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This work deals with the linear surface waves generated by a vessel advancing at a constant
forward speed. These waves, known as ship waves, appear stationary to an observer
on the vessel. Rather than exploring the well-studied stationary ship waves, this work
delves into the physical properties of ship waves measured at Earth-fixed locations. While
it might have been expected that analysing these waves in an Earth-fixed coordinate
system would be a straightforward transformation from existing analytical theories in a
moving coordinate system, the reality proves to be quite different. The properties of waves
measured at fixed locations due to a passing ship turn out to be complex and non-trivial.
They exhibit unique characteristics, being notably unsteady and short crested, despite
appearing stationary to an observer on the generating vessel. The analytical expressions for
the physical properties of these unsteady waves are made available in this work, including
the amplitude, frequency, wavenumber, direction of propagation, phase velocity and group
velocity. Based on these newly derived expressions and two-point measurements, an
inverse method has been presented for determining the advancing speed and the course
of motion of the moving ship responsible for the wave generation. The results from this
study can be used in a wide range of applications, such as interpreting data from point
measurements and assessing the roles of ship waves in transporting ocean particles.

Key words: surface gravity waves, wakes

1. Introduction

The classic problem of ship waves has been extensively studied since Lord Kelvin’s
fascinating discovery in 1887 (Thomson 1887). Kelvin’s discovery revealed a constant
sector of waves, beyond which stationary ship wakes vanish in an ideal flow over deep
water, as depicted in figure 1. A majority of the previous works deal with stationary waves
which are seen by a moving observer together with the advancing vessel responsible for
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Figure 1. Wave crestlines of the Kelvin wake in the coordinate system moving with the ship composed of
transverse waves (blue solid line) and divergent waves (red solid line) confined within the cusp lines (black
dashed line) of Kelvin angle γc = arctan(1/

√
8) ≈ 19◦28′; κ = g/U2 where U denotes the ship’s speed, and g

is the gravitational acceleration.

the generation of these waves (see, Wehausen 1973; Reed & Milgram 2002; Li & Ellingsen
2016b; Yuan et al. 2021 among others). It has been somewhat taken for granted that
investigating stationary ship waves in an Earth-fixed system only involves a transformation
of the coordinate system from a moving to an Earth-fixed one. In this work, we revisit the
classic problem of ship waves in the ‘eyes’ of an Earth-fixed observer and demonstrate that
it is not as trivial as would have been imagined. Instead, we highlight that there are newly
emerging needs for a deeper understanding of the underlying physics within an Earth-fixed
coordinate system, as explained in detail in the following.

While the importance of ship waves has been well known in many applied engineering
fields because of its relevance to the wave-making resistance of vessels, see, e.g. Yeung
(1972), Beck, Newman & Tuck (1975), Nakos & Sclavounos (1990), Noblesse, Huang &
Yang (2013), Li, Smeltzer & Ellingsen (2019) and He et al. (2021), it has been increasingly
recognised in the community of coastal morphology and natural hazards in the sea and
coastal waters in recent decades. In the semi-sheltered and coastal areas, waves generated
by ship transits are a major source of impact on coastal environments (Forlini et al. 2021).
They can not only erode the bank of the waterway and coastal line, but also pose a potential
hazardous impact on coastal structures or berthed floating bodies (Bourne 2000; Soomere
2007; Rapaglia et al. 2015; Gabel, Lorenz & Stoll 2017; Scarpa et al. 2019). An advancing
vessel can act as a source of propagating wake wash, generating wakes that force sediment
transport and drive vertical mixing, which is important to aquatic ecosystems (Rapaglia
et al. 2015; Gabel et al. 2017; Meyers et al. 2021). Thereby, how to quantify the impact
of ship wakes on the coastal environments is an open and essential question for coastal
management and protection. The answer to this question greatly relies on an in-depth
physical understanding of ship wakes measured at fixed locations, which has not been
fully available due to limited studies. To this end, this work aims to fill in the knowledge
gaps.

There are available methods that have been developed for retrieving the physical
properties of ship waves measured at fixed locations. One such, the method of
short-time Fourier transform with respect to a record of time series, was pioneered by
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Wyatt & Hall (1988) and has been widely used in processing wave probe measurements
in the last decade (Didenkulova et al. 2013; Sheremet, Gravois & Tian 2013; Torsvik
et al. 2015; Pethiyagoda, McCue & Moroney 2017). Sheremet et al. (2013) utilised the
short-time Fourier transform to investigate the statistics regarding measured ship wakes,
identifying an up-chirping frequency component. Moreover, it has been used in the cases
of water of finite depth (Pethiyagoda et al. 2018) and more general cases where the ship
advances at a non-constant speed (Pethiyagoda et al. 2021).

Compared with other remote sensing techniques, such as satellite photography (Liu,
Peng & Chang 1997; Rabaud & Moisy 2013) and synthetic aperture radar (Lyden et al.
1988; Reed & Milgram 2002; Karakuş, Rizaev & Achim 2020), a distinctive feature of the
method is the simplicity at an adequate level of accuracy since it only requires one-point
measurement. It can especially lead to the amplitude of waves with different frequencies.
This approach relying on one-point measurements particularly facilitates the analysis of
wave amplitudes across different frequencies by steadily advancing sailing ships. Torsvik
et al. (2015) reported that the measured linear waves contain two different components:
one with a constant frequency and the other with increasing frequency corresponding
to transverse and divergent waves, respectively. They established a correlation between
wave frequency, propagation direction, ship speed and distance from the sailing line.
The second-order nonlinear ship waves can lead to four extra frequencies, according to
Pethiyagoda et al. (2017). The time-frequency heat maps are obtained by Buttle et al.
(2022) for waves generated by slender ships, which are validated through comparisons
with the experimental findings reported by Buttle et al. (2020). The same experimental
results from waves measured by an array of fixed probes are also used to validate the
theory derived from this work.

When a ship passes different physical locations, ring waves are generated at each of the
ship locations (Li & Ellingsen 2015, 2016a). These waves can pass a fixed location with
different frequencies as their origins are different due to the time-varying positions of the
ship relative to the fixed location which measures the (unsteady) ship waves (see, e.g.
Liang, Santo & Si 2022; Liang, Li & Chen 2023). This physical process means the need
for more than just measuring the amplitude and frequency of ship waves at a particular
location. There are more essential physical properties that are desired, especially the
fluid particle velocities and the direction of wave propagation due to passing ship waves.
To this end, novel approaches are required to complement the available aforementioned
methods. This study will focus on introducing a novel approximate method to address
these requirements.

In summary, the objective of this work is threefold. Firstly, we aim to provide a clear
explanation of the conditions under which ship waves can pass a fixed location. Secondly,
based on these conditions, we derive explicit expressions for various physical properties
of these waves, such as amplitude, wave incidence angle, group and phase velocity and
fluid particle velocities resulting from passing ship waves. In contrast to the limitations
of time–frequency spectrograms, which can only estimate wave amplitude, our analytical
expressions enable straightforward estimations of multiple physical quantities. Notably,
we demonstrate that the amplitudes of transverse and divergent waves measured at a
fixed location can also be expressed using the Kochin function, which is associated with
the geometry of the ship hull. Thirdly, leveraging the analytical expressions for physical
quantities, we propose a novel method that relies on measurements from two probes fixed
at distinct locations to determine the speed and direction of the vessel responsible for
generating the observed waves. This approach offers an efficient and accurate means of
vessel tracking, allowing for practical applications in maritime management.
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Figure 2. Definition of global and local coordinate systems. The global coordinate system OXYZ is fixed in
space, and the sensor is located at (X,Y) = (0,Ys). The local coordinate system moves steadily with the ship
at a constant speed U. At t = 0, the two coordinate systems coincide.

The layout of the present paper is as follows. In § 2, waves generated by a
ship hull are modelled by a Hogner model (Hogner 1923) in conjunction with the
viscous-ship-wave Green function (Liang & Chen 2019). As a sequel to § 2, a uniform
Kelvin–Havelock–Peters (KHP) asymptotic approximation (Wu et al. 2018; Liang et al.
2020b) is employed in § 3 to explicitly decompose the wave pattern inside the Kelvin
wake into transverse and divergent waves. In § 4, physical quantities for both transverse
and divergent waves propagating in an Earth-fixed frame of reference are derived, and the
long-time asymptotic behaviours are discussed. Building upon the physical properties of
transverse and divergent waves, a two-probe method is developed to determine the ship’s
speed and sailing direction in § 5. The results, particularly the underlying physics, are
discussed in § 6. Concluding remarks and future perspectives are presented in § 7.

2. Description of ship waves

In this section, we focus on the description of linear surface waves generated by a steadily
advancing object. We employ the viscous-ship-wave Green function, which satisfies the
linear free surface boundary condition, to construct the solution as discussed in § 2.2.
Additionally, we adopt the Hogner model, as presented in § 2.3, to simulate the free surface
flows around the ship hull.

2.1. Statement of the problem
Stationary waves from the perspective of an observer positioned on the ship responsible for
the generation of the waves are described. To distinguish these waves from those measured
at fixed locations, we consider two frames of reference, as illustrated in figure 2.

The first frame of reference corresponds to an Earth-fixed Cartesian coordinate system
OXYZ, where the OX axis points in the direction of the ship’s bow and the OZ axis
points upward. In this system, the ship moves at a constant speed U along the positive
OX direction. The second coordinate system oxyz moves with the ship, and its origin is
fixed at the centre of the ship. Consequently, we establish the relationships x = X − Ut,
Y = y and Z = z, which relate the coordinates in the two frames of reference.

In the moving coordinate system oxyz, the physical problem is steady, and can be defined
as a ship hull in the presence of a uniform stream with a velocity U in the direction of the
negative ox axis. Then, the velocity potential Φ in the flow field is

Φ(x, y, z) = U[−x + φ(x, y, z)], (2.1)

where φ denotes the potential disturbed by the presence of ship hull.
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The perturbed potential φ satisfies the linearised Kelvin–Michell free surface condition
with viscous effects (Dias, Dyachenko & Zakharov 2008; Liang & Chen 2019)

U2 ∂
2φ

∂x2 + g
∂φ

∂z
+ 4ν0U

∂3φ

∂x∂z2 = 0, at z = 0, (2.2)

where ν0 denotes the kinematic fluid viscosity coefficient. The combined boundary
condition on a still water surface given by (2.2) is based on the weakly damped free
surface flow theory, see, e.g. Dias et al. (2008) for details. The magnitude of the viscous
term in this condition is negligibly small compared with the remaining terms (Liang
& Chen 2019). This suggests the flow considered is nearly irrotational, thereby the
velocity potential in the statement of the (far-field) ship-wave problem is interpreted as
a leading-order approximation. The body boundary condition on the hull surface is given
by

∂φ

∂n
= nx, (2.3)

where the normal vector is defined as positive pointing inwards to the fluid domain. The
unknown velocity potential in the viscous boundary condition on a still water surface and
the wet surface of the ship hull in calm water given by (2.2) and (2.3), respectively, is
solved through a viscous-ship-wave Green function presented in § 2.2 combined with a
Hogner model detailed in § 2.3.

2.2. Viscous-ship-wave Green function
The viscous-ship-wave Green function derived by Liang & Chen (2019) is reviewed in this
section, which, taking into account the fluid viscosity, represents the flow induced by a
point singularity with unit strength, translating steadily along a straight path in calm water.
We remark that such a Green function especially has the feature of removing non-physical
behaviours of the classic ship-wave Green function, see, e.g. Ursell (1960), Clarisse &
Newman (1994) and Chen & Wu (2001). For example, unbounded wave amplitudes in the
region near the course of the moving point singularity.

Following Liang & Chen (2019), the viscous-ship-wave Green function satisfying the
free surface condition (2.2) is written as

4πG(x, ξ) = −1/r + 1/d + GF, with
{

r
d

}
=
√
(x − ξ)2 + ( y − η)2 + (z ∓ ζ )2,

(2.4)

where x ≡ (x, y, z) and ξ ≡ (ξ, η, ζ ) denote the flow-field point and source point,
respectively, and GF is the free surface term in the form of a double Fourier integral. The
free surface term GF = GL + GW can be decomposed into a non-oscillatory local-flow
component GL and a wave component GW dominant in the far field (see Appendix A for
details). The local-flow component GL is

GL = 2κ
π

Im
∫ 1

−1
eZE1(Z) dq, (2.5a)

with

Z = −iκ
√

1 − q2
[
−|x − ξ | + i

√
1 − q2(z + ζ )− iq( y − η)

]
, (2.5b)
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and the wave component GW is

GW = −4H(ξ − x)Im
∫ ∞

−∞
κE(x, q)Ẽ(ξ , q) dq, (2.6a)

with

E(x, q) = exp
[
κ(1 + q2)z + 4εκx

(1 + q2)3

1 + 2q2 − iκ
√

1 + q2(x + qy)
]
, (2.6b)

Ẽ(ξ , q) = exp
[
κ(1 + q2)ζ − 4εκξ

(1 + q2)3

1 + 2q2 + iκ
√

1 + q2(ξ + qη)
]
, (2.6c)

where euE1(u) is the complex exponential-integral function (Abramowitz & Stegun 1964),
ε is a parameter associated with viscous effects defined as ε = gν0/U3 and κ is defined as
κ = g/U2, which can be interpreted as the wavenumber along the ship’s track. In (2.6a),
H(u) means the Heaviside step function, which equals to 1 for u > 0, or 0 otherwise.

2.3. Hogner model
The Hogner model due to Hogner (1923) has been widely used to express the unknown
velocity potential, φ, in an explicit form. It has been tested and proven to be adequate in
approximating linear ship waves (Zhang et al. 2015; Wu et al. 2019; Buttle et al. 2022).

Following Hogner (1923), the velocity potential due to the flow induced by an advancing
ship hull is represented by a source distribution with strength nξ over the mean wetted hull
surface denoted by ΣH(ξ, η, ζ )

φ(x) =
∫∫

ΣH
nξG(x, ξ) dS, (2.7)

where nξ is the component in the x-direction of the vector normal to the ship’s hull.
Introducing polar coordinates (x, y) ≡ R(− cos γ, sin γ ), where γ is measured from the
negative x-axis in the clockwise direction (figure 2), the free surface elevation, denoted
by E(x, y), at a location far away from the ship where R/L 	 1, is written in the
Fourier–Kochin form given by

E(x, y) = 1
κ

∂φ

∂x

∣∣∣∣
z=0

≈ 1
4πκ

∫∫
ΣH

nξ
∂GW(x, ξ)

∂x

∣∣∣∣
z=0

dS

= κ

π
Re

∫ ∞

−∞
K(q, x) exp[iκRψ(q, γ )] dq, (2.8)

where GW is the wave component given by (2.6a). In the wavenumber (q) integral (2.8),
K(q, x) is the Kochin function determined by the ship hull geometry written as

K(q, x) =
√

1 + q2 exp
[

4εκx
(1 + q2)3

1 + 2q2

] ∫∫
ΣH

nξH(ξ − x)Ẽ(ξ , q) dS, (2.9)

and the phase function ψ(q, γ ) by

ψ(q, γ ) =
√

1 + q2(cos γ − q sin γ ), (2.10)
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consistent with that in (2.6b). The velocity vector due to the ship-motion-induced flow,
denoted by u = [ux, uy, uz]T, can be obtained from the velocity potential through

u ≡ ∇φ(x) =
∫∫

ΣH
nξ∇xG(x, ξ) dS

≈ κ2

π
Re

∫ ∞

−∞

⎡
⎣ 1

q
i
√

1 + q2

⎤
⎦K(q, x) exp(κ[(1 + q2)z + iRψ(q, γ )]) dq.

(2.11)

3. Decomposition of transverse and divergent waves

As is widely known, the stationary ship wake consists of both transverse and divergent
waves which have different physical features (Li 2018; Liang & Chen 2018). Based on the
surface elevation given by (2.8), we derive a new approximation to (2.8) in the far field,
permitting the explicit partition of ship waves into the transverse and divergent waves.
This is achieved through the use of the KHP approximation, whose advantageous features
compared with other approximations can be found in other works e.g. Liang et al. (2020b)
and Wu et al. (2018). The application of the asymptotic approximation indicates that the
waves in the far field are concerned. This implies that we neglect the effects of ship bow
waves, which typically exhibit strong nonlinear behaviour. Nevertheless, the bow waves
are confined to the vicinity of the ship, and thus it is sensible to neglect their effects in the
far field (Fontaine, Faltinsen & Cointe 2000).

3.1. Stationary phase points and saddle points
Within the Kelvin wake, characterised by polar angles γ < γc ≡ 19◦28′, there are two
distinct stationary phase points requiring the vanishing of the first-order derivative of the
phase function, i.e. ψ ′(q, γ ) = 0, where the prime ′ means differentiation with variable q.
Then, the stationary phase points are given by

q± = (1 ± Q) cot γ /4, with Q =
√

1 − 8 tan2 γ , (3.1)

and the corresponding second-order derivatives are

ψ ′′
± ≡ ∂2ψ(q±, γ )

∂q2 = ∓ 4√
3

Q sin γ√
(1 ± Q)(1 ∓ Q/3)

, (3.2)

where subscripts ‘−’ and ‘+’ correspond to transverse and divergent waves, respectively,
hereafter.

At the cusp line of the Kelvin wake γ = γc = arctan(1/
√

8), two stationary phase points
coalesce q− = q+ = qc = 1/

√
2, and both first- and second-order derivatives of the phase

function are nil, e.g. ψ ′(qc, γc) = ψ ′′(qc, γc) = 0. The third- and fourth-order derivatives
at qc are

ψ ′′′
c ≡ ∂3ψ(qc, γc)

∂q3 = −4
√

6/9, and ψ ′′′′
c ≡ ∂4ψ(qc, γc)

∂q4 = 8
√

3/9. (3.3a,b)

Outside the Kelvin wake, when γ > γc, the two stationary phase points transform into
two complex saddle points, forming a complex conjugate pair. To evaluate the integral,
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the integration path is deformed, and only the contribution from the saddle point with an
imaginary part of ψ ′′ that is positive matters. The selected saddle point is

qo = (1 − Q) cot γ /4, with Q = i
√

8 tan2 γ − 1, (3.4)

and the corresponding second-order derivative is

ψ ′′
o ≡ ∂2ψ(qo, γ )

∂q2 = 4√
3

Q sin γ√
(1 − Q)(1 + Q/3) . (3.5)

3.2. Decomposition via the KHP approximation
The KHP approximation has been extensively studied in Wu et al. (2018) and Liang
et al. (2020b), delving into mathematical derivations and accuracy assessments. However,
these works predominantly focus on the mathematical aspects rather than investigating
the physical perspective. One notable advantage of the KHP approximation over other
counterparts, Chester–Friedman–Ursell (CFU) approximation (Chester, Friedman &
Ursell 1957), is its ability to decompose the wave pattern within the Kelvin wedge into
transverse and divergent waves, a facet not considered in Wu et al. (2018) and Liang et al.
(2020b). This subsection aims to concentrate specifically on this aspect, elucidating the
wave pattern decomposition via the KHP approximation.

Based on Liang et al. (2020b), the KHP approximations to the surface elevation, E,
and velocity vector u = [ux, uy, uz]T in the flow region inside the cusp of the Kelvin wake
γ ≤ γc are expressed as

⎡
⎢⎢⎢⎢⎣

E(x, y)

ux(x)

uy(x)

uz(x)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

E+(x, y)

ux+(x)

uy
+(x)

uz
+(x)

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

E−(x, y)

ux−(x)

uy
−(x)

uz
−(x)

⎤
⎥⎥⎥⎥⎦

with

⎡
⎢⎢⎢⎢⎣

E±(x, y)

ux±(x)

uy
±(x)

uz
±(x)

⎤
⎥⎥⎥⎥⎦ = Re

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣
E±
Ux±
Uy

±
U z

±

⎤
⎥⎥⎥⎥⎦ exp[i(κRψ± ∓ π/4)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (3.6)

where x ≡ (x, y, z) with the horizontal coordinates further expressed by (x, y) ≡
R(− cos γ, sin γ ), and the components [E±,Ux±,Uy

±,U z
±]T are

⎡
⎢⎢⎢⎢⎣
E±
Ux±
Uy

±
U z

±

⎤
⎥⎥⎥⎥⎦ = κ

π

⎡
⎣ √

2π√
κR|ψ ′′±|

(1 − e−a4/3
)K(q±, x)+ C∗

He−a4/3

(κR|ψ ′′′
c |)1/3 (1 ∓ F )K(qc, x)

⎤
⎦ ,

(3.7)
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with C∗
H ≡ Γ (1/3)/61/6 ≈ 1.987334 and a = 3κR|ψ(q+)− ψ(q−)|/4. In (3.7), the

vector function K is defined as

K(q, x) ≡

⎡
⎢⎣
Ke(q, x)
Kx(q, x)
Ky(q, x)
Kz(q, x)

⎤
⎥⎦ =

⎡
⎢⎢⎣

K(q, x)
κK(q, x) eκ(1+q2)z

κq K(q, x) eκ(1+q2)z

i κ
√

1 + q2 K(q, x) eκ(1+q2)z

⎤
⎥⎥⎦ , (3.8)

and F is an operator to a function χ with χ = Ke, Kx, Ky or Kz, defined as

F (χ) = Γ (2/3)
Γ (1/3)

(
∂χ

∂q

∣∣∣∣
q=qc

− ψ ′′′′
c

6ψ ′′′
c
χ

)(
6

κRψ ′′′
c

)1/3

, (3.9)

where Γ (u) denotes the gamma function (Abramowitz & Stegun 1964).
Equation (3.6) provides an explicit decomposition of the two systems of waves

consisting of transverse waves E− and divergent waves E+ as well as their induced velocity
vector u− and u+, respectively. At the cusp line of the Kelvin wake, there is a phase
difference π/2 of transverse and divergent waves.

The approximation to wave pattern and velocity components outside the cusp of the
Kelvin wake γ ≥ γc is written as⎡

⎢⎢⎢⎢⎣
E(x, y)

ux(x)

uy(x)

uz(x)

⎤
⎥⎥⎥⎥⎦ = Re

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣
Eo

Ux
o

Uy
o

U z
o

⎤
⎥⎥⎥⎥⎦ exp[i(κRψo + π/4)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (3.10)

where the components [Eo,Ux
o ,Uy

o ,U z
o]T are⎡

⎢⎢⎢⎢⎢⎣

Eo

U x
o

U y
o

U z
o

⎤
⎥⎥⎥⎥⎥⎦ = κ

π

[ √
2π√

κR|ψ ′′
o | (1 − e−b4/3

)K(qo, x)+ (1 − i)C∗
He−b4/3

(κR|ψ ′′′
c |)1/3 (e−2b/3 + iF )K(qc, x)

]
,

(3.11)
with b = 3κR|Im(ψ ′′

o )|/2.

4. Physical properties of ship waves

In the frame of reference moving with the ship, the physics of ship waves is well understood
(Lighthill 1978). The wave pattern, comprising transverse and divergent waves behind the
ship, is stationary, meaning it does not change with time. The phase velocity of stationary
waves is observed as zero. In contrast, from the perspective of a fixed observer, ship
waves are unsteady and the phase velocity in the direction at right angles to wave crests
is to be evaluated. It is typical for the propagation direction of stationary ship waves to
differ from the direction of the ship motion (Noblesse et al. 2014; Li 2018). Physically,
this implies these stationary waves have different angular frequencies. Therefore, in the
Earth-fixed coordinate system, the ship waves are time dependent and particularly short
crested, as elaborated in this section. In this section, our focus is placed on deriving the
physical properties of propagating transverse and divergent waves, such as wave amplitude,
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H. Liang, Y. Li and X. Chen

frequency, wave heading, phase velocity and group velocity, based on the asymptotic
approximations derived in § 3.

4.1. Physical properties of transverse and divergent waves
In the Earth-fixed coordinate system OXYZ, as in figure 2, the free surface elevation
induced by a passing ship is

E(X, Y, t) = E+(X, Y, t)+ E−(X, Y, t), (4.1)

with E− and E+ denoting transverse and divergent waves given by (3.6) written in the form
of

E±(X, Y, t) = ‖E±‖ cos[P±(X, Y, t)], (4.2)

where the phase functions P±(X, Y, t) are

P±(X, Y, t) = κ

√
1 + q2±(Ut − X − q±Y)∓ π/4 + Arg(E±), (4.3)

where Arg(E±) means the argument of the complex function E± given by (3.7).
Suppose that the sensor location is at (X, |Y|) = (0, Ys) in the fixed coordinate system,

and the coordinates in the moving frame of reference are (x, |y|) = (−Ut, Ys). Here, Ys
is larger than 0, which means the sensor will not be located on the track. Following
Pethiyagoda et al. (2017), we can define a non-dimensional time

τ ≡ Ut/Ys = −x/|y|. (4.4)

According to the geometrical relation tan γc = 1/
√

8, as in figure 1, the observation point
is located inside the Kelvin wake when τ >

√
8, and the cusp line of the Kelvin wake

meets the sensor at τ = √
8.

Based on the phase function (4.3), we obtain the frequencies of transverse waves ω−
and divergent waves ω+ measured at the sensor location (X, Y) = (0, Ys)

ω± = κU
√

1 + q2± =
√

2g
4U

√
τ 2 + 4 ± τ

√
τ 2 − 8, (4.5)

which are consistent with the results by Pethiyagoda et al. (2017) obtained from the
geometrical relation of the dispersion relation.

Given the non-dimensional time τ defined in (4.4), the stationary phase points q± given
by (3.1) become

q± = τ ± √
τ 2 − 8
4

. (4.6)

According to the phase function given by (4.3), the wavenumbers in the X- and
Y-directions are obtained

kX
± = κ

√
1 + q2± = κ

√
τ 2 + 4 ± τ

√
τ 2 − 8

8
, (4.7a)

and

kY
± = κq±

√
1 + q2± = κ

τ ± √
τ 2 − 8
4

√
τ 2 + 4 ± τ

√
τ 2 − 8

8
, (4.7b)
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An Earth-fixed observer to ship waves

where superscripts ‘X’ and ‘Y’ indicate the X- and Y-directions, respectively, hereafter.
Furthermore, we can rewrite the frequencies (4.5) as

ω± =
√

g
√
(kX±)2 + (kY±)2 =

√
gk±, (4.8)

by using (4.7), and with

k± =
√
(kX±)2 + (kY±)2, (4.9)

called the wavenumber modulus. Equation (4.8) indicates that both transverse and
divergent waves satisfy the deep water dispersion relation ω2 = gk (Newman 1977).

According to (4.7), the heading angles of transverse and divergent waves can be
determined

β± = arctan

(
kY±
kX±

)
= arctan

(
τ ± √

τ 2 − 8
4

)
. (4.10)

Equation (4.10) is consistent with the results by Torsvik et al. (2015), which are obtained
from the analysis of the dispersion relation.

Given the dispersion relation (4.8), i.e. the relationship between frequency and
wavenumbers, the phase velocity vector is obtained

c± = (cX
±, cY

±) = ω±
k±

(kX±, kY±)
k±

= U

1 + q2±
(1, q±)

= 8U

τ 2 + 4 ± τ
√
τ 2 − 8

(
1,
τ ± √

τ 2 − 8
4

)
, (4.11)

and the group velocity vector according to Lighthill (1978) is written as

v± =
(
∂ω±
∂kX±

,
∂ω±
∂kY±

)
= U

2(1 + q2±)
(1, q±) ≡ c±

2
, (4.12)

by differentiating the dispersion relation (4.8).
Consistent with the deep water wave theory, (4.11) and (4.12) indicate that, in the fixed

coordinate system, the phase velocity of both transverse and divergent waves aligns with
the direction of the group velocity and is twice the magnitude of the group velocity. These
results are consistent with the theory of gravity waves in deep water, further reinforcing
the validity of the derived expressions for phase and group velocities in the present study.

It is worth mentioning that (4.5) is consistent with the results determined by the
geometrical analysis of the dispersion relation in Pethiyagoda et al. (2017). This work has
in addition offered an analytical expression for the two components of the wave vectors
of the ship waves passing a fixed position, i.e. (4.7a,b). Doing so permits wave directions
to be readily resolved, and thereby builds a foundation for the inverse method presented
in § 5. Moreover, Torsvik et al. (2015) have also derived a geometric relation of the wave
dispersion relation, the advancing direction of ship motion and the distance of a fixed
location to a ship’s sailing line in the Earth-fixed coordinate. How the various frequencies
measured at the fixed position are related to the transverse and diverging ship waves was
not revealed in Torsvik et al. (2015) but has been derived analytically by this work, see,
e.g. (4.8).
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2 4
τ

6 8 100

1

2

3

4

5

ω
±U

/g

ω+U/g (Divergent waves)
ω–U/g (Transverse waves)

τ = 2√2

Figure 3. Normalised frequencies due to transverse waves ω−U/g and divergent waves ω+U/g determined
by (4.5) vs non-dimensional time τ = Ut/Ys.

4.2. Long-time asymptotic expressions
The long-time asymptotic approximations for physical quantities derived in § 4.1 are
considered here. The long-time asymptotic expressions for frequencies given by (4.5) are

ω− = g/U + O(τ−2), and ω+ = gτ/(2U)+ O(τ−3) = gt/(2Ys)+ O(τ−3).
(4.13a,b)

Figure 3 displays the normalised frequencies due to transverse waves ω−U/g and
divergent waves ω+U/g at a sensor location as a function of non-dimensional time
τ = Ut/Ys, as determined by (4.5).

At τ = 2
√

2, the time instant when the cusp line of the Kelvin wake intersects the
sensor, the frequencies of transverse and divergent waves are identical, with a normalised
frequency of ω−U/g = ω+U/g = √

3/2.
With the time marching, the scaled frequency ω−U/g of transverse waves remains

nearly constant, as indicated by (4.13a,b). On the other hand, the scaled frequency of
divergent waves ω+U/g keeps increasing, in a manner linearly proportional to τ .

When τ is large, as in (4.13a,b), we have ω− = g/U, which indicates that the frequency
of transverse waves is independent of time t, and inversely proportional to the ship’s speed
U. For divergent waves, however, the frequency is ω+ = gt/(2Ys), linearly proportional to
the time t but independent of the ship’s speed U. These long-time properties offer valuable
insights into the dynamics of transverse and divergent waves over time and enable us to
better analyse the time–frequency spectrogram, which will be elucidated in § 5.

In the same manner, the long-time asymptotic expressions for wave incidence angles are

tan(β−) = 0 + O(τ−1) and tan(β+) = τ/2 + O(τ−1). (4.14a,b)

Figure 4 shows the heading angles of transverse and divergent waves at a fixed location
varying with the non-dimensional time. When the sensor meets the cusp line of the
Kelvin wake at τ = 2

√
2, denoted by the vertical dashed line, the wave heading angles

for transverse and divergent waves are identical, and equal to arctan(
√

2/2) ≈ 35.26◦,
which agrees with the study by Torsvik et al. (2015). With the time marching, the
incidence angle of transverse waves decreases, while that of divergent waves increases.
At large non-dimensional times, the long-time asymptotic expressions in (4.14a,b) apply.
Accordingly, the transverse waves eventually propagate along the sailing direction, while
the divergent waves propagate perpendicular to the sailing line.
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.)

β– (Transverse waves)
β+ (Divergent waves)

35.26°

τ = 2√2

τ

Figure 4. Heading angles of transverse waves β− and divergent waves β+ determined by (4.10) as a function
of the non-dimensional time τ = Ut/Ys.

2 4
τ

6 8 100

0.5
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+/U (Divergent waves)

cY
–/U (Transverse waves)

cX
+/U

(c
X ±,

 c
Y ±)

/U

cX
–/U

2
3

√2
3

Figure 5. Phase velocity of transverse waves c− and divergent waves c+ determined by (4.11) vs the
non-dimensional time τ = Ut/Ys.

Then, the long-time asymptotic expressions for phase velocities given by (4.3) are

c− = U(1, 1/τ)+ O(τ−2) and c+ = U(4/τ 2, 2/τ)+ O(τ−3), (4.15a,b)

and those for group velocities given by (4.12) are

v− = U[1/2, 1/(2τ)] + O(τ−2) and v+ = U(2/τ 2, 1/τ)+ O(τ−3). (4.16a,b)

Due to the fact that the group velocity is in alignment with the phase velocity, and is
half the phase velocity in magnitude, only the phase velocity is discussed here. Figure 5
depicts the phase velocity of transverse and divergent waves, determined by (4.11), with
respect to the non-dimensional time τ = Ut/Ys. Notably, when the cusp line intersects the
sensor τ = 2

√
2, the in-line and lateral phase velocity components become identical for

both transverse and divergent waves. Specifically, the normalised in-line component of the
phase velocity is 2/3, while the lateral component is

√
2/3.

As the time progresses, as shown in (4.15a,b), the in-line phase velocity of transverse
waves (cX−) at the sensor location eventually becomes identical to the ship’s translating
speed. Meanwhile, the lateral phase velocity (cY−) decreases in proportion to the inverse of
the non-dimensional time (τ = Ut/Ys) for transverse waves. However, for divergent waves,
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both the longitudinal and lateral phase velocities at the sensor location decrease over time.
Specifically, the longitudinal phase velocity of divergent waves (cX+) decreases with the
inverse square of the non-dimensional time, leading to a rapid decay rate, as illustrated in
figure 5. This decrease indicates a significant change in the behaviour of divergent waves
as time advances.

4.3. Velocity components of the fluid particle
Let the time-dependent velocity component of a fluid particle in the Earth-fixed coordinate
system be U = (uX, uY , uZ).

By applying the explicit expressions for the velocity components presented in § 3.2
in the moving coordinate system, the velocity components in the Earth-fixed coordinate
system, when Ut − X < 2

√
2|Y|, are written as⎡

⎣uX

uY

uZ

⎤
⎦ = Re

〈⎡⎣U
x
o

Uy
o

U z
o

⎤
⎦ exp

{
i
[
κ

√
1 + q2

o (Ut − X − qoY)+ π/4
]}〉

. (4.17)

As Ut − X ≥ 2
√

2|Y|, the measured location is inside the Kelvin wedge and then the
velocity components can be decomposed into components due to transverse and divergent
waves ⎡

⎢⎢⎣
uX

uY

uZ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

uX+
uY+
uZ+

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

uX−
uY−
uZ−

⎤
⎥⎥⎦ (4.18)

with ⎡
⎢⎣

uX±
uY±
uZ±

⎤
⎥⎦ = Re

〈⎡⎢⎣
Ux±
Uy

±
U z

±

⎤
⎥⎦ exp

{
i
[
κ

√
1 + q2± (Ut − X − q±Y)∓ π/4

]}〉
, (4.19)

where vectors [Ux
o ,Uy

o ,U z
o]T and [Ux±,Uy

±,U z
±]T are given by (3.11) and (3.7), respectively,

and they are dependent on time t.

5. The inverse method

Based on the physical properties of the ship wake obtained in § 4, we present in this
section an inverse method called the two-probe method for obtaining the moving speed
and direction of the sailing ship. In contrast to the synthetic aperture radar image which
can produce similar information (Reed & Milgram 2002; Zilman, Zapolski & Marom
2014; Karakuş et al. 2020), the method presented here is much simpler, because it builds
upon the time record of the surface elevation at two fixed locations.

We assume that the surface elevation induced by waves generated by a ship moving at
a constant speed has been recorded by two single-point probes located at points A and
B, as depicted in figure 6. The distance between A and B is denoted by λ, and the angle
between the ship’s sailing line and the straight line crossing A and B is represented by θ ,
which is currently unknown and needs to be determined. Let tA and tB be the time instants
when the cusp of the ship waves reaches probe A and B, respectively. By definition, we set
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λ

θ

A BO

P

Q

M

N

γc

γcUT

Figure 6. Diagram of the two-probe method for the ship’s moving speed and direction. A and B are the
locations of two fixed with a distance denoted by λ. The sailing direction with respect to the sensor deployment
line is θ , which is to be determined. The cusp of the Kelvin wedge meets probes A and B when sailing at
locations P and Q, respectively.

T = tB − tA. At time instants tA and tB, the centre of the ship is located at points P and Q,
respectively, as indicated in figure 6.

By utilising the short-time Fourier transform, one can effectively separate components
of different frequencies (Sheremet et al. 2013; Torsvik et al. 2015; Pethiyagoda et al. 2017;
Liang et al. 2020a; Pethiyagoda et al. 2021; Buttle et al. 2022). This allows us to create an
amplitude heat map representing the time and frequency variation of the waves. As a result,
we can obtain the time-dependent wave frequencies ωA± and ωB± measured at locations A
and B, respectively. Here, the subscripts −’ and +’ correspond to transverse and divergent
waves, respectively. By obtaining the time difference T between the measurements at A
and B, as defined earlier, we can proceed to determine the ship’s speed denoted by U and
its angle of motion relative to the straight line AB.

Based on the long-time asymptotic expression of transverse waves given by (4.13a,b),
the ship’s speed can be given by

U = g/ωA,B
− when transverse waves are in a steady state, (5.1)

due to the fact that the frequency of transverse waves is approximately independent of time
according to figure 3.

To determine the sailing angle θ , we introduce the following geometric relation:

|MP| + UT = |MN| + |NQ|. (5.2)

The difference |NQ| − |MP| can be replaced by

|NQ| − |MP| = 2
√

2(|BN| − |AM|), with |BN| − |AM| = λ sin θ, (5.3)

where the relation tan γc = 1/
√

8 has been used. Then, the geometric relation (5.2) gives
rise to the following relation:

UT = λ cos θ + 2
√

2λ sin θ, (5.4)

which sets up a relation among λ, UT and θ . As a consequence, the angle between the
deployment line and sailing line θ is obtained

θ = arcsin
(

UT
3λ

)
− γc, (5.5)
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which gives θ = 0 for UT = λ, i.e. the ship track in parallel with the line |AB|.
Based on (4.13a,b), the frequency for divergent waves is linearly increasing with time

at a slope defined as S = g/(2Ys). The measurement of the slope of the upper branch
associated with divergent waves gives SA = g/(2YA

s ) and SB = g/(2YB
s ), and then the

lateral distances from the sailing line YA
s and YB

s can be obtained. Suppose that the cusp
line meets the probes A and B at time instants tA and tB, respectively. Then, we have

U(tA − t0)
YA

s
= 2

√
2 = U(tB − t0)− λ cos θ

YB
s

, (5.6)

where t0 means the time instant when the midship is in alignment with probe A.
Combining with (5.5), we obtain an equation with respect to θ

θ = arcsin
[

g
2λ

(
1

SB
− 1

SA

)]
, (5.7)

which determines the direction of the ship’s course.
In summary, using the short-time Fourier transform in the two-point measurement

method allows us to extract the relevant wave frequencies at locations A and B. This
information, combined with the time difference T , enables us to determine the ship’s
velocity and its sailing direction with respect to the line AB. The two-point measurement
method provides a simple but reliable and practical approach for estimating essential
navigation parameters based on wave measurements at two distinct locations.

6. Results and discussions

For illustrative purposes, wave patterns generated by a parabolic Wigley hull model are
considered, and the geometry of the Wigley hull is defined as

y = ± L
20

[
1 − (2x/L)2

] [
1 − (15z/L)2

]
, (6.1)

which is applied in Buttle et al. (2022). In (6.1), L denotes the length of the Wigley hull,
and the Froude number associated with the ship’s speed is defined as F = U/

√
gL. It is

noted that this model is applicable to ships of arbitrary geometry. This is made possible
by utilising the Kochin function (2.9), which is directly linked to the wetted surface of
the ship’s hull. The application of the Hogner model for describing waves generated by a
realistic ship hull can be found in Zhang et al. (2015) and Wu et al. (2019).

6.1. Comparison with experiments and verification of the numerical model
We compare the results obtained from the numerical computation of the wavenumber
integral (2.8) with experimental measurements reported in Buttle et al. (2020). Figure 7
illustrates the time history of waves generated by a translating Wigley hull, as described
in (6.1), at two distinct sensor locations. The lateral distances from the sailing line to the
sensors are Ys = 2L (a) and Ys = 3L (b), respectively, and the Froude number is F =
0.3259. Despite the presence of noise in the experimental data, the agreement at both
sensor locations is satisfactory, indicating the validity of the present numerical model. The
good agreement between the numerical results and experimental measurements further
indicates the reliability of the numerical model in capturing the wave patterns induced by
a translating ship hull at sensor locations.
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Figure 7. Time signal of the free surface elevation created by a Wigley hull at a forward speed F = 0.3259.
Panels (a,b) correspond to the measurements at Ys = 2L and Ys = 3L, respectively, from the sailing line.
Comparison is made with the experiments reported in Buttle et al. (2020). Experiments: red solid line,
numerical: blue dashed line.
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Figure 8. Wave patterns (E/L) generated by a translating Wigley hull at a Froude number F = 0.5
determined by direct numerical computation (a), CFU approximation (b) and KHP approximation (c).

To examine the accuracy of the KHP approximation elucidated in § 3, figure 8 exhibits
the coloured plots of wave pattern created by a translating Wigley hull within the
rectangular region −30 ≤ x/L ≤ −20, 0 ≤ y/L ≤ 12 at a Froude number F = 0.5. The
free surface elevation is normalised with respect to ship’s length (E/L). Results determined
by direct numerical integration, CFU approximation (Chester et al. 1957) and KHP
approximation (Wu et al. 2018; Liang et al. 2020b) are displayed in panels (a,b,c),
respectively. It is evident from the plots that there is no significant difference among
the three panels, indicating that the KHP approximation accurately approximates the
wavenumber integral (2.8).
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Figure 9. Non-dimensional induced velocity components (uX, uY , uZ)/U measured at the Earth-fixed location
(X,Y,Z)/L = (0, 5, 0) varying with the non-dimensional time τ for F = 0.5. Comparison is made between the
direction numerical integration (blue solid line) and the KHP approximation (red dotted line).

In figure 9, the induced velocity components U = (uX, uY , uZ) measured at
an Earth-fixed location (X, Y, Z)/L = (0, 5, 0) are presented as a function of
non-dimensional time τ for the Froude number F = 0.5. The velocity components are
non-dimensionalised with respect to the translating speed U. Comparison is made between
the direction numerical integration of the wavenumber integral and the corresponding
KHP approximation, and good agreement between the two methods is obtained.

The good agreement observed in figures 8 and 9 confirms the reliability of the KHP
approximation for accurately predicting both the wave pattern and fluid particle velocities
induced by a translating ship hull.

6.2. Decomposition into transverse and divergent waves
Figures 10, 11 and 12 exhibit coloured contour plots of wave patterns generated by
the Wigley hull at Froude numbers F = 0.2, 0.5 and 0.7, respectively. The selected
Froude numbers are associated with low-speed, medium-speed and high-speed vessels,
respectively (Faltinsen 2005). The free surface elevation is normalised with respect to
ship’s length (E/L). Wave patterns, together with their decomposition into transverse and
divergent waves inside the Kelvin wedge, are displayed in panels (a,b,c), respectively. The
white dashed line in panel (a) corresponds to the cusp line of the Kelvin wake.
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Figure 10. Wave patterns (a) as well as decomposition into transverse waves (b) and divergent waves
(c) generated by a translating Wigley hull defined in (6.1) at a Froude number F = 0.2.
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Figure 11. Same as figure 10, but F = 0.5.

At F = 0.2, the amplitude of transverse waves is appreciably larger than that of divergent
waves, whereas the tendency is reversed at F = 0.7. The amplitudes of the two wave
systems are comparable at F = 0.5. Therefore, divergent waves play an increasingly
dominant role with increasing ship velocity, consistent with the conclusion that divergent
waves are dominant for high-speed vessels (Faltinsen 2005; Darmon, Benzaquen &
Raphaël 2014). In the panels (b,c), where transverse and divergent waves are displayed,
respectively, the profiles are consistent with the iso-phase lines plotted in figure 1, and
the wave crests are appreciably deflected near the cusp. In panel (a), wave patterns exhibit
short-crested features as a consequence of superposition of transverse and divergent waves.

In figures 10–12, it is observed from the right panels that divergent waves vanish near
the ship’s track. This is because divergent waves near the track are associated with large
wavenumbers, resulting in very short wavelengths according to the asymptotic analysis
(Chen 2004; Liang & Chen 2018). Consequently, these short waves are significantly
damped out under the influence of fluid viscosity effects (Liang & Chen 2019).

984 A14-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

16
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.167


H. Liang, Y. Li and X. Chen

−30 −28 −26 −24 −22 −20 −30 −28 −26 −24 −22 −20 −30 −28 −26 −24 −22 −20
x/L

0

2

6

4

8

12

10

0

2

6

4

8

12

10

0

2

6

4

8

12

10

(a) (b) (c)

y/L

x/L x/L

−8

−6

−4

−2

0

2

4

6

8

(×10–3)

Figure 12. Same as figure 10, but F = 0.7.
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Figure 13. Time history of the ship wake E in panel (a) and the decomposition into transverse waves E− (blue
solid line) and divergent waves E+ (red solid line) when τ ≥ 2

√
2 in panel (b). The corresponding amplitude

functions ‖E−‖ and ‖E+‖ are plotted by dashed lines. The signal is measured at (X,Y) = (0, 5L), and the
Froude number is F = 0.2.

This observation explains the disappearance of divergent waves near the ship’s track in
the presented figures.

6.3. Time responses at a fixed sensor location
Figures 13, 14 and 15 depict the time histories of the ship wake measured at a fixed
sensor location (X, Y) = (0, 5L) for Froude numbers F = 0.2, 0.5 and 0.7, respectively.
In panel (a) in each figure, the total signal E is displayed. When τ > 2

√
2, the signal is

further decomposed into transverse waves E− and divergent waves E+, which are shown in
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Figure 14. Same as figure 13, but F = 0.5.
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Figure 15. Same as figure 13, but F = 0.7.

panel (b) in each figure. Additionally, the corresponding amplitude functions (envelopes)
‖E−‖ and ‖E+‖, are plotted in panel (b) of each figure as dashed lines.

In the vicinity of the time instant τ = 2
√

2, when the cusp line intersects the sensor,
divergent waves play an increasingly significant role with higher ship speeds (larger Froude
numbers). With time marching, the frequency of divergent waves increases steadily, as
depicted in figure 3. However, despite this increase, divergent waves eventually decay
to zero. At the sensor location, the lateral distance from the ship’s sailing line remains
constant, while the in-line distance consistently increases, resulting in a decreasing polar
angle γ . As explained in Liang & Chen (2019), divergent waves experience considerable
damping for small polar angles due to the influence of fluid viscosity effects. Consequently,
the sensor can only measure divergent waves over a finite period of time. By comparing
figures 13–15, we observe that the duration of divergent waves increases with the
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Figure 16. Stationary phase points q± defined by (3.1) and the corresponding Kochin functions ‖K±‖ in
panel (a) and the time–frequency spectrogram obtained from the short-time Fourier transform in panel (b)
at F = 0.2. The physical quantities associated with transverse waves are plotted by solid lines (——), and
those with divergent waves are by dashed lines (- - - -). The cyan full circles (•, cyan) denote the locations
where the amplitude of divergent waves is diminishing.

ship’s speed. Consequently, the divergent waves generated by a high-speed ship may lead
to highly transient responses of near-shore floating structures, which should be taken into
account for engineering and safety considerations.

In contrast to divergent waves, the frequency of transverse waves remains nearly constant
with time, and their wave amplitude decreases slowly, as depicted by the blue dashed
line. Therefore, the influence of transverse waves at the sensor location will persist for an
extended period. In panel (b) of the figures, it is observed that the envelope of divergent
waves (red dashed line) undergoes modulation, leading to vanishing amplitude at certain
locations. These locations correspond to the low-intensity regions in the divergent wave
branch of time–frequency spectrograms, which are evident in both numerical simulations
and experimental measurements (Pethiyagoda et al. 2018; Buttle et al. 2022). This
modulation phenomenon contributes to the intermittent presence of divergent waves,
causing variations in their amplitudes over time.

To explore the occurrence of vanishing amplitude in divergent waves at the probed
location, we present two sets of plots. In panel (a), we show the time variation of the
stationary phase points q± and the corresponding modulus of the Kochin functions ‖K±‖.
Simultaneously, in panel (b), we present the time–frequency spectrograms obtained from
the short-time Fourier transform using the scipy library in Python.

Figures 16, 17 and 18 correspond to Froude numbers F = 0.2, 0.5 and 0.7, respectively.
When τ > 2

√
2, the sensor is located within Kelvin’s wedge, giving rise to the presence of
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Figure 17. Same as figure 16, but F = 0.5.

two distinct stationary phase points, q− and q+, associated with transverse and divergent
waves, respectively, as described in (3.1).

With the progression of time, the stationary phase point q− gradually approaches zero,
resulting in a mild variation of the Kochin function for transverse waves, ‖K−‖ with
K± = K(q±,−Ut) given by (2.9). In contrast, the stationary phase point q+ continues to
increase with time. As a consequence, the corresponding Kochin function ‖K+‖ undergoes
modulation, leading to the occurrence of vanishing amplitude in divergent waves.

These locations, where the amplitude of divergent waves disappears, are denoted by
cyan full circles, and they cause a discontinuity in the upper branch of the time–frequency
spectrograms. This phenomenon provides insight into the intermittent presence of
divergent waves and the patterns of amplitude variation in the vicinity of the sensor
location.

6.4. Velocity components of the fluid particle
We now focus on examining the velocity components of fluid particles, measured at an
Earth-fixed location (X, Y, Z)/L = (0, 5, 0), induced by ship waves as a function of the
non-dimensional time τ = Ut/Y . These velocity components are normalised with respect
to the ship’s speed U. The results corresponding to Froude numbers F = 0.2, 0.5 and
0.7 are depicted in figures 19, 20 and 21, respectively. Within each figure, the velocity
components uX , uY and uZ are respectively exhibited in panels (a), (b) and (c).
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Figure 18. Same as figure 16, but F = 0.7.

The directional characteristics of transverse and divergent waves, as depicted in figure 4,
reveal that transverse waves eventually propagate towards the ship’s sailing direction,
while divergent waves exhibit an increasing angle until they approach perpendicularity
to the ship’s course.

At a low Froude number F = 0.2, as in figure 19, the wave pattern predominantly
comprises transverse waves that propagate in alignment with the ship’s sailing path.
Consequently, the velocity field is primarily influenced by components uX and uZ ,
while the lateral velocity component uY , mainly contributed by divergent waves, remains
negligible. Upon reaching a Froude number of F = 0.5, as in figure 20, the significances
of transverse and divergent waves become comparable, resulting in all three velocity
components displaying comparable magnitudes. At a higher Froude number F = 0.7,
as in figure 21), despite the existence of divergent waves within a finite period, their
dominant influence is elucidated in § 6.2. Consequently, the velocity field is predominantly
influenced by components uY and uZ , while the in-line velocity component uX , mainly
attributed to transverse waves, becomes inconsequential.

6.5. Showcase of the two-probe method
To demonstrate the effectiveness of the two-point measurement method elucidated in § 5,
we devise a problem with a ship model of length L = 1 m sailing at a speed U = 1.6 m s−1.
Two wave probes A and B are at a distance λ = 2 m, and the sailing direction with respect
to the deployment line is θ = 30◦.
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Figure 19. Time series of non-dimensional induced velocity components (uX, uY , uZ)/U and their
decomposition into the components due to transverse waves (blue solid line) and divergent waves (red dashed
line). The velocity components are measured at an Earth-fixed location (X,Y,Z)/L = (0, 5, 0) for the Froude
number F = 0.2.

Figures 22 and 23 exhibit the time histories and the corresponding time–frequency
spectrograms obtained from the measurements at probes A and B, respectively. By
analysing the frequency of the lower branch of the spectrogram heat map, we determine
the frequency of transverse waves as ω− ≈ 6.1 rad s−1. Consequently, using (5.1), we
compute the corresponding velocity Ucal ≈ 1.61 m s−1, which is in close agreement with
the true value of 1.6 m s−1.

By measuring the upper branch associated with divergent waves, we can obtain the
slopes SA = g/(2YA

s ) ≈ 1.6 and SB = g/(2YB
s ) ≈ 1.2 of frequencies for divergent waves

measured at probes A and B. Then, using the relation (5.7), we compute the sailing angle as
θcal ≈ 30.7◦, which shows good agreement with the true value θtrue = 30◦. The successful
estimation of both the ship’s speed and sailing angle through measurements of two
branches in the heat map of the time–frequency spectrograms validates the effectiveness
of the developed two-point method.

In conclusion, the two-probe method presented here provides a simple but reliable
means to estimate the ship’s speed and sailing angle by analysing two branches in
the time–frequency spectrogram heat map. This method offers a practical solution for
obtaining essential navigation information from wave measurements at two distinct
locations, proving its potential for real-world applications.
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Figure 20. Same as figure 19, but F = 0.5.

7. Conclusions

This paper investigates the waves observed at fixed locations caused by the passage of
a vessel moving at a constant speed. The study derives the physical properties of these
waves, which have significant implications for coastal management and protection in the
context of climate change and sea-level rise. By employing a combination of the Hogner
model and the viscous-ship-wave Green function, we find that the waves are unsteady and
exhibit short-crested features, despite the vessel’s steady advancement.

The numerical model’s validity has been confirmed through comparisons with
experimental measurements, demonstrating good agreement. A uniform KHP
approximation is used to represent the far-field waves generated by the ship and for
the decomposition of the transverse and divergent waves. The physical properties of the
transverse and divergent waves are explicitly obtained, including the amplitude, frequency,
wavenumber, wave direction, phase velocity and group velocity.

We find that the physical properties of transverse and divergent waves measured at a
fixed location can be summarised as follows.

(i) The frequency of transverse waves remains almost constant over time but is inversely
proportional to the ship’s speed. The frequency of divergent waves is independent
of the ship’s speed but increases linearly with time.

(ii) Both transverse and divergent waves exhibit that group velocities propagate in the
same direction as the phase velocity. The magnitude of the group velocity is half that
of the phase velocity, consistent with deep water wave theory.

984 A14-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

16
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.167


An Earth-fixed observer to ship waves

0 2 4 6 8 10 12 14
–2

–1

0

1

2

uX /
U

(×10–2)

0 2 4 6 8 10 12 14
–2

–1

0

1

2

uY /
U

(×10–2)

0 2 4 6 8 10 12 14
τ

–2

–1

0

1

2

uZ /
U

(×10–2)

(a)

(b)

(c)

Figure 21. Same as figure 19, but F = 0.7.
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Figure 22. Free surface elevation measured at probe A (a), and the corresponding time–frequency spectrogram
(b). Grey dashed lines in panel (b) correspond to asymptotic expressions (4.13a,b) for transverse and divergent
waves.
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Figure 23. Same as figure 22, but at probe B.

(iii) When the sensor encounters the cusp line of the Kelvin wake, the heading angles
for transverse and divergent waves are identical, both measuring 35.26◦. However,
as time progresses, the wave propagation angle changes. Specifically, transverse
waves will propagate in the direction of the ship’s sailing, while divergent waves
will propagate towards perpendicularity to the ship’s sailing line. Therefore, the
induced velocity component aligned with the ship’s course is primarily influenced
by transverse waves, while the lateral velocity component is dominated by divergent
waves.

(iv) A sensor fixed at a particular location can only measure divergent waves for a finite
period, with the duration increasing as the ship’s speed rises. On the other hand,
transverse waves persist for an extended time and decay slowly with the passage of
time.

The present study is focused on ship waves in deep water, which can be readily extended
to more general cases, e.g. a finite water depth (Yang, Faltinsen & Zhao 2006; Zhu et al.
2015), ship waves in a background current (Ellingsen 2014; Li & Ellingsen 2016b), ship
waves in the ambient ocean waves (Noblesse & Hendrix 1992; Chen 2004), etc. That being
said, the main results obtained from this work are limited to linear and asymptotic waves
sufficiently far away from the ship.
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Appendix A. Decomposition of the free surface term

In this appendix, the decomposition of the free surface term GF into the local-flow
and far-field wave components is considered. For convenience, physical variables
are non-dimensionalised with respect to the translating speed U and gravitational
acceleration g

(x̃, ỹ, z̃) = κ(x − ξ, y − η, z + ζ ), GF = GF/κ, (A1)

and then, the free surface term in the form of the double Fourier integral is expressed as
(Liang & Chen 2019)

GF = 2
π

Re
∫ ∞

−∞

∫ ∞

0

exp(z̃
√
α2 + β2 − i(αx̃ + β ỹ))

α2 −
√
α2 + β2 − 4iεα(α2 + β2)

dα dβ. (A2)

The decomposition is realised by means of the Cauchy residue theorem. Equivalent
but different from the analysis (Chen 2023) based on the polar coordinates (k, θ) with
(α, β) = k(cos θ, sin θ) for the general case of the ship-motion Green function, here, we
perform directly in (α, β) plan and take the α-integral as the inner integral. The root to the
complex dispersion relation in the denominator of (A2) is (Lu & Chwang 2007)

α(β) ≈ a0 + iεa1, (A3a)

where

a0 =
√

1 + m
2

, and a1 = (1 + m)3

2m
, with m =

√
1 + 4β2. (A3b)

The wave component dominant in the far field is associated with the residue of the
α-integral, and it is written in the form of a wavenumber integral (Liang & Chen 2019)

GW = −4H(−x̃)Im
∫ ∞

−∞
exp

[
(1 + q2)z̃ + 4εx̃

(1 + q2)3

1 + 2q2 − i
√

1 + q2(x̃ + qỹ)
]

dq.

(A4)

Then, we are focused on the simplification of the local-flow component GL, which is
missing in Liang & Chen (2019). Following Noblesse (1977), we simplify the integral
with respect to α, and the corresponding α-integral is illustrated in figure 24. We may
construct a closed contour including the integration path, a quarter circle with a radius
R → ∞ and a path along the imaginary axis. It can be verified that the integral along the
quarter circle vanishes as the radius R tends to infinity. As for the selection of the path
along the imaginary axis, it depends on the location of the flow field point upstream or
downstream.

A.1. The case x̃ < 0
When x̃ < 0, i.e. downstream, the integration path is deformed to the imaginary axis
integrating from 0 to i∞, as illustrated in figure 24(a), and the local-flow component in
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Re(α)

Im(α)

a0 + iεa1

x̃ < 0

Re(α)

–Im(α)

a0 + iεa1

x̃ � 0

(b)(a)

Figure 24. Integration contour in the complex α−plane for x̃ < 0 (a) and x̃ ≥ 0 (b).

this case is expressed as

GL = 2
π

Re
∫ ∞

−∞

∫ i∞

0

exp(z̃
√
α2 + β2 − i(αx̃ + β ỹ))

α2 −
√
α2 + β2 − 4iεα(α2 + β2)

dα dβ. (A5)

Introducing α = it, (A5) is rewritten as

GL = GL
1 + GL

2 , (A6a)

where GL
1 and GL

2 are written as

GL
1 = 2

π
Re

∫ ∞

−∞

∫ |β|

0

i exp(z̃
√
β2 − t2 − i(itx̃ + β ỹ))

−t2 −
√
β2 − t2 + 4εt(β2 − t2)

dt dβ, (A6b)

GL
2 = 2

π
Re

∫ ∞

−∞

∫ ∞

|β|
i exp(iz̃

√
t2 − β2 − i(itx̃ + β ỹ))

−t2 − i
√

t2 − β2 + 4εt(t2 − β2)
dt dβ. (A6c)

The integrand of GL
1 is an odd function with respect to β, and thus the component GL

1 is
nil. By performing the variable of change a =

√
t2 − β2, the representation of GL is

GL = 2
π

Re
∫ ∞

−∞

∫ ∞

0

ia exp(iaz̃ − i(ix̃
√

a2 + β2 + ỹβ))

[−(a2 + β2)− ia + 4εa2
√

a2 + β2]
√

a2 + β2
da dβ. (A7)

Converting the Cartesian coordinates (a, β) to polar coordinates via introducing a =
� cos θ and β = � sin θ , (A7) becomes

GL = 2
π

Re
∫ π/2

−π/2

∫ ∞

0

i cos θ√
1 + 16iε2 cos3 θ

(
1

� − �+
− 1
� − �−

)

× exp(�(x̃ + iz̃ cos θ − iỹ sin θ)) d� dθ, (A8a)

where �+ and �− are defined as

�+ = 1 + √
1 + 16iε cos3 θ

8ε cos2 θ
≈ 1 + 4iε cos3 θ

4ε cos2 θ
, (A8b)
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and

�− = 1 − √
1 + 16iε cos3 θ

8ε cos2 θ
≈ −i cos θ. (A8c)

Using the relation in appendix C in Liang & Chen (2019), the double integral in (A2)
reduces to a single integral

GL = 2
π

Re
∫ π/2

−π/2

i cos θ√
1 + 16iε2 cos3 θ

[
eZ+E1(Z+)− eZ−E1(Z−)

]
dθ, (A9a)

where euE1(u) denotes the exponential-integral function, and Z± are defined as

Z± = �±(x̃ + iz̃ cos θ − iỹ sin θ). (A9b)

A.2. The case x̃ ≥ 0
Similar as the deformation of the contour integration performed in (A5), the integration
path is deformed to the negative imaginary axis when x̃ ≥ 0, as illustrated in figure 24(b),
and the corresponding local-flow component is

GL = 2
π

Re
∫ ∞

−∞

∫ −i∞

0

exp(z̃
√
α2 + β2 − i(αx̃ + β ỹ))

α2 −
√
α2 + β2 − 4iεα(α2 + β2)

dα dβ. (A10)

Introducing α = −it, (A10) is rewritten as

GL = GL
1 + GL

2 , (A11a)

where

GL
1 = 2

π
Re

∫ ∞

−∞

∫ |β|

0

−i exp(z̃
√
β2 − t2 − i(−itx̃ + β ỹ))

−t2 −
√
β2 − t2 − 4εt(β2 − t2)

dt dβ, (A11b)

GL
2 = 2

π
Re

∫ ∞

−∞

∫ ∞

|β|
−i exp(−iz̃

√
t2 − β2 − i(−itx̃ + β ỹ))

−t2 + i
√

t2 − β2 + 4εt(t2 − β2)
dt dβ. (A11c)

The same as (A6b), the integrand of GL
1 is an odd function with respect to β, and thus

we have GL
1 = 0. By performing successive change of variable as in (A7) and (A8a) and

applying the relation in appendix C in Liang & Chen (2019), the local-flow component for
x̃ ≥ 0 becomes

GL = − 2
π

Re
∫ π/2

−π/2

i cos θ√
1 − 16iε2 cos3 θ

[
eZ′+E1(Z′

+)− eZ′−E1(Z′
−)
]

dθ, (A12a)

where Z′± are defined as

Z′
± = �′

±(−x̃ − iz̃ cos θ − iỹ sin θ), (A12b)

with �′+ and �′− defined as

�′
+ = 1 + √

1 − 16iε cos3 θ

8ε cos2 θ
≈ 1 − 4iε cos3 θ

4ε cos2 θ
, (A12c)

and

�′
− = 1 − √

1 − 16iε cos3 θ

8ε cos2 θ
≈ i cos θ. (A12d)
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A.3. Summary
From (A9b) and (A12b), we note Z∗± = Z′±, where an asterisk means the complex
conjugate. Recalling the following relation (Abramowitz & Stegun 1964):

[eZE1(Z)]∗ = eZ∗
E1(Z∗), (A13)

we can obtain a consistent local-flow component representation valid for both x̃ < 0 and
x̃ ≥ 0, and it is expressed as

GL = − 2
π

Im
∫ π/2

−π/2
cos θ

[
eZ+E1(Z+)− eZ−E1(Z−)

]
dθ, (A14a)

where Z± are defined as

Z± = �±(−|x̃| + iz̃ cos θ − iỹ sin θ). (A14b)

Performing the change of variable u = sin θ , representation (A14a) becomes

GL = − 2
π

Im
∫ 1

−1

[
eZ+E1(Z+)− eZ−E1(Z−)

]
du, (A15a)

where Z± are defined as

Z+ = 1 + 4iε(1 − u2)3/2

4ε(1 − u2)
(−|x̃| + iz̃

√
1 − u2 − iỹu), (A15b)

Z− = −i
√

1 − u2(−|x̃| + iz̃
√

1 − u2 − iỹu). (A15c)

Accounting for the asymptotic approximation for exponential-integral function of a large
argument (Abramowitz & Stegun 1964)

euE1(u) = 1
u

∞∑
n=0

n!
(−u)n

, (A16)

the local-flow component is approximated as

GL = 2
π

Im
∫ 1

−1
eZE1(Z) du + O(ε), (A17a)

with
Z = −i

√
1 − u2(−|x̃| + iz̃

√
1 − u2 − iỹu). (A17b)
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