x ′
1(x−1), x−1) and

L(x ′′
1 (x−1), x−1) = M(x ′′

1 (x−1), x−1). Hence, from the Fundamental Theorem of Calcu-
lus, for all x−1 ∈ D−1,

∫ x ′′
1 (x−1)

x ′
1(x−1)

∂M
(
x1(x−1), x−1

)
∂x1

dx1 = β · (x ′′
1 (x−1)− x ′

1(x−1)
)
.

By Assumption 7(v), fX > 0 almost everywhere on D. Also recall that
∫

x−1∈D−1

dx−1 >

0. Thus, we can write

β1 =
∫

x−1∈D−1

∫ x ′′
1 (x−1)

x ′
1(x−1)

1
(x ′′

1 (x−1)−x ′
1(x−1))

· ∂M(x1,x−1)
∂x1

dx1dx−1∫
x−1∈D−1

dx−1

=
∫

x∈D 1
(x ′′

1 (x−1)−x ′
1(x−1))

· ∂M(x)
∂x1

· 1
f X (x)d FX (x)∫

x−1∈D−1
1

f X−1
d FX−1(x−1)

= E

[
wD(X) · ∂M(X)

∂ X1

∣∣∣∣ X ∈ D
]

. �

A.8. Proof of Lemma 6

Proof. Define the function Pτ : B(U)⊗B(X ) → R by

Pτ (�) =
∫

μτ
(
�(�, x), x

)
d FX (x)

for each � ∈ B(U)⊗B(X ), where �(�, x) is defined by

�(�, x) = {
u ∈ U | (u, x) ∈ �

}
.

Note that this set �(�, x) belongs to B(U), as � belongs to the tensor product sigma
algebra B(U) ⊗ B(X ). We first show that this function Pτ is a probability measure.
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That Pτ (�) ∈ [0,1] for all � ∈ B(U) ⊗ B(X ) follows from the fact that μy,x is a prob-
ability measure (Lemma 5) and FX is a probability measure. Likewise, by Lemma 5, we
have

Pτ (∅) =
∫

μQτ (x),x(∅)d FX (x) = 0 and

Pτ
(U ×X ) =

∫
μQτ (x),x(∂V (Qτ (x), x))d FX (x) =

∫
X

d FX (x) = 1.

Let {�i }i ⊂B(U)⊗B(X ) be a countable collection of disjoint sets. Note that, for each x ∈
X , �(�i , x)∩�(�j , x) = ∅ whenever i 	= j , and �(∪i�i , x) = ∪i�(�i , x). Therefore,
from the fact that μy,x is a probability measure (Lemma 5), we have the sigma additivity

Pτ (∪i�i ) =
∫

μτ (�(∪i�i , x), x)d FX (x) =
∫

μτ (∪i �(�i , x), x)d FX (x)

=
∫ ∑

i

μτ (�(�i , x), x)d FX (x) =
∑

i

Pτ (�i ),

where the last step uses the Fubini–Tonelli Theorem.
To show that μτ is a regular conditional probability measure given the events in B(X ),

it remains to show that

Pτ (S × T ) =
∫

T
μτ (S, x)d FX (x)

holds for all (S,T ) ∈ B(U)×B(X ). This follows straightforwardly, as

Pτ (S × T ) =
∫

μτ
(
�(S × T, x), x

)
d FX (x)

=
∫

μτ
({

u ∈ U | (u, x) ∈ S × T
}
, x

)
d FX (x) =

∫
T

μτ (S, x)d FX (x). �
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