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Background
Identifying neuroimaging biomarkers of antidepressant response
may help guide treatment decisions and advance precision
medicine.

Aims
To examine the relationship between anhedonia and functional
neurocircuitry in key reward processing brain regions in people
with major depressive disorder receiving aripiprazole adjunct
therapy with escitalopram.

Method
Data were collected as part of the CAN-BIND-1 study.
Participants experiencing a current major depressive
episode received escitalopram for 8 weeks; escitalopram
non-responders received adjunct aripiprazole for an additional
8 weeks. Functional magnetic resonance imaging (on weeks
0 and 8) and clinical assessment of anhedonia (on weeks 0, 8 and
16) were completed. Seed-based correlational analysis was
employed to examine the relationship between baseline resting-
state functional connectivity (rsFC), using the nucleus accum-
bens (NAc) and anterior cingulate cortex (ACC) as key regions of
interest, and change in anhedonia severity after adjunct
aripiprazole.

Results
Anhedonia severity significantly improved after treatment with
adjunct aripiprazole.

There was a positive correlation between anhedonia
improvement and rsFC between the ACC and posterior cingulate
cortex, ACC and posterior praecuneus, and NAc and posterior
praecuneus. There was a negative correlation between anhe-
donia improvement and rsFC between the ACC and anterior
praecuneus and NAc and anterior praecuneus.

Conclusions
Eight weeks of aripiprazole, adjunct to escitalopram, was asso-
ciated with improved anhedonia symptoms. Changes in func-
tional connectivity between key reward regions were associated
with anhedonia improvement, suggesting aripiprazole may be an
effective treatment for individuals experiencing reward-related
deficits. Future studies are required to replicate our findings and
explore their generalisability, using other agents with partial
dopamine (D2) agonism and/or serotonin (5-HT2A) antagonism.
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Major depressive disorder (MDD) is characterised by ‘depressed
mood’ and/or anhedonia. Anhedonia is classically defined as a
‘diminished interest or pleasure in response stimuli that were previ-
ously perceived as rewarding during a pre-morbid state’,1 and is
recognised as a core feature of MDD in both the DSM and the
World Health Organization’s ICD. Up to 70% of individuals with
MDD present with anhedonia symptoms,2 confirming anhedonia
as a major feature of MDD. Individuals with anhedonia experience
greater overall depressive severity3 and decreased antidepressant
treatment response.4,5 In fact, anhedonia may be one of the most
persistent symptoms of MDD, despite clinical remission from a
major depressive episode (MDE): approximately 25% of individuals
in remission continue to have residual symptoms of anhedonia.6

Anhedonia treatment in MDD

Currently, serotonergic antidepressants are first-line treatments for
MDD. However, there is mixed evidence regarding the efficacy of
selective serotonin reuptake inhibitors (SSRIs) and serotonin-
norepinephrine reuptake inhibitors (SNRIs) in improving anhedo-
nia in individuals with MDD. Several studies of pharmacological
interventions for anhedonia in MDD concluded that, although
there was an improvement in anhedonia after treatment with an

SSRI or SNRI, this improvement was significantly less than observed
with other antidepressant agents, such as agomelatine.7 A possible
explanation for the limited anti-anhedonia effects of SSRIs is the
fact that anhedonia is primarily associated with dopaminergic and
opioidergic dysfunction, rather than serotonergic.8 Further, SSRI-
associated emotional blunting is a relatively common adverse
event among patients receiving SSRIs;9 therefore, SSRIs may some-
times exacerbate anhedonia.

The shortcomings of SSRIs in improving anhedonia present
the need for other agents that specifically address the underlying
pathophysiology of anhedonia. Dopamine is among the most fre-
quently implicated neurotransmitters associated with reward pro-
cessing and anhedonia,8 and so it stands to reason that
medications with dopaminergic properties may be effective in
treating anhedonia. This is supported by reports on a number of
medications with dopaminergic actions – including agomelatine,
bupropion, pramipexole and psychostimulants – which have
been associated with an improvement in anhedonia among indivi-
duals with MDD7 and other psychiatric/neurological disorders
(e.g. Parkinson’s disease).10 Aripiprazole, an atypical antipsychotic
that has dopamine D2 receptor agonist properties and is an
approved adjunct treatment for MDD, may also reduce symptoms
of anhedonia.
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The brain’s reward circuitry

Advances in applied functional brain imaging to examine neural
reward circuits have enhanced our understanding of reward deficits
and various aspects of anhedonia, which involve communication
between several key brain regions, including the ventral tegmental
area (VTA), nucleus accumbens (NAc), ventral pallidum and anter-
ior cingulate cortex (ACC). Theoretically, dysregulation in any of
these regions may cause anhedonia. Among brain networks, the
salience network is most implicated in reward processing: it select-
ively enhances salient reward stimuli required for higher cognitive
processing from the flow of incoming stimuli with which humans
are constantly presented.11,12 Several brain regions are implicated
in the salience network: although the anterior insula and dorsal
ACC act as the main hubs of the salience network, there is also sig-
nificant contribution from the amygdala, ventral striatum, thal-
amus, hypothalamus, substantia nigra pars compacta and VTA.11,12

The current study

The purpose of the current study is to examine the relationship
between anhedonia and functional neurocircuitry in key reward
processing brain regions in an MDD population treated with the
partial D2 agonist aripiprazole as an adjunct to the SSRI escitalo-
pram. Data were collected as part of the first Canadian Biomarker
Integration Network in Depression (CAN-BIND-1) study,13 in
which participants with MDD received escitalopram for 8 weeks.
Non-responders to escitalopram were augmented with aripiprazole
for a further 8 weeks, whereas responders continued 8 additional
weeks of escitalopram only. Neuroimaging and clinical data were
collected throughout the 16-week study. The group who received
aripiprazole as an adjunct is the population of interest for this
report. Our primary objective was to identify baseline and week 8
resting-state functional magnetic resonance imaging (fMRI) bio-
markers associated with anhedonia improvement following
adjunct aripiprazole treatment. Over the past several years, fMRI
has been increasingly used to explore predictors of treatment
response in populations with depression (e.g. for treatment with
escitalopram, sertraline and pramipexole);14–17 however, to the
best of our knowledge, this is the first study to explore resting-
state fMRI predictors of anhedonia response to aripiprazole in a
population with MDD.

Method

Clinical and neuroimaging data were obtained from the first
CAN-BIND trial, CAN-BIND-1 (Clinicaltrials.gov identifier:
NCT01655706).13,18 CAN-BIND is a Canada-wide research pro-
gramme that aims to identify biomarkers of antidepressant treat-
ment response.13,18 From August 2013 to December 2016, 211
participants meeting the criteria for MDD, who were experiencing
a current MDE, were recruited from six Canadian sites:
University Health Network (Toronto), Centre for Addiction and
Mental Health (Toronto), McMaster University (Hamilton),
Queen’s University (Kingston), University of Calgary and
University of British Columbia (Vancouver). The authors assert
that all procedures contributing to this work comply with the
ethical standards of the relevant national and institutional commit-
tees on human experimentation and with the Helsinki Declaration
of 1975, as revised in 2008. All procedures involving human patients
were approved by research ethics boards at each study site. This
work was previously published by the first author (S.R.V.) as part
of a Master’s thesis through the Institute of Medical Science,
University of Toronto.19

Participants

Detailed inclusion/exclusion criteria, clinical outcomes and
sample size calculations are described elsewhere.13,18 In summary,
eligible participants must have met criteria for an MDE for
≥3 months (based on DSM-IV-TR criteria, as confirmed by the
Mini-International Neuropsychiatric Interview), were between the
ages of 18 and 60 years, and had been free of psychotropic medica-
tions for at least five half-lives. Major exclusion criteria included
diagnosis of another primary psychiatric disorder or neurological
condition; current psychosis, substance use disorder or high
suicide risk; failure of four or more adequate antidepressant trials;
and previous failure or intolerance to escitalopram and/or aripipra-
zole. All participants provided written informed consent after
receiving a complete description of the study.

Intervention

Study participants received open-label escitalopram (10–20 mg/
day) for 8 weeks, after which escitalopram ‘non-responders’
(defined as <50% reduction in Montgomery–Åsberg Depression
Rating Scale (MADRS) score from start of treatment to week 8)
received adjunct aripiprazole (2–10 mg/day) for an additional 8
weeks. Dosing was at the discretion of the individual clinician.

Primary outcome measures

The primary outcome was anhedonia severity, as measured with the
Dimensional Anhedonia Rating Scale (DARS).4 This 17-item
self-report scale measures four dimensions of anhedonia – desire,
motivation, effort and consummatory pleasure – with lower
scores reflecting greater anhedonia.4 Participants are asked to
choose two or three of their favourite activities/experiences to act
as prompts for each of four categories: pastimes/hobbies, food/
drinks, social activities and sensory experiencing. There were no
limitations on which prompts a participant could choose, and
they were not required to use the same prompts across sessions.
The DARS displays good reliability and divergent validity.4

Improvement in anhedonia was measured as percentage change
in DARS score, with a higher percentage equating to greater
improvement. The DARS was completed by participants at baseline,
week 8 and week 16.

Two analyses were completed with functional neuroimaging
statistical analysis software (methods described below). First,
resting-state fMRI predictors of DARS score change in the
adjunct aripiprazole group were analysed from week 8 (aripiprazole
baseline) to week 16. Second, resting-state fMRI predictors of DARS
score change among the adjunct aripiprazole group were analysed
from baseline to week 16.

Neuroimaging acquisition and processing

Magnetic resonance imaging (MRI) data were collected at baseline
and week 8, using 3.0 T MRI scanners. Each scan lasted 10 min and
participants focused on a fixation cross projected in the MRI
machine during the scan. A whole-brain T2*-sensitive blood oxy-
genation level dependent echo-planar imaging series was used
with the following parameters: 2000 ms repetition time, 30 ms
echo time and voxel dimensions of 4 × 4 × 4 mm. Further details
of the MRI acquisition protocol for this and other CAN-BIND
imaging projects are available elsewhere.20 Neuroimaging data
were preprocessed with the Optimization of Preprocessing
Pipelines for Neuroimaging-fMRI (OPPNI-fMRI) pipeline21,22 via
Analysis of Functional Neuroimaging (AFNI) software (https://
afni.nimh.nih.gov/pub/dist/doc/htmldoc).23,24
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Statistical analysis

Seed-based correlational analysis was employed to examine the rela-
tionship between resting-state functional connectivity (rsFC) of two
regions of interest – NAc and ACC – and change in DARS score.
These regions of interest, or ‘seeds’, were chosen because they are
strongly and consistently implicated in reward processing and
related to anhedonia severity in several previous studies.25–27 For
the standardised functional image of each patient, a region of inter-
est ‘mask’ was applied to extract the BOLD time series. A whole-
brain, seed-based connectivity map was then calculated for each
participant, which shows the strength of rsFC between the region
of interest and all other voxels in the brain. These maps were subse-
quently used in higher-level analyses, applying a mass univariate
approach, to investigate patterns across participants.28 Region of
interest masks were created with the Harvard-Oxford Subcortical
Structural Atlas for NAc29 and the Talairach Atlas for ACC.30–32

To investigate the relationship between rsFC and percentage
change in DARS score, a general linear model (GLM) framework
was applied: the main explanatory variable was change in DARS
score, and age and gender were entered to control for confounding.
To identify voxel clusters where this relationship was statistically
significant, cluster thresholding was used (Z-statistic threshold of
3.1, cluster P-value threshold of 0.05). Several anatomical atlases
were used to identify the Montreal Neurological Institute (MNI)
152 coordinates of the local Z-statistic maximum(s) at each
cluster.29,33–37 This analysis was repeated with MADRS score as
an additional explanatory variable to establish whether significant
findings were independent of depressive severity. The FMRIB
Software Library (FSL) FEAT package was used for this analysis,
which also corrects for multiple comparisons by using nonparamet-
ric permutation inference (FEAT version 6.00 for macOS, FMRIB,
Oxford, UK; see www.fmrib.ox.ac.uk/fsl).28,38

Independent component analysis (ICA) was applied to investi-
gate the relationship between rsFC in the salience network and
change in DARS score. ICA decomposition was performed with a
temporal concatenation approach, via the FSL melodic command
line.39–41 Twenty components were extracted, employing the meth-
odology of Iraji et al, who used resting-state fMRI data collected
from 309 individuals to identify 12 resting-state networks.42 To
investigate the relationship between rsFC in these resting-state net-
works and change in DARS score, a GLM framework was used, and
age and gender were entered to control for confounding. Dual
regression analysis was performed with this GLM matrix, to
compare resting-state network maps across participants.43,44

Using the FSL ‘randomize’ tool, nonparametric permutation infer-
ence with 5000 permutations was completed to correct for multiple
comparisons across individuals.45 The salience network was identi-
fied from the independent components generated, using the map
from Iraji et al for guidance.42 Both t-statistic and P-values for
each voxel were generated, and P-values <0.05 represented salience
network regions where rsFC and change in DARS score were signifi-
cantly correlated. This analysis was repeated with MADRS score as
an additional explanatory variable to establish whether findings
were independent of depressive severity.

All analyses were also completed for participants who received
escitalopram monotherapy for the duration of the study, for com-
parison purposes. These methods and results are presented in
Supplementary Material available at https://doi.org/10.1192/bjo.
2023.588.

Results

Overall, 211 participants were enrolled in the CAN-BIND-1 study
(from August 2013 to December 2016). Non-responders to

escitalopram (n = 95) were eligible to receive adjunct aripiprazole
for an additional 8 weeks; of these participants, 69 had complete
clinical and neuroimaging data to identify baseline neuroimaging
predictors of week 16 response, and 71 participants had complete
data to identify week 8 predictors of week 16 response. There
were no significant differences in demographic or baseline clinical
characteristics between those included and excluded from the sub-
sequent analyses.

There were no differences in demographics or psychiatric
history between escitalopram responders and non-responders,
although non-responders had received a greater number of previous
antidepressant trials than responders (t =−2.67, P < 0.01). Also,
there were no significant differences in baseline MADRS or DARS
scores between the two groups.

Among those receiving adjunct aripiprazole, there was a signifi-
cant improvement in DARS score after 8 weeks of aripiprazole treat-
ment (t =−3.48, P < 0.001). This improvement was independent of
change in MADRS score (Pillai’s Trace: 0.315, P < 0.001).

Demographic and clinical data are presented in Table 1.

Seed-based correlation analysis: rsFC association with
anhedonia change (week 8 to week 16)

There was a positive correlation between change in DARS score
from week 8 to week 16 and week 8 rsFC between the ACC
(which was used as the seed) and the posterior cingulate cortex
(PCC) (P = 0.03), as well as the bilateral ventral-posterior praecu-
neus (P = 0.01) at week 8. Change in DARS score was also nega-
tively correlated with week 8 rsFC between the ACC and right
dorsal-anterior praecuneus (P = 0.03), middle frontal gyrus (left:
P = 0.004; right: P = 0.02) and left superior frontal gyrus (P =
0.004).

Change in DARS score from week 8 to week 16 was also posi-
tively correlated with week 8 rsFC between the NAc (which was

Table 1 Baseline demographics of study population

Variable Study population (N = 95)

Age, years, mean (s.d.) 35.8 (13.2)
Education, years, mean (s.d.) 16.9 (2.1)
Female, % (n) 60% (57)
Employed, % (n) 67% (58)
Never married, % (n) 53% (50)
Ethnicity, % (n)

White 69% (66)
Asian 16% (15)
Latin/Hispanic 4% (4)
Black 1% (1)
Mixed 7% (7)
Other 2% (2)

Age at MDD onset, years, mean (s.d.) 21.9 (11.1)
Number of previous MDEs, mean (s.d.) 2.7 (3.4)
Current MDE duration, months, mean (s.d.) 30.5 (37.6)
Number of previous treatments, mean (s.d.) 0.72 (0.91)
Family history of psychiatric illness, % (n) 75% (71)
Mean MADRS score (s.d.) 30.5 (5.5)
Mean DARS score (s.d.)

Baseline 32.3 (15.1)
Week 8 32.6 (14.0)
Week 16 41.2 (17.8)

Change in DARS score,a mean (s.d.)
Baseline to week 8 1.28 (1.09)
Baseline to week 16 1.62 (1.56)
Week 8 to week 16 1.39 (0.61)

MDD, major depressive disorder; MDE, major depressive episode; MADRS,
Montgomery–Åsberg Depression Rating Scale; DARS, Dimensional Anhedonia Rating
Scale.
a. Expressed as a fraction, final value divided by initial.
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used as the seed) and bilateral ventral-posterior praecuneus (P =
0.001), cerebellum lobule IX (P < 0.001), pons (P = 0.01) and sple-
nium of the corpus collosum (P = 0.03). Change in DARS score
was negatively correlated with week 8 rsFC between the NAc and
left supramarginal gyrus (P = 0.02), parietal operculum (P = 0.02),
middle occipital gyrus (left: P = 0.004; right: P = 0.01), superior par-
ietal gyrus (P < 0.001) and bilateral dorsal-anterior praecuneus (P <
0.001). All results are presented in Table 2, and presented visually in
Fig. 1.

Seed-based correlation analysis: rsFC association with
anhedonia change (week 0 to week 16)

Change in DARS score from baseline to week 16 was positively cor-
related with baseline rsFC between the NAc and the supplementary
motor area (P = 0.001), precentral gyrus (P = 0.001), and anterior
and posterior cingulate cortices (P = 0.001) when controlling for
both age and gender; and age, gender and MADRS score.
Additionally, when controlling for age, gender and MADRS score
(but neither age nor gender alone), change in DARS score was posi-
tively associated with baseline rsFC between the NAc and Heschl’s
gyrus (P = 0.001), planum temporale (P = 0.001), insula (P = 0.001)
and central opercular cortex. All results are presented in Table 3,
and presented visually in Fig. 1.

Independent component analyses

The independent component map representing the salience
network was identified: the greatest regions of activation were
located in the insula, dorsal ACC, amygdala, thalamus and substan-
tia nigra pars compacta/VTA. In both analyses, no significant asso-
ciations were found between change in DARS score and rsFC in

regions of the salience network, when controlling for age and
gender and after correcting for multiple comparisons.

Discussion

Overall, our results demonstrate baseline and week 8 rsFC correla-
tions between anhedonia improvement and adjunct aripiprazole
treatment. Further, there was an improvement in anhedonia with
adjunct aripiprazole, independent of change in depressive severity.
Therefore, aripiprazole may be a promising treatment option for
patients with MDD specifically experiencing anhedonia symptoms.
As far as we are aware, this is the first study to report on the effect-
iveness of aripiprazole in treating anhedonia, and the brain regions
associated with anhedonia improvement, in a cohort of participants
with depression who had not responded to and 8-week trial of SSRI
monotherapy.

Among those who received 8 weeks of escitalopram plus ari-
piprazole, stronger connectivity patterns between the ACC and
PCC and ventral-posterior praecuneus were predictive of a
decrease in anhedonia symptoms after 8 weeks of treatment.
The PCC and praecuneus are two of the major regions implicated
in the default mode network (DMN).46 There is evidence to
support the presence of distinct anterior and posterior subregions
within the praecuneus, each with different functional activation
patterns. The posterior praecuneus plays a role in memory
retrieval.47 The exact role of the PCC is not fully understood,
but the majority of evidence suggests it is important for internally
directed thought and cognitive control.48 Considering the dorsal
ACC is a key node of the salience network (i.e. the brain network
most consistently implicated in reward processing), these

Table 2 MNI152 coordinates of Z-maxima for association between DARS score change and rsFC, week 8 to week 16a

Cluster Number of voxels Z-maxima MNI152 coordinates (x, y, z) Brain regions P-value

Positive correlation, rsFC in ACC

1 17 3.80 (−2, −26, 28), (−10, −34, 28) Posterior cingulate gyrus 0.029
2 23 3.80 (−6, −62, 36), (−14, −58, 28) Left praecuneus 0.007

3.98 (6, −74, 36) Right praecuneus

Negative correlation, rsFC in ACC

1 17 4.30 (10, −66, 52), (6, −54, 56) Right praecuneus 0.029
2 18 4.41 (30, 14, 48) Right MFG 0.022
3 25 3.92 (−22, 2, 72), (−14, 6, 56) Left SFG 0.004

4.25 (−30, 10, 60) Left MFG

Positive correlation, rsFC in NAc

1 16 4.62 (18, −42, 28) Splenium of corpus collosum 0.027
2 19 3.40 (−14, −18, −28) Brainstem 0.012

4.20 (−2, −26, −28), (10, −30, −28) Pons
3 28 4.34 (2, −70, 40) Praecuneus 0.001
4 35 3.88 (6, −42, −40), (18, −42, −44), (2, −54, −48) Cerebellum lobule IX <0.001

4.03 (−2, −50, −56) Brain-stem

Negative correlation, rsFC in NAc

1 17 3.64 (−42, −42, 32) Left SMG 0.021
3.66 (−46, −46, 24) Left SMG
3.97 (−42, −34, 24) Parietal operculum

2 19 4.69 (34, −78, 8) Right MOG 0.012
3 25 3.31 (−38, −74, 24) Left MOG 0.003

4.65 (−38, −74, 8) Occipital cortex
4 53 3.74 (−22, −66, 48) Superior parietal gyrus <0.001

4.28 (−18, −66, 60), (−18, −50, 68), (−6, −58, 64), (−6, −50, 72) Left praecuneus
4.19 (6, −54, 68) Right praecuneus

MNI, Montreal Neurological Institute; DARS, Dimensional Anhedonia Rating Scale; rsFC, resting-state functional connectivity; ACC, anterior cingulate cortex; MFG, middle frontal gyrus; SFG,
superior frontal gyrus; NAc, nucleus accumbens; SMG, supramarginal gyrus; MOG, middle occipital gyrus.
a. Controlled for Montgomery–Åsberg Depression Rating Scale score, gender and age.
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findings suggest that a stronger connection between the DMN
and salience network may predict anhedonia improvement
after aripiprazole treatment. Conversely, a reduced connectivity
between the ACC and the anterior praecuneus was associated
with improvement in anhedonia. The anterior praecuneus,
which is part of the DMN, is important for self-centred mental
imagery.47 It has been previously suggested in Menon’s unifying
triple network model that the relationship between the salience
network and DMN is essential for attending to external stimuli,
including rewarding stimuli, as the salience network suppresses
DMN activity.12,49 The connectivity patterns between the sali-
ence network and DMN found in our current study, with both
positive and negative correlations at specific regions of the
DMN, support these previous findings and suggest a complex
interplay between these two networks in reward processing.

Increased connectivity between the NAc and ventral-posterior
praecuneus predicted anhedonia improvement. As previously
stated, the posterior region of the praecuneus is involved in
memory retrieval.47 Previous studies have found that effective pro-
cessing and retrieval of reward-related memories are required for
reward processing.50 Additionally, in the current analysis, increased
connectivity between the NAc and the pons, cerebellum lobule IX

and the splenium of the corpus collosum correlated with anhedonia
response (although the corpus collosum is not generally explored by
fMRI, as it is white matter, there is emerging evidence that fMRI
findings in white matter are detectable and reliable51). These three
brain regions are not classically implicated in anhedonia or
reward processing, but they are necessary for the integration, pro-
cessing and relay of neural signals in the brain. The raphe nuclei,
where most serotonergic neurons originate, is located in the pons.
Serotonin is involved in modulating dopamine activity in the
NAc, and therefore plays a role in regulating reward response in
the NAc.52,53 Lobule IX of the cerebellum is a ‘non-motor’ region
of the cerebellum, implicated in emotional processing.54

Increasing evidence suggests the cerebellum may be part of the
DMN,55 further supporting the theory that connectivity patterns
between reward regions and the DMN is predictive of anhedonia
improvement after aripiprazole. However, the cerebellum is not typ-
ically studied for its role in reward processing, so data supporting
this finding are limited.

This study provides support for the role of dopamine in both
reward-related processing and anhedonia treatment. To our knowl-
edge, there have been no human studies assessing the effect of ari-
piprazole on anhedonia in a population with MDD. However, in
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Fig. 1 Significant relationships between change in Dimensional Anhedonia Rating Scale (DARS) score and resting-state functional connectivity
(rsFC), week 8 to week 16. (a) There were significant positive relationships between change in DARS score and rsFC between the anterior
cingulate cortex and posterior cingulate cortex (A), left praecuneus (B) and right praecuneus (C). (b) There were significant positive relationships
between change in DARS score and rsFC between the between the anterior cingulate cortex and superior frontal gyrus (A), middle frontal gyrus
(B) and right praecuneus (C). (c) There were significant positive relationships between change in DARS score and rsFC between the nucleus
accumbens and praecuneus (A), cerebellum lobule IX (B), pons (C) and splenium of corpus collosum (D). (d) There were significant positive
relationships between change in DARS score and rsFC between the nucleus accumbens and superior parietal gyrus (A), praecuneus (B), middle
occipital gyrus (C), parietal operculum (D) and supramarginal gyrus (E).
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preclinical studies, aripiprazole had favourable effects on animal
models of anhedonia.56,57 Further, favourable effects of aripiprazole
on anhedonia symptoms have also been reported in bipolar depres-
sion and schizophrenia.58,59 Aripiprazole likely has anti-anhedonia
effects directly via partial D2 receptor agonism, and indirectly via
5-HT2A serotonin receptor antagonism,59 which increases dopa-
minergic activity by reducing blockade of dopamine receptors.60

In addition, aripiprazole is shown to increased dopaminergic
activity in brain regions specifically implicated in reward processing,
most notably the mesolimbic pathway.61 Aripiprazole’s effect on
dopamine is dose-dependent, with higher doses resulting in greater
D2 receptor occupancy; aripiprazole occupies 74–85% of D2 recep-
tors at doses of 2–10 mg (the dose range used in the current study).62

Interestingly, there was an inverse relationship between rsFC
among key reward regions and decrease in anhedonia; that is,
reduced connectivity at baseline between specific reward regions
was associated with anhedonia improvement post-aripiprazole
treatment. This may suggest that aripiprazole is more likely to act
favourably on the subgroup of individuals with anhedonic
brain-connectivity patterns, demonstrating that aripiprazole, and
potentially other dopamine modulator agents, may be particularly
effective in addressing reward-related deficits.

There were no significant findings in the ICA of the salience
network, demonstrating no role of functional connectivity within
the salience network in predicting anhedonia improvement.
However, our current findings suggest that connectivity between
regions of the salience network and other brain regions may
predict anhedonia improvement after antidepressant treatment,
considering our finding that that functional connectivity between
the ACC (a major hub of the salience network) and regions of
DMN was significantly associated with anhedonia improvement.
This is supported by multiple other antidepressant biomarker
studies reporting that connectivity between nodes of different
brain networks is predictive of antidepressant response, but not
connectivity within a network itself (reviewed by Dunlop et al63).
However, the current study may be underpowered to detect rela-
tionships within the salience network, as ICA is data-driven,
rather than model-driven, and therefore may not be suitable to
detect more subtle associations in studies with smaller sample sizes.

In conclusion, eight weeks of aripiprazole, adjunct to escitalo-
pram, was associated with improved anhedonia symptoms.
Several distinct rsFC patterns were predictive of anhedonia
improvement after treatment with adjunct aripiprazole. Decreased
functional connectivity between key reward regions was associated
with anhedonia improvement, suggesting that aripiprazole may be
an effective treatment for individuals experiencing reward-related
deficits. Future studies are required to replicate the present findings
in larger placebo-controlled studies, and explore their

generalisability with other agents with partial D2 agonism and/or
5HT2A antagonism.

Limitations

Because only escitalopram non-responders received aripiprazole
treatment, all participants in the aripiprazole treatment group
were ‘treatment-resistant’ to at least one antidepressant. However,
as aripiprazole is only approved as adjunct treatment for depression,
when used in combination with a first-line antidepressant, this
study cohort reflects a clinical group of individuals with depression
who may be prescribed aripiprazole in clinical practice. Overall, the
study population was moderately depressed and moderately anhe-
donic, and therefore results may not be applicable to individuals
with more severe depression or anhedonia. Further, as presence of
anhedonia was not an inclusion criterion, individuals without clin-
ically significant anhedonia at baseline were part of the study cohort.
This study was limited by the sample size, which may have been too
small to detect associations, particularly in the ICA. Further, there
was no placebo group to compare our findings against, and there-
fore we cannot make definitive conclusions about efficacy of aripi-
prazole in anhedonia or the specificity of resting-state biomarkers.
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Table 3 MNI152 coordinates of Z-maxima for association between DARS score change and rsFC, baseline to week 16a

Cluster Number of voxels Z-maxima MNI152 coordinates (x, y, z) Brain regions P-value

Positive correlation, rsFC in NAc

1 89 4.48 (10, −12, 46) SMA 0.001
4.04 (10, −16, 46) Precentral gyrus
3.98 (8, −8, 42) ACC
3.47 (12, −16, 50) Precentral gyrus/unclassified White matter

2 88 3.92 (−38, −28, 16) Heschl’s gyrus 0.001
3.77 (−40, −28, 10) Planum temporale
3.58 (−40, −32, 10) Planum temporale
3.37 (−32, −28, 16) Insula
3.18 (−46, 20, 14) Central opercular cortex

MNI, Montreal Neurological Institute; DARS, Dimensional Anhedonia Rating Scale; rsFC, resting-state functional connectivity; NAc, nucleus accumbens; SMA, supplementary motor area;
ACC, anterior cingulate cortex.
a. Controlled for Montgomery–Åsberg Depression Rating Scale, gender and age.
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