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Abstract

Several proof-assistants rely on the very formal basis of Pure Type Systems (PTS) as their

foundations. We are concerned with the issues involved in the development of large proofs in

these provers such as namespace management, development of reusable proof libraries and

separate verification. Although implementations offer many features to address them, few

theoretical foundations have been laid for them up to now. This is a problem as features

dealing with modularity may have harmful, unsuspected effects on the reliability or usability

of an implementation.

In this paper, we propose an extension of Pure Type Systems with a module system,MC2,

adapted from SML-like module systems for programming languages. This system gives a

theoretical framework addressing the issues mentioned above in a quite uniform way. It is

intended to be a theoretical foundation for the module systems of proof-assistants such as

Coq or Agda. We show how reliability and usability can be formalized as metatheoretical

properties and prove they hold for MC2.

1 Introduction

Bodies of formal mathematics developed in proof assistants are larger and larger:

thus during the last decade, the size of developments in the proof assistant Coq

grew by an order of magnitude (from about ten thousands lines long to about a

hundred thousands).

As the size of their formal developments grows, users need many features for

structuring them:

1. The proof assistant should have a notion of theory, facilitating the development

of proof libraries.

2. It should be possible to verify a given development without rechecking the

libraries it depends on. Moreover, in order to help team work, it should be

possible to check this development even if the libraries it depends on have not

been written yet — only their interfaces should be needed.

3. It should support a notion of parameterized theory. For instance, one should

be able to develop the theory of (abstract) groups and instantiate it on the set

of integers.
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4. It should provide some help for finding one’s way in existing libraries. For

instance, during the course of an interactive proof, the proof assistant should

be able to list all lemmas whose conclusions match the current goal. In a

tactic-based prover, it should list the applicable tactics.

5. It should offer some theory reasoning support. For instance, when developing

the ring theory, one would like to teach the proof assistant how to reduce

an expression involving additions and multiplications; when dealing with an

order, the proof assistant should be instructed to do transitivity steps by itself,

etc.

Very roughly, we can classify these features into two categories:

Language support Features needed for giving new definitions or stating new theor-

ems, in other words, features that crucially depend of some language support:

proof libraries, parameterized theory, and ability to verify developments separately.

Proof support Features that helps proving theorems but are not needed for stating

them and structuring them into theories. Theory reasoning and help fall in this

category. Notice that proof support is often build upon some language support.

We are interested in the soundness and conservativity issues these features raise:

can we ensure modularity features do not lead to inconsistencies? Do they make

more theorem provable or do they just help proving them more easily?

Answering this question is not as easy as one might think for several reasons:

• Proof assistants have developed numerous features for supporting large devel-

opments.

• Modularity constructs are intrinsically subtle. For instance, although Moscow

ML’s modules are based on a sound system (Russo, 1998), the minor extensions

present in the implementation render it unsound (Dreyer, 2002; Dreyer et al.,

2002).

1.1 Scope and contribution of this paper

The aim of this article is to bring some insight to these modularity issues. As we are

rather concerned with the logical issues modularity involves, we restrict ourselves to

the language support for the following reasons:

• It is the most fundamental layer as proof support is generally build upon it.

• Few results exists about soundness issues for the language support.

• Although proof-support certainly raises lots of usability questions, it is less

problematic with respect to logical soundness: in tactic based proof assistants

all tactics are obtained by composing sound elementary tactics, and in other

assistants proving the validity of a given decision procedure with respect to a

given theory is quite a well-known issue.

The context of our study is type-theory, more precisely Pure Type Systems (Bar-

endregt, 1993), initially introduced by Terlouw and Berardi. These systems are

well-suited for expressing specifications and proofs and they are the basis of several

proof assistants (Coq, n.d.; Lego, n.d.; Hallgren, n.d.; Twelf, n.d.).
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Structuring large developments has been studied in programming languages for

a long time. Therefore, the fruitful Curry-Howard isomorphism between functional

programming languages and proof languages suggests that we look at the way

programming languages structure large developments. The most powerful devices

for structuring large programs are module systems — among which SML-like

systems are the most powerful — and object-oriented languages. We chose to deal

with module systems since they are much better understood theoretically than object-

oriented languages. Moreover, object-oriented languages are mostly imperative and

it is unclear yet how well objects can fit in the functional programming paradigm.

So, we define an SML-like kernel module system, called MC2, suitable for proof

development. As our emphasis is on modules, and not any specific proof language,

we define it over the generic framework of Pure Type Systems.

We believe our work enjoys the following original points:

• We formalize, as mathematical properties, issues related to the development

of large proofs such as independence with respect to the implementation,

horizontal compatibility, upward compatibility, and composability. Other proof

systems address some of these, these issues are rarely explicitly stated and even

less formalized.

• We present a module calculus, MC2, for which we proved these properties

hold.

• We proved the subject-reduction property, the Church-Rosser property, strong

normalization — which implies its logical consistency. As far as we know,

most of the other works on modularity here are formally defined, and some

theoretical results are claimed and proved for some of them, but none has a

proof of consistency (except Pollack’s records, see section 2.2.3).

• These properties let us prove thatMC2 is conservative: in other words, it does

not let you prove more theorems — but is might let you prove them more

easily. As far as we know, only one other work has a similar result (Cardelli,

1997) but in the case of a module system without parameterized modules.

MC2 is a step towards a theoretical foundation for the module system of

Agda (Coquand, 2000) and directly inspired the recent module system of Coq.

In the remainder of this section, we describe three features MC2 accounts for.

1.1.1 Proof libraries

An highly expectable feature when developing large proofs is a way to have proof

libraries. One could expect to make a particular proof mostly by getting the right

proof components off-the-shelves.

However, this raises the issue of compatibility of proof components one with each

other, which is not trivial: given any two (correct) libraries can you guarantee that

they can both be loaded in the same proof development? In the current version of

Coq, the answer is no1. In the following, we call this issue horizontal compatibility.2

1 See (Asperti, 1999) for an example of problem.
2 This issue is in practice well known to LATEX users: conflicting LATEX packages are part of their daily

nightmares.
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A particular horizontal compatibility issue is that of namespace management.

Indeed, it is often difficult to find a new meaningful name for each theorem. If two

proof libraries define theorems with the same name, how does the proof assistant

react?

Moreover, one would like to make proofs robust with respect to changes in the

proof libraries they use. If A is a proof library used by B, can we guarantee that once

the provider of A releases a new version of it (in order to provide more features for

instance) the proofs of B do not break? We call this issue upward compatibility.

More generally, one can wonder whether these issues can be formally stated

and whether one can find some system for managing proof libraries that provably

address them.

1.1.2 Parameterized Theories

Users would often like to parameterize a whole theory by some abstract mathematical

structure and instantiate it on an actual realization of this structure. For instance,

when defining and proving sorting algorithms, it is very convenient to have the

whole theory parameterized with a set A, a function ord : A → A → bool, and

axioms stating that ord is reflexive, antisymmetric, transitive, total and decidable.

Then, one would like to be able to instantiate this theory over the set of integers

equipped with the usual ordering and get the usual sorting functions over list of

integers and theorems stating that these functions indeed sort their arguments.

1.1.3 Interfaces

We would like to define a notion of interface of a development. Such a notion is

desirable for three reasons:

Conceptual issue It would provide a convenient way to describe what is proved in

a given proof development. If Alice plans to request Bob to write a proof library

she needs, an interface is a good unambiguous formal basis for making a deal.

Separate development Moreover, if Alice’s proof assistant understand interfaces, she

can begin to develop her own proof while Bob is still implementing the missing

library.

Independence with respect to the implementation Finally, interfaces make proofs

more robust with respect to changes in the implementations of the libraries

they use. For instance, if Alice and Bob agreed on some interface, Bob is free to

change anything he wants in his development as long as it still implements the

interface. The compliance of Bob’s library to the interface should be checked by

the proof assistant at the time Bob checks his library, not at the time it is used

by Alice. Moreover, this compliance should ensure that the whole development is

still correct.

1.2 Plan

Our plan is as follows. In section 2, we present related works and say how they

compare to MC2. In section 3, we present MC2 through examples developed in
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our prototype implementation, oeuf . In section 4, we give the grammar of MC2

and its typing rules. Then in section 5, we explain how the expected properties

of MC2 can be formalized as metatheoretical statements about MC2. Moreover,

we sketch the proof method we used to prove them in (Courant, 1999) and give

a sound and complete type inference algorithm. In section 6 we describe how the

implementation was done. We draw perspectives for future work in section 7 and

we make concluding remarks in section 8.

2 Related works

We now present existing approaches to modular proof development.

2.1 User-interaction oriented

2.1.1 IMPS

The Interactive Mathematical Proof System (Farmer et al., 1995) is based on salient

characteristics of the actual mathematician practice (Farmer et al., 1996). This system

uses a logic based on higher-logic with partial objects. It is by essence interactive: the

focus is not on a language for describing theories, but on the interactive commands

helping to build them and instanciating them.

IMPS promotes the use of little theories (Farmer et al., 1992) in a sense very closed

to the one used by mathematicians when speaking about set theory, group theory,

etc. and reminiscent of Bourbaki’s work (Bourbaki, 1970). In IMPS, a structure is

a tuple of terms enjoying some properties. Application of a theory to a structure is

done by giving it the tuple of values constituting the structure. This leads to proof

obligations (the properties the tuple must enjoy) that IMPS solves automatically or

requests the user to prove interactively.

IMPS helps managing large theories by guiding the user in the course of a proof:

when she wants to apply a lemma, IMPS presents her the list of applicable lemmas

rather than require her to know its exact name.

A very original characteristic of IMPS is its support for theory reasoning: when

developing a theory the user can define tactics, called macetes, which can be local

to the theory being defined or which can be transported to structures the theory is

instanciated on. Macetes are defined in a quite limited language. They are therefore

mostly used for simplifying expressions.

It would be interesting to see how the notion of macetes can be added to MC2.

However, since MC2 and IMPS use quite different framework (for instance, the

notion of proof obligations generated by theory applications in IMPS does not fit

well in PTS-based proof-assistants), further work is needed. For instance, we would

have to add them from the user-interaction or language point of view: do we want

macetes to be managed by an interface above MC2 which would use the available

macetes to generate the proof of some subgoals or to be part of MC2 theoretical

framework and metatheory:

• Even in the first case, macetes have to be part of theories. Could they be

represented as PTS terms and what would be a suitable representation?
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Otherwise, could they be added to MC2 such that the conservativity result

we prove in Section 5.2 trivially still holds? (What we are thinking of here

would be a kind of structured comments that could be used by an external

interface but would have no effect on other constructs ofMC2.) In both cases,

how would the interface access representation of macetes inMC2 for applying

them?

• Having general macetes in MC2 would be more satisfying from a theoretical

point of view. However, it would be more difficult since we would have to

internalize in MC2 the notion of tactics. Unfortunately, the metatheoretical

status of tactics in type theory is not clear yet, even without modules. Some

work by Jacek Chrząszcz is in progress to extendMC2 with rewriting though.

The large body of mathematics formalized in IMPS raised interesting issues about

intertheory reasoning (Farmer, 2000). Some of these issues are quite easily dealt with

in MC2: for instance, extending in place a theory with definitions (a parameterized

module inMC2) is just a matter of adding a new definition in the body of a module

and since MC2 admits subtyping, this addition is correct. Conversely, some issues

that are easily dealt with in IMPS might be difficult to handle in MC2. Consider

the case where one user proves some theorem A in a theory T as follows: first she

proves a lemma L in T , then she proves a theorem B in a theory U using L via an

interpretation from T to U and finally, she proves A using B via an interpretation

from U to T . IMPS allows her to store the theorem A with the theory T whereas in

MC2 one would have first to define a parameterized module T1 that would provide

L, then a parameterized module U that would provide B then another parameterized

module T2 that would provide A: one would need two different modules T1

and T2.

The point here is that Farmer’s intertheory infrastructure and MC2 use very

different ways to guarantee the consistency of theories:

• Farmer’s infrastructure, in the interactive spirit of IMPS, let the user build

a valid network of theories from another one via some operations that

guarantee the preservation of consistency, that is, it relies on the history

of the development of the network.

• In MC2, the proof-checker is given a network of theories that has to be

checked for consistency — without any information about the history of its

construction. In order to prevent any circularity, mutually dependent modules

are forbidden: the dependency graph of modules must be acyclic. Acyclicity

is ensured via lexical scoping: a given module can only use previously defined

modules.

We can note however that the lack of historical information does not imply that

the validity of a network with mutually dependent theories cannot be checked, but

it seems to make it more difficult. Whether a module language such as MC2 could

admit such a form of mutual dependency between modules while still enjoying

separate checking is an open question. Although there is an interest in recursive

and mutually defined modules in programming languages (Flatt & Felleisen, 1998;
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Crary et al., 1999; Hirschowitz & Leroy, 2002), we are no aware of any work on

such kind of mutually dependent modules for proofs.

2.1.2 PVS

PVS provides theories similar to Modula-2 style modules (Shankar et al., 1993; Owre

et al., 1999; Kammüller, 1996). These theories have been formally defined (Owre &

Shankar, 1997), but not formally justified.

PVS allow the definition of parameterized theories. Like for IMPS, the application

of a theory to a structure leads to proof obligations that PVS solves or requests the

user to prove interactively.

2.2 Language oriented

2.2.1 Isabelle

Kammüller, Wenzel and Paulson have introduced in Isabelle an interesting feature

called locales (Kammüller et al., 1999).

This feature lets the user define some kind of sets of notations, called proof

contexts, containing some constants, axioms and definitions. With these contexts,

the user can:

• Open a context. This operation introduces the constants, axioms, definitions

and already proved theorem the given locale contains. Isabelle then add the

subsequently proved theorems to this locale.

• Export a theorem. This quantifies the proved theorem over the constants of

the locale so that it can be instantiated individually at a later time.

• Close a context in order to stop adding results to some context.

Moreover, a locale can be built by augmentation of another locale and several

locales can be opened at once (actually there is a stack of currently opened locales).

These locales seem to be a very convenient feature for the user, as they allow her

to tell only once the hypothesis she needs in some development. Moreover, a locale

that has been closed at some point of a development can later be opened again.

Locales andMC2 both address the issue of providing a good input language, but

very differently:

• Locales in Isabelle are rather concerned with the user (input and output)

syntax, that is with providing the user efficient ways to instantiate previously

defined theorems easily and providing good syntactic notations. They succeed

in this respect. In MC2, this problem is not addressed for the moment.

• MC2 addresses the issue of theory parameterization and instantiation whereas

locales do not. Instead, Kammüller uses dependent types in addition to

locales (Kammüller, 2000).

• From the metatheoretical point of view, MC2 is a full language needing a

metatheoretical justification. On the contrary, locales can be seen just as a

kind of evolved macro system, whose semantics is given by translation to a

well-known sound language.
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In factMC2 and locales are quite orthogonal concepts, and locales could probably

added on top of MC2. It remains to see however how module instantiation and

locales interact. Especially, one may expect problems similar to those introduced by

the include construct (see Section 3.5.2).

Isabelle has another device for modular reasoning: axiomatic type classes (Wenzel,

2001), similar to Haskell type classes. These type classes exhibit roughly the same

advantages and drawbacks as their Haskell counterpart:

• Using them, the proof developer can define very lightweight notations. She

can use the same notation over different structures and even tell Isabelle that

some definitions can be lifted from some structure to another. For instance,

one can have “+” denote addition over integers and have this definition lifted

to, say, cartesian products and functions; thus if we have f : x �→ (1, 2 × x)

and g : x �→ (5×x, 2) then f+g denotes the function x �→ (1+5×x, 2×x+2).

• In a given development it is difficult to consider a given type has two different

structures. Indeed, given a type and a type class, there is at most one way the

type can belong to the class. This means for instance that a given type can

be considered a monoid only for one particular monoid structure over this

type. In other words, if you want to consider the additive and multiplicative

monoid of a given ring, you have to define two distinct type classes. Similarly,

you can define the product of two orderings to be the lexicographic ordering

or the conjunction of the orderings, but you can not give both definitions and

then use one in some part of your development and the other in another part.

These drawbacks mean type classes are incompatible with the horizontal compat-

ibility we mentioned Section 1.1.1. The problem is type classes instance declarations

have a non-local effect as they add a property (having some structure) to a previously

introduced type. In other words, the binding from a given type to the class it belongs

to is not lexically scoped. Designing type classes that would have better properties

with respect to modularity seems quite challenging.

2.2.2 Betarte’s dependently typed records

Gustavo Betarte and Alvaro Tasistro have proposed to add dependently typed

records to type theory in order to formalize some body of abstract algebra (Betarte,

2000b; Betarte, 2000a; Betarte, 1998). One advantage of their system over ours is

that records are first-class expressions and functors are ordinary functions working

over record types.

However, we believe the lack of manifest fields for their record types has serious

drawbacks: the lack of sharing in the language forces the user to develop theories

using sharing by parameterization, also known as Pebble-style sharing. Although in

the case of proof languages the issue Pebble-style sharing versus ML-style sharing is

too young to be clear-cut, in the case of programming languages the debate is over:

it is folklore that SML-style sharing is essential for modularity. The arguments given

for programming languages seem to apply as well for proof languages: the problem

with Pebble-style sharing is you have to know in advance what you will share, which

is non-modular. For instance with Pebble-style sharing, when you define partial
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orders you have to parameterize them by their carrier set if you want to be able to

define the operation “intersection of partial orders”; when you define vector spaces,

you have to parameterize them by their field, if you want to define the product

of vector spaces, where their field might have to be parameterized by its base set

depending on the operation you want to define on it. Pollack presents convincing

evidences that ML-style sharing is more adapted for proof languages (Pollack, 2000).

An advantage of these records over MC2 is their first-class status. On the other

hand, this status renders their metatheoretical study more difficult. Although Betarte

gives some informal arguments for justifying the rules he proposes (Betarte, 1998),

we are not aware of any proof of the logical consistency of his system.

Unfortunately, Betarte’s dependently typed records are not expressive enough

for being used as module interfaces, as we show Section 3.2.1. Thus they do not

address issues such as separate compilation, horizontal compatibility or upward

compatibility.

2.2.3 Pollack records with manifest fields

To our knowledge, Randy Pollack’s dependently typed records (Pollack, 2000) are

the closest work to ours: as we do, he promotes manifest fields as a very useful

feature for structuring mathematical developments. However, his aim is not to define

a module system for proof assistants. Rather he shows that constructs similar to

ours can be coded inside the current implementation of Coq (Barras et al., 1999)

thanks to sigma types and coercive subtyping. One advantage of this approach is

that the the underlying type system of Coq is already known to be consistent and

implementing features mentioned in Section 3.5.2 such as signature abbreviations or

the where type construct is quite straightforward.

However, this approach has several drawbacks:

• The coding relies on coercive subtyping whose theoretical foundations are

not well understood yet, despite some recent progress in this area (Jones

et al., 1998). Although the semantics of target language of the coding (Coq’s

Calculus of Inductive Constructions with universes) is well-understood from a

metatheoretical point of view, the reduction semantics of the source language

is less clear — the Church-Rosser property being especially problematic.

• As Pollack’s structures are built over a quite large stack of layers (the Calculus

of Constructions, Coq records, coercive subtyping), their type-checking is quite

costly.

• It might be difficult to solve user interface issues in a satisfactory way: it

would be better if the internal layers were hidden to users, but this might be

quite difficult to achieve. By now, the implemented system can only be used

by type theory experts.

2.3 Building on the Curry-Howard Isomorphism

2.3.1 Elf

Robert Harper and Franck Pfenning have proposed an SML-like module system for

Elf, a logic programming language based on the LF logical framework in (Harper
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& Pfenning, 1992; Harper & Pfenning, 1998). However, as they wanted to ensure

this adaptation was safe, Harper and Pfenning chose to be quite conservative: they

decided to keep only the part of the SML module system whose semantics was

well-understood at this time. They hence left out a significant fraction of the power

of the SML module system. For instance, the sharing equations of SML, similar to

the manifest fields feature, had to be ruled out.

This is quite unfortunate from our point of view as manifest fields are a key

feature for building parameterized proofs (Pollack, 2000). Actually, adding sharing

equations is the first future work mentioned by Harper and Pfenning. We think

MC2 is an interesting foundation for adding such a feature.

2.3.2 Related issues in programming languages

Cayenne and Agda Lennart Augustsson’s Cayenne language (Augustsson, 1999;

Augustsson, 1998) is an Haskell-like functional programming language with a

powerful type system based on dependent types. Cayenne introduces records and

record types similar to translucent sums. Moreover, Cayenne provides a hierarchical

namespace, similar to the one of Java packages. As Cayenne has dependent types

and unrestricted recursion, type-checking of Cayenne is undecidable but Augustsson

claims this is not a problem in practice. Although presented as a functional language,

Cayenne is at the border between functional programming and proof systems:

actually, the proof system Agda (Coquand, 2000; Coquand & Coquand, 1999) is an

adaptation of Cayenne for type theory.

A significant difference of Cayenne and MC2 is Cayenne has first-class modules

whereas MC2 separates the module level with the base level syntactically. This

sacrifice in terms of expressiveness let us manage the metatheory of modules in

MC2 quite independently of PTS terms.

On the contrary, proving metatheoretical results about Agda’s or Cayenne first-

class modules is more intricate.

Subject-reduction and Church-Rosser property have been conjectured for Agda

and Cayenne but no proof has been given yet.

MC2 and our metatheoretical work about it (Courant, 1999; Courant, 2002b) are

a first step towards a formal justification of these systems, and give hints about the

potential problems for proving these conjectures:

• The Church-Rosser property does not hold on untyped term in MC2, in a

more critical way than in Church-style lambda-calculi with η-reduction (see

Appendix D). If there is any reduction at the type level (and there are in

Cayenne and Agda), this means subject-reduction and the Church-Rosser

property have to be proved simultaneously.

• The easiest way such a proof can be done seems to be together with strong

normalization, as Goguen did in his thesis for UTT (Goguen, 1994). We

showed recently that this approach can be applied to singleton types (Courant,

2002b), which are a simpler formalism exhibiting the specificities of reductions

within module systems (Stone & Harper, 2000). This is the most promising

way for attacking the metatheory of Agda.
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• The case of Cayenne is more problematic since it is known not to normalize.

Goguen’s proof technique relies on the notion of semantic objects, defined as

strongly normalizing terms having a unique normal form. In order to adapt

it to Cayenne, one would have to change the definition of semantic objects to

some (possibly infinite) execution trace for terms. Whether the Church-Rosser

and subject-reduction properties can be proved in this framework is an open

question.

Syntactic approaches Our work has been much inspired by SML-like module

systems (MacQueen, 1984; Tofte, 1996). Especially important to us were Harper

and Lillibridge’s theoretical work on translucent sums (Harper & Lillibridge, 1994;

Lillibridge, 1997) and Leroy’s on manifest types (Leroy, 1994; Leroy, 1995). Their

works both present variants of the SML module system which are more elegant

and have better metatheoretical properties than the initial SML module system. For

instance they allow true separate compilation since only the knowledge of the type

of a module is needed in order to typecheck modules using it.

We first tried to adapt these systems to proof systems. When we tried to prove they

were conservative over Pure Type Systems, we wanted to use the subject-reduction

property. This property is critical for reasoning about a module system. Without it,

there is little hope one can give a little-step reduction semantics for modules.

Unfortunately, existing systems did not enjoy the subject-reduction property, nor

even the substitution property:

• Leroy’s systems, accesses to modules fields are restricted to a syntactic category

called module paths which is not stable through substitution.

• The syntax of Harper and Lillibridge’s terms is stable through substitution but

modules appearing in types and type operators (called constructors in (Harper

& Lillibridge, 1994)) are also restricted, to a syntactic category called values.

To see this, consider an environment Γ of the form ∆, x : M, where M denotes the

signature sig b:Set;y:b; end. In MC2, the judgment Γ � x.y : x.b holds by the

rules SPEC/VAR and SPEC/SELECT. The corresponding judgments in Leroy’s as

well as in Harper and Lillibridge’s systems also hold. Now consider a module m of

type M in ∆. The judgment ∆ � m.y : m.b still holds in MC2, whereas it holds in

Leroy’s and Harper and Lillibridge’s systems only under some conditions:

• In Leroy’s system, this judgment can be stated only if m is a module path

(Leroy’s module paths are given by the grammar p ::= v|p(p)|p.w where w

denotes a field name and v denotes a variable). Otherwise, m.y and m.b are

syntactically incorrect.

• Similarly, in Harper and Lillibridge’s system, this judgment can be stated

only if m is a value. Otherwise m.b is syntactically incorrect, although m.y

is syntactically correct. One may wonder whether m.y can be typed, but in

some cases the answer is negative, as shown in (Harper & Lillibridge, 1994),

Section 3.1. Indeed, in Harper and Lillibridge’s system, the point is one has to

remove the dependency from the declaration of y in M to b before one can type

m.y. The idea is to remark first that m has type sig b:Set := m.b;y:b; end,
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thanks to the VALUE-O rule, similar to our self rule, and then to use subtyping

to show that this latter signature is a subtype of sig b:Set := m.b;y:m.b; end

in which no dependency from y to b appears. Unfortunately, the VALUE-O

rule is limited to the case m is a value, hence it does not always apply.

• By contrast inMC2, there is no syntactic restriction on field selection: m.b and

m.y are syntactically correct for any syntactically correct module expression.

The typing rule SPEC/SELECT applies to all module expressions, without any

restriction.

This lack of substitution property can immediately be translated to a counter-

example for subject-reduction: one just has to consider the redex

((functor x:M → struct z:=x.y; end) m)

with m of type M not fulfilling Leroy’s nor Harper and Lillibridge’s conditions. This

redex is well-typed but its reduced form struct z:=m.y; end is incorrect since m.y

is not typable.

We analyze this lack of substitution property as follows: Harper and Lillibridge

as well as Leroy are interested in giving a type system for a programming language.

Since type-checking needs to compare types, if expressions of the programming

language appear in types, one has to test equality of code, which blurs the phase

distinction (Harper et al., 1990) and is undecidable in usual programming languages.

Therefore they put some syntactic restrictions on accesses to module fields, thus

losing subject-reduction. As we have shown (Courant, 1997), the alternative choice

could be made.

In proof systems based on type theory, testing equality of expressions is decidable.

Therefore, removing Leroy’s and Harper and Lillibrige’s restrictions causes no harm.

Moreover, althoughMC2 has much more satisfying metatheoretical properties with

respect to reduction, the complexity and the number of its rules is quite similar to

the Leroy’s and Harper and Lillibridge’s systems.

One interesting question is whether one can have the advantages of both

approaches in the case of programming languages: it would be interesting to try

to give a system that would have no restriction on accesses to module fields

and would use an approximation of the equality test for code. Since β-equivalent

expressions must be considered equal for having subject-reduction, this test would be

an optimistic approximation of the equality: for instance, when given two expressions

of the programming language, it could just consider they are equal.

Singleton types and kinds Harper and Stone recently studied languages with singleton

kinds (Stone & Harper, 2000). Singleton kinds are intended to model manifest types.

Harper and Stone have a decidability result for equality in their language, but have

not given a reduction semantics so far. Using our work on MC2, we could define

reduction notion for a lambda-calculus with singletons types and could adapt our

proof of subject-reduction, Church-Rosser property and strong normalization for

MC2 (Courant, 1998; Courant, 1999) to it (Courant, 2002b).

Russo’s static semantics Russo recently proposed another approach for modular-

ity (Russo, 1998). Russo’s approach relies on a static semantics for SML modules,
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replacing the need for (a kind of) first-order dependent types in the previously cited

works by a simpler second-order dependency.

This simplification allows him to define several extensions such as higher-order

modules and first-class modules. The only price to pay seems that in his module

system, semantic module types (module types as inferred by the type-checker) are

quite different from the syntactic module types (the type entered by the programmer).

However, although Russo’s system is well-suited to programming language,

we do not see how to adapt it to languages with dependent types such as

proof languages without losing the benefits of his approach. Indeed, in Russo’s

framework, the static semantics of a signature containing some abstract types is

a record existentially quantified over these types. Extending Russo’s framework

to dependently typed languages would require to existentially quantify this record

over all abstract components of the signature. In other words, the second-order

quantification involved in Russo’s static semantics would turn to first and second

order quantification as quantifying over terms (and not only types) would become

necessary (see section 3.3.5 of (Russo, 1998)).

3 Informal presentation

In this section, we show informally how our module calculus MC2 addresses

the issues mentionned in the introduction. We assume the reader has a working

knowledge of the Calculus of Constructions. No previous knowledge of SML-style

module systems is required as MC2 is introduced step by step. The reader familiar

with SML-like module systems will notice however that MC2 concepts are mostly

a transposition of SML modules concepts (Harper, 2002).

The examples given in this paper below have been chosen for the sake of simplicity.

They show how to deal with mathematical structures inMC2, but also the limitations

of the second-class modules approach ofMC2:MC2 lets the user state some generic

proposition over, say, preorders, but would not let him quantify over preorders like

he could with a type of the base calculus (the Calculus of Constructions). Time

will tell whether this is a hard limitation for mathematicians (dealing with sets of

preorders or sets of groups is not uncommon).

However, it is much less a limitation when dealing with objects of computer

science. As an evidence of this, a substantial case study on AVL trees has been

conducted in the subset of MC2 implemented in Coq (Filliâtre & Letouzey, 2004)

and David Pichardie developped a modular theory of lattices which has been used

to develop certified static analysis of programs (Cachera et al., 2005). Also Coq’s

module system has been used for certifying compiler optimization (Bertot et al.,

2005); according to the authors, it helped them “factor out a significant part of

specifications and correcteness proofs”.

All examples given in this article have been checked in our prototype implement-

ation of MC2(CC) — MC2 over the Calculus of Constructions — oeuf . In fact,

we wrote them and this article at once, using noweb (Ramsey, 2001; Ramsey, 1994;

Johnson & Johnson, 1997): the code chunks below can be extracted from the source

of this article (available from oeuf ’s web page at http://www-verimag.imag.fr/

~courant/soft/oeuf/) using noweb; they can subsequently be checked by oeuf .
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3.1 Structures

In order to solve the problem of namespace management, we add to PTS the

notion of structures, that is, packages of definitions. A structure is a list of named

definitions; it is introduced with the keyword struct and is terminated with the

keyword end. Each definition is composed of an identifier representing the name of

the field to be defined, the symbol :=, the actual definition and a semicolon.

To be more concrete, let us consider an example: the formalization of preorders.

A preorder could be represented by a structure with a set a representing its carrier,

a relation <=, the proof refl that <= is reflexive, and the proof trans that <= is

transitive. The structure representing the Preorder over natural numbers equipped

with the usual order over natural numbers can be written as follows:

〈structure of preorder over natural numbers〉≡
struct

a := Std.nat;

� := Std.le_nat;

refl := 〈proof of reflexivity of �〉;
trans := 〈proof of transitivity of �〉;

end

where nat is the set of natural numbers and le nat is the usual order over natural

numbers.

In our prototype, we can bind this structure to, say, the name ”NatPreorder” by

typing:

〈NatPreorder definition〉≡
NatPreorder := 〈structure of preorder over natural numbers〉
From inside the above structure, components are referred to as a, <=, refl, and

trans. Once this structure is bound to the name NatPreorder, these components

must be referred to as NatPreorder.a, NatPreorder.<=, NatPreorder.refl, and

NatPreorder.trans from the outside.

3.2 Signatures

Binding a structure to a name inMC2 is done through a module definition. In order

to address the issue of robustness of proofs with respect to changes, we introduce the

notion of structures’ signatures. When we want to bind a structure m to a name x,

we can declare a signature M as the intended interface for x. Through this interface,

the proof developper can express which informations should be exported by the

module x. She can for instance choose to hide or to reveal the existence of some

fields of m, or to hide or to reveal their contents. We use the syntax x:=m:M to

denote such a declaration. In order to process it, we first check that the structure m

implements the interface M, and add to the environment the association x : M.

We can also bind a module to a name without giving any interface, like we did for

NatPreorder in the previous section. In this case, we consider all the informations

contained in the structure we bind should be exported. That is, we compute the

interface revealing as much information as possible about this structure and take it

as the interface of the defined identifier.
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In both cases, notice we can forget m afterwards as it has no role to play in the

processing of the following declarations.

The interfaces we propose have the following interesting features:

• They help structuring development, making clear what the different parts of a

given development prove.

• They allow separate checking of theories. In our prototype oeuf , the user can

check the interface of a theory x and develops a module y depending on x

before she actually implements x since oeuf only needs to know the interface

of x in order to check the implementation of y.

• They make proofs more robust with respect to changes. One may decide to

change a proof done in some module x. In Coq or LEGO, this may break

developments built over x. In oeuf , this can only happen if one changes

the interface of x. In other words, changing the implementation of x without

changing its interface never breaks any development built over it.

• They reduce the amount of memory needed by an actual proof-checker to

check a development. In Coq, when one wants to develop a proof depending

on some module x, one has to load the whole development of x. That is, one

not only loads the statements of theorems proven in x but also the actual

proofs of these statements.

3.2.1 Abstract and manifest fields

The signature of a module is a list of field declarations, enclosed between the

keywords struct and end. A declaration is a field name, followed by a colon, a

specification giving the type of this field, and a semi-colon.

For instance, a possible signature for NatPreorder defined above could be:

〈generic preorder signature〉≡
sig

a : Set;

� : a → a → Prop;

refl : ∀x:a . x � x;

trans : ∀x y z :a . x � y → y � z → x � z;

end

If we define NatPreorder with this interface, we have the problem that from the

outside, its field a is completely abstract. Actually, that is precisely what an ”abstract

type” is in programming languages: although NatPreorder.a was implemented as

the set of natural numbers, our type system refuses to consider 0 as being of type

NatPreorder.a since nothing tells it that NatPreorder.a and nat actually denote

the same set. Thus the type-checker rejects the expression 0 ‘NatPreorder.�‘ 0.

In order to fix this problem, we allow the specifications of the fields declared in

an interface to be manifest, telling the type-checker what the value of the field is.

Instead of being just a type t, a specification is allowed to be either a type t or the

datum of a type t and a term t′ being its manifest value. The syntax for a manifest

specification is t:=t′ where t is its type and t′ is its value.
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Thus, a reasonnable interface for the preorder of natural number would declare a

and � as manifest in order to be able to introduce elements of type a and to prove

that some given elements are in relation by �:

〈NatPreorder interface〉≡
sig

a : Set := Std.nat;

� : a → a → Prop := Std.le_nat;

refl : ∀x:a . x � x;

trans : ∀x:a . ∀y:a . ∀z:a . x � y → y � z → x � z;

end

Then, we can define NatPreorder with this interface as follows:

〈NatPreorder done right〉≡
NatPreorder := 〈structure of preorder over natural numbers〉

: 〈NatPreorder interface〉
The type-checker still considers NatPreorder.trans is a normal form but re-

duces the expression NatPreorder.a to nat and NatPreorder.� to Std.le nat.

Therefore it accepts 0 ‘NatPreorder.�‘ 0.

This ”manifest field” feature makes MC2 depart fundamentally from formalisms

implementing packages as record types (Betarte, 2000b; Tasistro, 1997; Betarte,

1998; Pollack, 1997). Indeed, in these formalisms, there is no middle way: given a

record expression e, either it reduces to an explicit record whose value of all fields

are known or it reduces to a variable (possibly applied to some arguments) and

none of its fields can be known. On the contrary in MC2 a record expression e can

be such that some of its fields reduce to known concrete values and some do not.

3.2.2 Private fields

Thanks to interfaces, a developer can also hide definitions and lemmas she considers

uninteresting or too strongly depending of the proof method he chooses: in order

to do that, she just has to omit them from the signature she declares.

For instance, assume she develops a module about Fermat’s lesser theorem.3 If she

chooses to use the well-known proof by induction on a, using the binomial theorem

and a technical lemma stating that for all k < p, p divides ( p
k
), she will probably not

export the technical lemma as it is not of general use. Exporting it would even be

a bad idea. After the initial release of her proof library, the developer may indeed

notice that Fermat’s lesser theorem is just a particular instance of Euler’s theorem4

and might change her development to reflect this. If she exported the previous

technical lemma, she would have to choose either to remove it and break upward

compatibility, or to keep in her development a proof completely unrelated to the

rest of the proof method.

3 Fermat’s lesser known theorem states that for all a and p if p is prime and does not divide a then
ap−1 ≡ a [p].

4 Euler’s theorem states ∀a, n aφ(n) ≡ 1 [n], where φ is Euler’s totient function; φ(p) = p − 1 for any
prime number p
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3.3 Sub-structures

Structures can even contain sub-structures, which may help in structuring the

environment. In fact, many mathematical structures own sub-structures. Thus, the

polynomial ring A[X] over a ring A may be defined as a structure having A as

a component; a monoid homomorphism may be defined as a structure having

the domain and the range monoids as components. A preorder homomorphism is

described by its Domain and Range preorders, together with a function from the

carrier of the former to the carrier of the latter, and a proof that this function

preserves the ordering of preorders:

〈generic preorder morphism signature〉≡
sig

(* domain *)

D : 〈generic preorder signature〉;
(* range *)

R : 〈generic preorder signature〉;
f: D.a → R.a;

compat: ∀x y : D.a . x ‘D.�‘ y → (f x) ‘R.�‘ (f y);

end

Two examples of endomorphism of NatPreorder are:

〈successor as a NatPreorder morphism〉≡
struct

D := NatPreorder;

R := NatPreorder;

f := Std.succ;

compat := 〈proof of compatibility of succ with �〉;
end

〈zero as a NatPreorder morphism〉≡
struct

D := NatPreorder;

R := NatPreorder;

f := λ x: Std.nat . Std.zero;

compat := 〈proof of compatibility of f with �〉;
end

3.4 Parameterized modules

MC2 allows parameterized modules, called functors. These functors are useful for

defining parameterized theories and for building mathematical structures.

Functors in MC2 are first-class modules, like functions are first-class values in

programming languages. This means for instance that MC2 allows anonymous

functors, higher-order functors and partial application of functors. This also means

that a functor definition x:=m:M is in no way treated differently from structure
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definitions: we check the functor m implements the functor type M and add to the

environment the binding x : M.5

Functor expressions are introduced by the keyword functor and functor type

expressions by funcT.

3.4.1 Parameterized theories

A solution to the problem of handling parameterized theories is to use parameterized

modules. Then, one can develop for instance a general theory PreorderTheory of

preorders parameterized by a generic preorder P. This parameterized module can

then be instantiated over NatPreorder or any other module implementing the

〈generic preorder signature〉.
The very basic theory we develop below defines the main definitions over preorders

(upper bound, least upper bound, minimun, maximum, lub, glb) and shows that

minimum, maximum, lub and glb are unique in the sense that if x and y are a

couple of such elements then x and y are equivalent (i.e. x � y and y � x).

〈preorder theory〉≡
functor P : 〈generic preorder signature〉 →
struct

a_subset := P.a → Prop;

elt := λ x : P.a . λ s : a_subset . (s x);

lower_bounds := λ s : a_subset . λ l : P.a .

∀ x : P.a . (x ‘elt‘ s) → (l ‘P.�‘ x);

lowest := λ s : a_subset . λ min : P.a .

(min ‘elt‘ s) ‘Std.∧‘ (min ‘elt‘ (lower_bounds s));

upper_bounds := λ s : a_subset . λ u : P.a .

∀ x : P.a . (x ‘elt‘ s) → (x ‘P.�‘ u);

greatest := λ s : a_subset . λ max : P.a .

(max ‘elt‘ s) ‘Std.∧‘ (max ‘elt‘ (upper_bounds s));

lub := λ s : a_subset . (lowest (upper_bounds s));

glb := λ s : a_subset . (greatest (lower_bounds s));

g_unicity := 〈proof that for all x,y in (greatest s), x � y〉;
l_unicity := 〈proof that for all x,y in (lowest s), x � y〉;
lub_unicity :=

λ s : a_subset . (l_unicity (upper_bounds s));

glb_unicity :=

λ s : a_subset . (g_unicity (lower_bounds s));

end

Instantiating this theory on NatPreorder is straightforward:

〈instantiation of PreorderTheory over NatPreorder〉≡
module NatPreorderTheory := (PreorderTheory NatPreorder)

5 In other words, our functors have fully syntactic signatures.

https://doi.org/10.1017/S0956796806005867 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005867


MC2: A module calculus for Pure Type Systems 305

Like for structures, giving an interface for a functor definition is optional. We

could define PreorderTheory as follows

〈PreorderTheory definition〉≡
PreorderTheory := 〈preorder theory〉 : 〈preorder theory interface〉
where

〈preorder theory interface〉≡
funcT P : 〈generic preorder signature〉 →
sig

a_subset : Type := P.a → Prop;

elt : P.a → a_subset → Prop :=

λ x : P.a . λ s : a_subset . (s x);

lower_bounds : a_subset → a_subset :=

λ s : a_subset . λ l : P.a .

∀ x : P.a . (x ‘elt‘ s) → (l ‘P.�‘ x);

lowest : a_subset → a_subset :=

λ s : a_subset . λ min : P.a .

(min ‘elt‘ s) ‘Std.∧‘ (min ‘elt‘ (lower_bounds s));

upper_bounds : a_subset → a_subset :=

λ s : a_subset . λ u : P.a .

∀ x : P.a . (x ‘elt‘ s) → (x ‘P.�‘ u);

greatest : a_subset → a_subset :=

λ s : a_subset . λ max : P.a .

(max ‘elt‘ s) ‘Std.∧‘ (max ‘elt‘ (upper_bounds s));

lub : a_subset → a_subset :=

λ s : a_subset . (lowest (upper_bounds s));

glb : a_subset → a_subset :=

λ s : a_subset . (greatest (lower_bounds s));

g_unicity : ∀ s : a_subset . ∀ x y : P.a .

x ‘elt‘ (greatest s) →
y ‘elt‘ (greatest s) → x ‘P.�‘ y;

l_unicity : ∀ s : a_subset . ∀ x y : P.a .

x ‘elt‘ (lowest s) →
y ‘elt‘ (lowest s) → x ‘P.�‘ y;

lub_unicity : ∀ s : a_subset . ∀ x y : P.a .

x ‘elt‘ (lub s) → y ‘elt‘ (lub s) → x ‘P.�‘ y ;

glb_unicity : ∀ s : a_subset . ∀ x y : P.a .

x ‘elt‘ (glb s) → y ‘elt‘ (glb s) → x ‘P.�‘ y;

end

3.4.2 Building mathematical structures

Another interesting use of functors is for building mathematical structures from

other ones. For instance, one can build the opposite preorder OppositePreorder

from a preorder, as follows:
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〈opposite preorder〉≡
functor P: 〈generic preorder signature〉 →
struct

a := P.a;

� := λ x y : a . y ‘P.�‘ x;

refl := λ x : a . (P.refl x);

trans := λ x y z : a . λ x_le_y : x � y .

λ y_le_z : y � z . (P.trans z y x y_le_z x_le_y);

end

In the same vein, we can define the product of preorders or the intersection

preorder. Here is the definition of the intersection preorder InterPreorder:

〈intersection preorder〉≡
functor P1: 〈generic preorder signature〉 →
functor P2:

sig

a : Set := P1.a;

� : a → a → Prop;

refl : ∀x : a . x � x;

trans : ∀x y z : a . x � y → y � z → x � z;

end →
struct

a := P1.a;

� := λ x y : a . (x ‘P1.�‘ y) ‘Std.∧‘ (x ‘P2.�‘ y);

refl := 〈proof of reflexivity of the intersection �〉;
trans := 〈proof of transitivity of the intersection �〉;

end

InterPreorder can then be applied to any couple of preorders P1 and P2 such

that P1.a and P2.a are convertible. For instance:

〈intersection of NatPreorder and its opposite〉≡
(InterPreorder NatPreorder (OppositePreorder NatPreorder))

Notice that manifest fields are essential here. Without them, for instance in

theories with dependently typed records, one cannot build such a function. Instead,

one has to find a workaround such as parameterizing preorder by their carrier:

one gets a family of preorders indexed by their carrier and one can subsequently

define a function taking as input a carrier A and two A-preorders, and returning an

A-preorder.

3.5 Dealing with richer structures

3.5.1 Subtyping

The reader may have noticed that we could apply PreorderTheory to NatPreorder

despite the 〈interface for NatPreorder〉 is slightly different from the 〈generic interface

for preorder〉 that PreorderTheory expects as its argument.
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More generally, at any place a structure of type M is expected in MC2, a richer

structure may be put instead. In fact,MC2 is equipped with a subtyping relation <:

between module types and a typing rule saying that any module of type M1 also has

type M2 provided M1 is a subtype of M2. It can be shown thatMC2 enjoys principal

types, that is, the set of types of a module expression has a smallest element with

respect to the subtyping relation.

The informal intended meaning of M1 <: M2 is that the type M1 is richer than

or as rich as M2. In other words, any module expression of type M1 provides at

least as much as an abstract module of type M2. More precisely, if M1 and M2 are

signatures, all fields of M2 must be present in M1 with a specification as demanding

as or more demanding than the specification they have in M2. This means that for

providing a module of type M2, one may provide a module m which has more fields

than M2 and whose fields are not in the same order as in M2. Moreover, one may

turn manifest fields of the principal type of m into abstract ones, like for the above

application of PreorderTheory to NatPreorder.

This subtyping relation is extended to functor types with the usual contravariant

rule: if M1 and M2 are two functor types, then M1 is a subtype of M2 if and only if

the domain of M2 is a subtype of M1 and the range of M1 is a subtype of the range

of M2.

3.5.2 Possible extensions

In addition to subtyping, programming languages have developed other ways to

deal with enrichments of structures, which would be relevant in a module system

for proofs.

Signature bindings and inheritance One can notice we used several times the module

type 〈generic preorder signature〉. Such a repetition is in general a bad software

engineering practice as it breaks the principle “do it once”. As a consequence, more

has to be typed by the user and each time a change is made to a development, it

has to be done at several places.

SML-like module systems have a notion of module type variables and module

type definitions to address this problem. Although such an addition seems harmless,

it can have unsuspected effects: for instance adding abstract module type variables

renders type-checking undecidable (Harper & Lillibridge, 1994). Therefore, we have

not introduced such a feature in MC2 yet: although we doubt it would have

endangered the logical consistency of MC2, it would certainly have complicated its

metatheory a lot.

The usefulness of these module type abbreviations in SML is improved by

two other constructs permitting signature inheritance: signature specialization and

signature inclusion.

As for signature specialization, we could introduce a where construct in MC2,

similar to the where type construct found in SML’97 (Milner et al., 1997), called

with type in Objective Caml (Leroy et al., 2001). If Preorder is bound to 〈generic

preorder signature〉 then one can write
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〈example usage of the ‘‘where” construct〉≡
Preorder where a := Std.nat

in order to mean

〈meaning of Preorder where a := Std.nat〉≡
sig

a : Set := Std.nat;

� : a → a → Prop;

refl : ∀x:a . x � x;

trans : ∀x y z :a . x � y → y � z → x � z;

end

For signature inheritance, we could introduce an include construct for signature.

For instance, the signature for a total preorder could be given as follows:

〈total preorder〉≡
sig

include Preorder;

total : ∀ x y : a . x � y ∨ y � x;

end

These features are undoubtly really useful when programming and would probably

be as useful for making developments in abstract algebra. We identify them as two

challenging areas for future work. Notice one difficulty is the notion of scope is now

more subtle since the bindings of Preorder are now reopened in 〈total preorder〉.

Code inheritance Object-oriented languages propose also a way to deal with enrich-

ment called code inheritance. Although some theoretical work try to address code

inheritance for modules through mixins modules (Ancona & Zucca, 1996), it is not

clear how to make them fit into SML-like module systems yet. However, a weaker

form of code inheritance is already available in SML through the open construct

(and in Objective Caml through the include construct). This construct roughly

re-exports the body of a given module in the current structure. This is the kind

of enrichment we want for mathematical structures: for instance, assume given a

module X of type Preorder and assume we can prove the preorder on X.a is total.

We would like to build a total preorder structure from X as follows:

〈building a total preorder from a given preorder〉≡
struct

include X;

total := 〈proof of totality of X.�〉;
end

with the meaning:

〈meaning of the preceding〉≡
struct

a := X.a;

� := X.‘�‘;

refl := X.refl;
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trans := X.trans;

total := 〈proof of totality of X.�〉;
end

Undoubtedly, using this include construct would let us define structures in a

more modular fashion. Unfortunately, this include construct makes subject-reduction

property fail in presence of subtyping. To see this, consider the following structure:

〈counter-example to substitution property in presence of include〉≡
struct

a : Set;

include X;

b : a;

end

Consider an environment declaring Y: sig a : Std.nat; end and X : sig

end. The above structure is well-typed but if X is substituted by Y , which is legal

thanks to subtyping, it becomes ill-typed. In other words, the substitution property

does not hold: not only subject-reduction fails but the upward compatibility property

(introduced in Section 1.1.1 and formally defined in Section 5.2) also fails.

A possibly safe way to add such a construct would be to require the include

construct to be given with a list of re-exported fields. The include construct would

thus become an “include x, y, . . . from m”, similar to Modula 2 “FROM m IMPORT x,

y, ...” construct. Another way would be to require the include to be given together

with a signature, either an explicit one — “include sig x : ... ; y : ... ; ... end

from m” would have the meaning of the previous “include x, y, ... from m” — or

through signature abbreviation — “include S from x” would have the meaning of

“include S ′ from m” where S ′ is the normal form of S . In both cases, ensuring the

soundness of the extended calculus would be done by giving a translation of the

extended calculus into MC2. The metatheory of such an extended calculus would

essentially amount to proving the compatibility of this translation with reduction.

As for the former construct, it would be quite trivial as the translation to MC2 is

trivial (it can be defined as a straightforward, local, rewriting, clearly commuting

with reduction). As for the latter, the proof would certainly be more difficult as the

translation to MC2 might require the normalization of the given abbreviation first,

which could leave room for unexpected interactions with reduction at other places.

3.6 Transparent module definitions

We said earlier that, after it has processed a module definition x:=m, the type-

checker forgets m. As a consequence, x and m are then considered different by the

type checker.

This might be annoying in some rare circumstances. Therefore,MC2 has a special

notion of module definition, called transparent module definition: after a definition

x:=transparent m, the type-checker retains the equality x = m.

We give here an example of such a circumstance: preorder morphism composition.

We can define a functor taking as input two preorder morphisms and composing

https://doi.org/10.1017/S0956796806005867 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005867


310 J. Courant

them. This functor would have the following type:

〈preorder morphism composition functor type〉≡
funcT P1: 〈generic preorder morphism signature〉 →
funcT P2:

sig

D: 〈generic preorder signature〉 := P1.R;

R: 〈generic preorder signature〉;
f: D.a → R.a;

compat: ∀x y : D.a . x ‘D.�‘ y → (f x) ‘R.�‘ (f y);

end →
sig

D: 〈generic preorder signature〉 := P1.D;

R: 〈generic preorder signature〉 := P2.R;

f: D.a → R.a := λ x: D.a . (P2.f (P1.f x));

compat: ∀x y : D.a . x ‘D.�‘ y → (f x) ‘R.�‘ (f y);

end

If we try to apply this functor to the morphisms SuccPreorder and ZeroPreorder

defined in section 3.3, the type-checker has to check that SuccPreorder.R and

ZeroPreorder.D are equal. This test fails although both of them are defined as

being NatPreorder. Indeed, once a module definition has been given, its contents

is thrown away and only its interface is kept by the type-checker. Therefore, the

type-checker cannot reduce SuccPreorder.R nor ZeroPreorder.D: they are distinct

normal forms.

In order to circumvent this problem, the fields D and R of a preorder morphism

should be defined as transparent modules:

〈successor as a NatPreorder morphism using transparent modules〉≡
SuccPreorder :=

struct

D := transparent NatPreorder;

R := transparent NatPreorder;

f := succ;

compat := 〈proof of compatibility of succ with �〉;
end

With this definition, the fields D and R of the interface of SuccPreorder are

manifest:

〈inferred interface for SuccPreorder with transparent modules〉≡
sig

D : 〈NatPreorder interface〉 := NatPreorder;

R : 〈NatPreorder interface〉 := NatPreorder;

f : D.a → R.a := succ;

compat: ∀x y : D.a . x ‘D.�‘ y → (f x) ‘R.�‘ (f y)

:= 〈proof of compatibility of succ with �〉;
end
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Whereas in the inferred interface for the definition of SuccPreorder given in sec-

tion 3.3, the constraints D := NatPreorder and R := NatPreorder do not appear:

〈inferred interface for SuccPreorder without transparent modules〉≡
sig

D : 〈NatPreorder interface〉;
R : 〈NatPreorder interface〉;
f : D.a → R.a := succ;

compat: ∀x y : D.a . x ‘D.�‘ y → (f x) ‘R.�‘ (f y)

:= 〈proof of compatibility of succ with �〉;
end

3.7 Separate checking

In practice, a proof development in oeuf is as a list of pairs of files

(x1.iv, x1.pv), . . . , (xn.iv, xn.pv)

Each file xi.iv is an interface vernacular file containing a module type Mi and each

file xi.pv is a proof vernacular file containing a module expression mi. The meaning

of this proof development is the module expression

struct

module x 1 : M 1 = m 1;
...

module x n : M n = m n;

end

This development can be separately checked by oeuf , which means that a given

proof vernacular file xi.pv can be checked in absence of other proof vernacular

files: checking mi can be done with the sole knowledge of the interface vernacular

files it depends on.

For instance, the examples given above in this section could be split accross several

files as follows.

First of all, we put in interface files the interfaces of the modules we want to

develop and we check them in an order compatible with their dependencies:

〈Std.iv〉≡
sig

(* Standard declarations: and, or, natural numbers, ... *)

〈standard declarations〉
end

〈NatPreorder.iv〉≡
〈NatPreorder interface〉

〈ZeroPreorder.iv〉≡
sig

D : 〈NatPreorder interface〉;
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R : 〈NatPreorder interface〉;
f : Std.nat → Std.nat;

compat : ∀x y : D.a . x ‘D.�‘ y→ (f x) ‘R.�‘ (f y);

end

〈SuccPreorder.iv〉≡
sig

D : 〈NatPreorder interface〉;
R : 〈NatPreorder interface〉;
f : Std.nat → Std.nat;

compat : ∀x y : D.a . x ‘D.�‘ y→ (f x) ‘R.�‘ (f y);

end

〈NatPreorderTheory.iv〉≡
〈preorder theory interface〉

〈OppositePreorder.iv〉≡
funcT P : 〈generic preorder signature〉 →
sig

a : Set := P.a;

� : a → a → Prop;

refl : ∀x:a . x � x;

trans : ∀x:a . ∀y:a . ∀z:a . x � y → y � z → x � z;

end

〈InterPreorder.iv〉≡
funcT P1: 〈generic preorder signature〉 →
funcT P2: sig

a : Set := P1.a;

� : a → a → Prop;

refl : ∀x : a . x � x;

trans : ∀x y z : a . x � y → y � z → x � z;

end →
sig

a : Set := P1.a;

� : a → a → Prop;

refl : ∀x:a . x � x;

trans : ∀x:a . ∀y:a . ∀z:a . x � y → y � z → x � z;

end

〈Main.iv〉≡
〈generic preorder signature〉
Then, the following implementation files can be checked in any order:

〈NatPreorder.pv〉≡
〈structure of preorder over natural numbers〉

〈ZeroPreorder.pv〉≡
〈zero as a NatPreorder morphism〉
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〈SuccPreorder.pv〉≡
〈successor as a NatPreorder morphism〉

〈NatPreorderTheory.pv〉≡
〈preorder theory〉

〈OppositePreorder.pv〉≡
〈opposite preorder〉

〈InterPreorder.pv〉≡
〈intersection preorder〉

〈Main.pv〉≡
〈intersection of NatPreorder and its opposite〉

Then our metatheoretical results ensure the whole development is correct. As a

consequence, if one modifies an implementation file, only this file has to be checked

again.

4 Formal presentation

We can now give a more formal presentation of MC2. As MC2 is independent of

the chosen PTS, we fix an arbitrary choice of a PTS, that is, a set of sorts S, a set

of axioms A and a set of products R. And we note MC2(S,A,R) the associated

module extension of this PTS.

We first describe the grammar and the associated rules of MC2(S,A,R) in

section 4.2. Then in section 4.3 we define the convertibility notion we use in

MC2(S,A,R). Finally, we describe the rules governing subtyping and type conver-

sion rules in section 4.4.

4.1 Conventions used in this article

Metavariables names are meaningful In all this paper, we make the convention

that the metavariable names we use for non-terminals in the grammar given figure 1

are meaningful. For instance metavariables such as m,m′, m1, . . . range over module

expressions, and M,M ′,M1, . . . range over module types. Thus, if we state that “for

all m . . . ”, we actually mean that “for all module expression m . . . ”.

Moreover, we use q to denote an expression that can be either a base term or a

module expression, τ to denote an expression that can be either a base term or a

module type, and γ to denote any kind of expression.

Renaming For the sake of clarity, we deliberately ignore renaming problems in the

following. We refer the interested reader to appendix C to see how we deal with this

issue. For the first reading, the reader may simply consider that a variable can never

be bound twice in a given environment.

4.2 Syntax and syntax-directed rules

MC2(S,A,R) involves syntactic categories and several different judgments. We

gave each inference rule of MC2(S,A,R) a name of the form foo/bar , where foo
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Types

Module types

M ::=sig S end signature

| funcT x:M→M functor type

Signature bodies

S ::=ε empty body

| w : S ; S

Specifications

S::=M abstract module

| M := m manifest module

| t abstract term

| t := t manifest term

Environments

Γ::= empty environment

| Γ ; x : S adding a binding

Terms

Module expressions

m::=struct s end structure

| functor x:M→mfunctor

| (m m) application

| p module path

Paths

p::=x variable

| m.x field selection

Structure bodies

s::=ε empty body

| x := d ; s

Definitions

d ::=t term definition

| m module definition

| m : M module definition with interface

| transparent m transparent module definition

Base terms

t::=λ x:t . t abstraction

| ∀x:t . t product

| (t t) application

| σ sort

| p term path

Fig. 1. Grammar of MC2(S,A,R)

determines uniquely the kind of judgment involved in the conclusion of the rule.

For instance, T for typing judgments for base terms, M for typing judgment for

module expressions, SUB for subtyping between module types. . . In figure 1, we

give the grammar of MC2(S,A,R) and in figure 2, we give the list of judgments

MC2(S,A,R) involves together with their informal meaning and their associated

prefix.

We can now explain the syntax ofMC2(S,A,R) by giving the associated inference

rules.
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Well-formedness judgments

[MT/] Γ �M : modtype “M is a well-formed module type in the environment Γ”;

[SB/] Γ � S : sigbody “S is a well-formed signature body in Γ”.

[WFS/] Γ � S : wfs “S is a well-formed specification in Γ”;

[ENV/] Γ � ok “Γ is a well-formed environment” ;

Typing judgments

[M/] Γ � m : M “the module expression m has type M in Γ”;

[S/] Γ � s :: S “the structure body s has type the signature body S in Γ”;

[DEF/] Γ � d :: S “the definition d introduces an expression of specification S in Γ”;

[SPEC/] Γ � p : S “the path p has specification S in Γ”;

[T/] Γ � t : t′ “the base term t has type t′ in Γ”.

Subtyping judgment

[SUB/] Γ �M1 <: M2 “M1 is a subtype of M2 in Γ”;

[SUBSPEC/] Γ � S1 <: S2 “S1 is a sub-specification of S2 in Γ”;

[ENT/] Γ|dom � S “Γ restricted to dom entails S”.

Fig. 2. Judgments of MC2(S,A,R)

4.2.1 Well-formedness conditions for types

Module types A module type is either a signature containing a list of declarations

called a signature body or a functor type.

As for signatures, we define Alldiff(S) as the proposition “All the names of the

fields of S are pairwise distinct”. A signature is well-formed as soon as its body S is

well-formed and Alldiff(S) holds:

MT/SIG
Γ � S : sigbody Alldiff(S)

Γ � sig S end : modtype

A functor type is well-formed if its domain and its range are well-formed:

MT/PROD
Γ �M : modtype Γ; x : M �M ′ : modtype

Γ � funcT x:M →M ′ : modtype

Signature bodies A signature body is a list of declarations, each declaration being a

pair formed of a field name and the specification of this field. A signature body is

well-formed if and only if it contains only well-formed specifications.

Thus, the empty body is well-formed:

SB/EMPTY
Γ � ε : sigbody

And a non-empty one is well-formed if its first declaration has a well-formed

specification and the remaining signature body is well-formed:

SB/DECL
Γ � S : wfs Γ; x : S � S : sigbody

Γ � x:S;S : sigbody
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Specifications A field declaration in a signature body can either simply reveal a type

(in which case the field is given an abstract specification) or it can reveal a type and

the value of the declared field (in which case the field is given a manifest specification).

A field declaration is either a module specification or a term specification. Hence,

there are four different kinds of specifications; each one has an associated rule.

If the specification is abstract, checking it is well-formed just requires to check

that it contains a type (i.e. a module type or a base term whose type is a sort):

WFS/ABSTERM
Γ � t : σ

Γ � t : wfs

WFS/ABSMOD
Γ �M : modtype

Γ �M : wfs

If the specification is manifest, it requires to check that its manifest part inhabits

its type part:

WFS/MANTERM
Γ � t : t′

Γ � t′:=t : wfs

WFS/MANMOD
Γ � m : M

Γ �M:=m : wfs

4.2.2 Well-formed environments

An environment is a list of bindings from variables to specifications. Variables

declared with an abstract specification are similar to variables in type theory.

Variables declared with a manifest specification τ:=q are similar to definitions such

as the ones found in (Severi, 1996).

An environment is said “well-formed” if and only if all the specifications it

contains are well-formed:

ENV/EMPTY � ok

ENV/DECL
Γ � ok Γ � S : wfs

Γ; x : S � ok

4.2.3 Typing judgments

Module expressions A module expression is either a structure, a functor, an applic-

ation or a path.

Typing a structure just amounts to typing the declarations it contains and checking

they have pairwise distinct names:

M/STRUCT
Γ � s :: S Alldiff(S)

Γ � struct s end : sig S end

Handling parameterized modules just requires a rule for application and one for

abstraction. These rules are the standard rules for application and abstraction in

systems with dependent types.

M/APP
Γ � m1 : funcT x:M →M ′ Γ � m2 : M

Γ � (m1 m2) : M ′{x← m2}
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M/LAM
Γ �M : modtype Γ; x : M � m : M ′

Γ � functor x:M → m : funcT x:M →M ′

In order to get the type of a module path, we compute its specification and just

take the type if contains:

M/PATH
Γ � p : S

Γ � p : ty(S)

where ty(S) denotes the type component of the specification S. More formally, for

all τ and q, we define

ty(τ:=q) = τ

ty(τ) = τ

Paths Paths are either a variable or a field selection.

The specification of a variable just has to be looked up into the environment:

SPEC/VAR
Γ � x : Γ(x)

As for field selections, m.x is well-typed if and only if m has type sig S end and x

is the name of a field declared in S . Then the specification of m.x is the specification

S associated to x in S where for every field x′ preceding x, x′ was substituted by

m.x′.

More formally, we define field(m, x, S) as the specification S associated to x in S

where for every field x′ preceding x, x′ was substituted by m.x′:

field : (m, x, (x:S;S)) �→ S

(m, x, (x′:S;S)) �→ field(m, x, S{x′ ← m.x′}) if x = x′

Then the rule for typing a field selection is:

SPEC/SELECT
Γ � m : sig S end field(m, x, S ) = S

Γ � m.x : S

Structure bodies A structure body is a list of field definitions; the type of a structure

body is the list of the respective specifications of its fields.

The type of the empty structure body is the empty signature body:

S/EMPTY
Γ � ε :: ε

In order to type a non-empty structure body, we first infer the specification S

of the first field’s definition d, then we bind the name of this field to S in the

environment and infer the signature body of the remaining structure body in this

new environment:

S/DECL
Γ � d :: S Γ ; x : S � s :: S

Γ � x:=d;s :: x:S;S

Definitions A definition can be either a term definition or a module definition.

A term definition t1 is well-typed as soon as t1 is well-typed. Then, the specification

of the given definition is the manifest term specification whose type part is the type
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of t1 and whose manifest part is t1:

DEF/TERM
Γ � t1 : t2

Γ � t1 :: t2:=t1

As for module definitions, a specification of a module with no explicit interface is

just any abstract specification whose type part is a type of the module:

DEF/M1
Γ � m : M

Γ � m :: M

The specification of a module m given with an explicit interface M is the abstract

specification M provided M is a type of m:

DEF/M2
Γ � m : M

Γ � m:M :: M

Finally, a transparent module definition has any specification whose type part is

any type of the module and whose manifest part is the module:

DEF/TRANSPM
Γ � m : M

Γ � transparent m :: M:=m

Base terms The rules for base terms are the standard PTS rules, with two exceptions:

• The rule for variables has been replaced by a rule for paths identical to that

for modules paths.

• The conversion rule does not relies on β nor βη equality but on a convertibility

relation 	
, defined in section 4.3 below.

T/LAM
Γ � t1 : σ1 Γ; x : t1 � t2 : t3 Γ � ∀x:t1.t3 : σ2

Γ � λx:t1.t2 : ∀x:t1.t3

T/PROD
Γ � t1 : σ1 Γ; x : t1 � t2 : σ2 (σ1, σ2, σ3) ∈ R

Γ � ∀x:t1.t2 : σ3

T/APP
Γ � t1 : ∀x:t4.t5 Γ � t2 : t4

Γ � (t1 t2) : t5{x← t2}

T/SORT
(σ1, σ2) ∈ A
Γ � σ1 : σ2

T/PATH
Γ � p : S

Γ � p : ty(S)

T/CONV
Γ � t1 : t3 Γ � t2 : σ Γ � t2 	
 t3

Γ � t1 : t2

4.3 Convertibility

One of the usual PTS typing rules is the conversion rule, involving convertibility of

terms. InMC2, the conversion test involves relations tied to module declarations in

addition to the usual β-reduction. We introduce here the reductions we consider. In

this purpose, we first introduce the generic definitions and notations we use.
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Definition 4.1 (Env-dependent relation)

An env-dependent relation R is a relation over triples (Γ, γ, γ′), where Γ is an

environment and γ and γ′ are expressions. If R is an env-dependent relation, we

note Γ � γRγ′ to mean R(Γ, γ′, γ′).

Definition 4.2 (R-redex )

If R is an env-dependent relation, we say γ is a R-redex in Γ if and only if there

exists γ′ such that Γ � γRγ′. In that case, we say γ′ is the result of the contraction

of the R-redex γ.

Definition 4.3 (Context)

A context C is an expression containing a single occurrence of the variable ◦. We

note C[γ] the expression C{◦ ← γ}. We note P(C) the list of bindings crossed in C

in order to reach ◦. For instance, we have

P(◦) = ε

P(funcT x:M →M ′) = x : M;P(M ′) if ◦ appears in M ′

P(funcT x:M →M ′) = P(M) if ◦ appears in M

P(functor x:M → m) = x : M;P(m) if ◦ appears in m

P(functor x:M → m) = P(M) if ◦ appears in M

P(x:S;S) = x : S;P(S) if ◦ appears in S

P(x:S;S) = P(S) if ◦ appears in S

P((m1 m2)) = P(m1) if ◦ appears in m1

P((m1 m2)) = P(m2) if ◦ appears in m2

P(λx:t1.t2) = x : t1;P(t2) if ◦ appears in t2
P(λx:t1.t2) = P(t1) if ◦ appears in t1
P(∀x:t1.t2) = x : t1;P(t2) if ◦ appears in t2
P(∀x:t1.t2) = P(t1) if ◦ appears in t1

Definition 4.4 (Monotonic relation)

Let R be an env-dependent relation. We say R is monotonic if and only if, for all

context C , all environment Γ and all expressions γ and γ′ such that R(Γ;P(C), γ, γ′)

we have R(Γ, C[γ], C[γ′]).

Remark 4.5

Let R be an env-dependent relation. If for some binary relation R′, we have for

all Γ, γ and γ′, R(Γ, γ, γ′) = R′(γ, γ′) (that is, if R is constant with respect to the

environment) then R is monotonic in the sense given below if and only if R′ is

monotonic in the usual sense (“for all context C and all γ and γ′ such that R′(γ, γ′),

we have R′(C[γ], C[γ′])”).

Definition 4.6 (One step R-reduction)

Let R be an env-dependent relation. We call one-step R-reduction the least mono-

tonic relation containing R. We note this relation 	R . If Γ � γ 	R γ′, we say γ

R-reduces to γ′ in one step in the environment Γ.

Definition 4.7 (Transitive relation)

Let R be an env-dependent relation. We say R is transitive if and only if, for all

environment Γ and all expressions γ, γ′ γ′′ such that Γ � γRγ′ and Γ � γ′Rγ′′, we
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have Γ � γRγ′′. Given an env-dependent relation R, the least transitive env-dependent

relation containing it is called the transitive closure of R, and is noted R�.

Definition 4.8 (Many steps R-reduction)

Let R be an env-dependent relation. We call many-step R-reduction the relation 	�R .

We note this relation 	�R . We say γ R-reduces to γ′ in many steps in the environment

Γ if Γ � γ 	�R γ′.

Notation 4.9

If R1, R2, . . . , Rn are n relations over triples (Γ, γ, γ′), we note R1R2 . . . Rn their union.

4.3.1 β-reduction

Definition 4.10 (The β relation)

β is the least env-dependent relation such that for all base terms t1, t2 and t3, for all

variable x, Γ � (λx:t1.t2 t3) β t2 {x← t3}.

4.3.2 βm-reduction

Functors also introduce a kind of β-redexes at the level of module expressions,

called βm-redexes:

Definition 4.11 (The βm relation)

βm is the least env-dependent relation such that for all module expressions m1 and m2,

all module type M and all variable x, Γ � ((functor x:M → m1) m2) βm m1{x ←
m2}.

4.3.3 ρ-reduction

The selection of a field of a structure is a new kind of redex that can be reduced.

First, we must define the notion of content of a definition:

Definition 4.12 (Content of a definition)

Let d be a definition. The content of d, noted C(d) is defined as follows:

C(t) = t

C(m) = m

C(m:M) = m

C(transparent m) = m

We are now ready to define the ρ relation.

Definition 4.13 (The ρ relation)

ρ is the least env-dependent relation such that for all positive integers j and n, with

j � n, for all sequence x1, . . . , xn of variables, for all sequence d1, . . . , dn of definitions

we have

Γ � m.xj ρ C(dj){xi ← m.xi|i ∈ [1, n]}
where m denotes struct x1:=d1; . . . ;xn:=dn; end
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4.3.4 δ-reduction

As we have seen section 3.2.1, the type-checker sometimes needs to reduce an

expression such as NatPreorder.a to nat, where NatPreorder is a variable. This

means in addition to ββmρ-reduction, we need a new reduction, we call δ-reduction

whose purpose is to reduce manifest field to their declared value. The idea behind

the definition of δ-reduction is that m.x is a redex if the field x appears as manifest

in the type of m.

We used conversion (hence δ-reduction) to define the type system ofMC2 and we

are now saying that in order to δ-reduce an expression we need to know its type. So

it might seems we have a chicken and egg problem here. Fortunately, we do not. In

fact, we introduce in this section a pseudo-typing notion whose definition does not

rely on equality. Then m.x is a δ-redex if x appears as manifest in the pseudo-type of

m. We introduce four judgments whose informal aim is to compute the pseudo-type

of an expression:

• Γ � m D M “the module m has pseudo-type M”

• Γ � p D S “the path p has pseudo-specification S”

• Γ � s DD S “the structure body s has pseudo-signature body S”

• Γ � d DD S “the definition d has pseudo-specification S”.

Definition 4.14 (The δ relation)

We define the δ env-dependent relation as the least relation such that for all path p

and all environment Γ, Γ � p δq holds if and only if we can derive Γ � p D τ:=q

for some τ under the rules given figure 3.

Remark 4.15

The δ-rules are similar to the inference rules for typing modules expressions,

paths, structure bodies and definitions given previously. For all but two of them

([∆/DEF/TRANSPM] and [∆/DEF/TERM]), the difference is that some premises have

been omitted.

As for rules [∆/DEF/TRANSPM] and [∆/DEF/TERM], we gave both of them

a manifest specification. In order not to compute the type of m nor of t1 the

specifications we give for them have fake type components (sig ε end and t1). This

is not a problem since we are only interested in the expression they reduce to.

4.3.5 Convertibility

Definition 4.16 (	)

We note 	 the relation 	ββmρδ .

Definition 4.17 (Convertibility)

We say two expressions γ1 and γ2 are convertible in an environment Γ and we write

Γ � γ1 	
 γ2 if and only if there exists γ such that Γ � γ1 	
� γ and Γ � γ2 	

� γ.

Remark 4.18

We do not define convertibility as the reflexive symmetric transitive closure of 	.

Indeed, 	� is not Church-Rosser on untyped expressions and its reflexive symmetric
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Module expressions

∆/M/APP
Γ � m1 D funcT x:M →M ′

Γ � (m1 m2) D M ′{x← m2}

∆/M/LAM
Γ; x : M � m D M ′

Γ � functor x:M → m D funcT x:M →M ′

∆/M/STRUCT
Γ � s DD S

Γ � struct s end D sig S end

∆/M/PATH
Γ � p D S

Γ � p D ty(S)

Definitions

∆/DEF/M1
Γ � m D M

Γ � m DD M

∆/DEF/M2
Γ � m:M DD M

∆/DEF/TRANSPM
Γ � transparent m DD sig ε end:=m

∆/DEF/TERM
Γ � t1 DD t1:=t1

Paths

∆/SPEC/VAR
Γ � x D Γ(x)

∆/SPEC/SELECT
Γ � m D sig S end field(m, x, S ) = S

Γ � m.x D S

Structure bodies

∆/S/EMPTY
Γ � ε DD ε

∆/S/DECL
Γ � d DD S Γ ; x : S � s DD S

Γ � x:=d;s DD x:S;S

Fig. 3. δ-rules.

transitive closure on untyped terms is even the full relation, see proposition D.2

in appendix D. However, 	� is Church-Rosser on typed expressions. Therefore the

convertibility relation is reflexive, symmetric and transitive on typed expressions.

4.4 Conversion rules

MC2(S,A,R) contains two rules allowing to derive a new type for an already typed

module (as well as two rules for deriving a new specification from a path already

having a specification), we call them conversion rules.
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The first one is linked to subtyping. It expresses that a module having a given

module type M can be implicitely coerced to any supertype of M. We describe it

and the associated rules for subtyping in section 4.4.1.

The second one is called the strengthening rule, or the self rule. It is similar to

Leroy’s strengthening rule (Leroy, 1994; Leroy, 1995). We describe it and the reasons

motivating it in section 4.4.2.

4.4.1 Subtyping

In order to consider that a module of type M can be considered to be of type M ′

as long as M is a subtype of M ′, we introduce the following new rule:

M/SUB
Γ � m : M Γ �M ′ : modtype Γ �M <: M ′

Γ � m : M ′

Similarly, in order to subtype specifications we introduce the following rule:

SPEC/SUB
Γ � S′ : wfs Γ � p : S Γ � S <: S′

Γ � p : S′

Functor types Subtyping of functor types is contravariant in the first argument:

SUB/PROD
Γ �M2 <: M1 Γ; x1 : M2 �M ′

1 <: M ′
2

Γ � funcT x1:M1 →M ′
1 <: funcT x2:M2 →M ′

2

Signatures Subtyping signatures is a bit more difficult. We want a signature

sig S1 end to be a subtype of sig S2 end if the fields given in S2 form a subset

of S1 and for each field of S2, the declared specification in S2 is entailed by the

specification of the corresponding field in S1.

Therefore, in order to check Γ � sig S1 end <: sig S2 end we append S1 to Γ,

getting Γ′. Then we check that Γ′ restricted to the domain of S1 entails S2, where “Γ′

restricted to the domain of S1 entails S2” means that for all field name x declared

with specification S in S2, we have Γ′ � x : S and x ∈ Dom(S1), where Dom(S) is

defined as the set of field names declared in S .

SUB/SIG
Γ; S1|Dom(S1) � S2

Γ � sig S1 end <: sig S2 end

Entailment The rules for entailment are quite straightforward. The empty signature

body is entailed by any environment and domain:

ENT/EMPTY
Γ|dom � ε

In order to check that a non-empty signature body is entailed by a given

environment Γ restricted to a given domain dom, we first check that the first

component v of the signature body has indeed specification S in Γ:

ENT/DECL
x ∈ dom Γ � x : S Γ|dom � S

Γ|dom � x:S;S
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Specifications A term specification is a subspecification of an abstract specification

as long as their type components are convertible:

SUBSPEC/ABST
Γ � ty(S) 	
 t

Γ � S <: t

A module specification is a subspecification of an abstract one as long as the type

component of the former is a subtype of the type component of the latter:

SUBSPEC/ABSM
Γ � ty(S) <: M

Γ � S <: M

Checking that a specification is a subspecification of a manifest specification is

similar, but it involves checking the manifest parts are convertible:

SUBSPEC/MANT
Γ � t1 	
 t′1 Γ � t2 	
 t′2

Γ � t1:=t2 <: t′1:=t
′
2

SUBSPEC/MANM
Γ �M <: M ′ Γ � m 	
 m′

Γ �M:=m <: M ′:=m′

4.4.2 Strengthening

One may think the rules given so far lead to a type system for modules that can

type enough module expressions. We show here a very natural example we would

expect to be well-typed but that can not be typed actually if one uses only the rules

given above. We then introduce a new rule, the strengthening rule, allowing us to

type this example.

The example is the following: assume Γ is an environment containing a variable

X declared of type 〈generic preorder signature〉. The rules we gave so far do not type

(InterPreorder X X), which is quite unexpected6.

In order to see where the problem comes from, let us first consider an oversimpli-

fied example. Let

Γ = X : sig a:t; end;

F : funcT Y:sig a:t:=X.a; end→ sig end

F can only be applied to modules of type sig a:t:=X.a; end. Can we derive this

type for X? With the typing rules given so far, the answer is no: the declared type

for X is sig a:t; end, which is not a subtype of the former (the former is a subtype

of the latter, not the converse). This is the problem arising with (InterPreorder X

X): The first application (InterPreorder X) is well-typed ; it is a functor expecting

an argument whose component a is equal to X.a. Unfortunately, a is abstract in the

actual argument X so the application of (InterPreorder X) to X fails.

However, expecting the field a of the type of X to be declared equal to X.a is

quite natural. More generally, if the type of X is

sig x1:t1; . . . xn:tn; end

6 At first this example can seem of little practical use: why would like one to take the intersection of a
preorder with itself? However, if one want to define the equivalence relation induced by X, one has
to build (InterP reorder (OppPreorder X) X). And the problem demonstrated in the above example
arises exactly the same way. This problem also arises if one wants to build the vector space product of
a vector space with itself.
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then we would like X to have also the type

sig x1:t1:=X.x1; . . . xn:tn:=X.xn; end

We say this latter signature is the former signature strengthened by X.

In this purpose, we add the following strengthening rule to MC2(S,A,R). It

states that if m has type M, then m also has type M/m, where M/m denotes M

strengthened by m:

M/STR
Γ � m : M

Γ � m : M/m

The operator /, firstly introduced by Leroy, is called the strengthening oper-

ator (Leroy, 1995). We give here a slightly modified version of /:

• It transforms abstract specifications into manifest ones:

t/t′ = t:=t′

M/m = M/m:=m

• Strengthening a signature body by m means strengthening the specification of

each field named x by m.x:

ε/m = ε

(x:S;S )/m = x:S/m.x;S/m

• When strengthening a functor type by m, one has to strengthen the range of

the functor by m applied to the formal argument of the functor:

(funcT x:M1 →M2)/m = funcT x:M1 → (M2/(m x))

• The other cases are defined straightforwardly:

(sig S end)/m = sig S/m end

(t′:=t′′)/t = t′:=t′′

(M:=m′)/m = M/m:=m′

Similarly, we add a rule to strengthen specifications:

SPEC/STR
Γ � p : S

Γ � p : S/p

5 Metatheory

In this section, we show thatMC2(S,A,R) formally addresses the practical concerns

we raised in section 1.1 such as safety, separate checking, independence with respect

to the implementation, upward compatibility, and horizontal compatibility. More

precisely, we first formalize in section 5.1 the concept of proof development, then

in section 5.3 we show that MC2(S,A,R) enjoys the expected properties with

respect to modularity. These properties rely on strong metatheoretical results about

MC2(S,A,R), which we explain in section 5.3. Finally, in section 5.4, we give a

correct and complete type-inference algorithm for the particular case of MC2 over

the Calculus of Constructions, MC2(CC).
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5.1 Proof development

In practice, a proof development is a sequence of interfaces files x1.iv, . . . , xn.iv

containing module types and the sequence of their respective implementation files

x1.pv, . . . , xn.pv containing module expressions. We formalize this notion as follows:

Definition 5.1 (Proof development)

A proof development is a finite sequence of triples (xi, mi,Mi)i∈[1,n] where xi is a

module name, mi is a module expression, and Mi is a module signature for all

i ∈ [1, n], and the xi are pairwise distinct.

A given proof development is correct if the structure body

x1:=m1 : M1; . . . ;xn:=mn : Mn;

is well-typed, that is if we have

� (x1:=m1 : M1; . . . ;xn:=mn : Mn;) :: (x1:M1; . . . ;xn:Mn;)

Modifications to a distributed proof development should always be done with

care. For instance, in order not to bother the users of this development, a newer

release should never drop results provided in a former one. In other words, a newer

release of a proof development should always refines previous releases.

We formally define this refinement notion as follows:

Definition 5.2 (Refinement of a proof development)

Let (xi, mi,Mi)i∈[1,n] and (x′i, m
′
i,M

′
i )i∈[1,m] be proof developments.

We say (xi, mi,Mi)i∈[1,n] is a refinement of (x′i, m
′
i,M

′
i )i∈[1,m] if the three following

conditions hold:

• (xi, mi,Mi)i∈[1,n] is correct,

• (x′i, m
′
i,M

′
i )i∈[1,m] is correct,

• � sig x1:M1; . . . ;xn:Mn; end <: sig x′1:M ′
1; . . . ;x′m:M ′

m; end

In order to refine a proof development, one either changes the implementations

or interfaces of some modules, or introduces some new modules.

Definition 5.3 (Implementation changes)

Let (xi, mi,Mi)i∈[1,n] be a correct proof development. Let j be a natural belonging

to [1, n] and m′ be a module expression. (j, m′) is an implementation change of

(xi, mi,Mi)i∈[1,n]. The updated proof development corresponding to this implementation

change is the proof development (xi, m
′
i,Mi)i∈[1,n] such that

• m′j = m′,

• and for all i ∈ [1, n] with i = j, m′i = mi.

Definition 5.4 (Interface changes)

Let (xi, mi,Mi)i∈[1,n] be a correct proof development. Let j be a natural belonging

to [1, n] and M ′ be a module type. (j,M ′) is an interface change of (xi, mi,Mi)i∈[1,n].

The updated proof development corresponding to this interface change is the proof
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development (xi, mi,M
′
i )i∈[1,n] such that

• M ′
j = M ′

• and for all i ∈ [1, n] with i = j, M ′
i = Mi.

Definition 5.5 (Introduction of a new module)

Let (xi, mi,Mi)i∈[1,n] be a correct proof development. Let j be a natural belonging to

[1, n+1], x′ be a fresh variable (∀i ∈ [1, n] x = xi), m
′ be a module expression, and M ′

be a module type. (j, x′, m′,M ′) is an introduction of a new module in (xi, mi,Mi)i∈[1,n].

The updated proof development corresponding to this introduction is defined as the

proof development (x′i, m
′
i,M

′
i )i∈[1,n+1] such that

• M ′
j = M ′,

• for all i ∈ [1, j − 1], M ′
i = Mi,

• and for all i ∈ [j + 1, n + 1], M ′
i = Mi−1.

Definition 5.6 (One-step changes)

Let D be a proof development. A one-step change of D is

• an implementation change of D,

• or an interface change of D,

• or an introduction of a new module in D.

This change is correct if the corresponding updated proof development is correct, it

is a refinement step if the corresponding updated proof development is a refinement

of D.

One may wonder whether these three operations are enough in practice. It is

too soon to answer this question, however the current practice in programming

languages gives us some hints here. The above operations indeed correspond to

the development model of Objective Caml. It seems to be quite satisfactory for

medium-sized development. However, for very large developments, and especially

when providing large libraries, users seem to need more: an operation users request

more and more on the Objective Caml mailing list is the ability to pack several

modules into one.

For the moment, we choose to restrict our study to the three operations above.

Adding the packing operation does not seem to raise any metatheoretical problem

and should be quite feasible in practice.

5.2 Formal guarantees with respect to modular development

In the previous section, we defined what a proof development is and we defined a

notion of a refinement step in the life cycle of a proof development.

We can now wonder how these notions behave with respect to modularity

concerns:

• Can we check that a development is correct in a modular way?

• Can we check that a given one-step change is a refinement locally, that

is without checking that the newer development obtained by this step is a

refinement of its former version?
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• Can we guarantee that modules do not introduce any inconsistency in the

proof system they extend?

In this section, we answer these questions positively. This shows that the practical

concerns we mentioned section 1.1 are addressed by MC2(S,A,R). The proof

we give here are based on the metatheoretical results given in the more technical

section 5.3.

The following is a criterion for checking the correctness of a proof development

in a modular way.

Proposition 5.7 (Separate checking)

A proof development (xi, mi,Mi)i∈[1,n] is correct if and only if, for all i ∈ [1, n], we

have

x1 : M1; . . . ; xi−1 : Mi−1 � mi : Mi

Proof

This is a direct consequence of the rules for typing structure bodies. The proof is

done by induction on n. �

Therefore, the correctness of a proof can be checked modularly. This allows proof

development to be conducted independently by several developers once they have

agreed on interfaces.

We can now formalize the fact that MC2(S,A,R) enjoys independence with

respect to the implementation, upward compatibility and horizontal compatibility

properties introduced in section 1.1. These properties are precisely local criteria for

checking that a given one-step change is a refinement.

Proposition 5.8 (Independence with respect to the implementation)

Let (xi, mi,Mi)i∈[1,n] be a correct proof development. Let (j, m′) be an implementation

change of (xi, mi,Mi)i∈[1,n]. (j, m′) is correct and is in fact a refinement step if and

only if we have

x1 : M1; . . . ; xj−1 : Mj−1 � m′ : Mj

Proof

This is a direct consequence of proposition 5.7. �

Proposition 5.9 (Upward compatibility)

Let (xi, mi,Mi)i∈[1,n] be a proof development. Let (j,M ′) be an interface change of it.

(j,M ′) is a refinement step if we have

x1 : M1; . . . ; xj−1 : Mj−1 � mj : M ′

and

x1 : M1; . . . ; xj−1 : Mj−1 �M ′ <: Mj

Proof

Assume (xi, mi,Mi)i∈[1,n] is a correct proof development. Let (j,M ′) be a correct

interface change of it, and (xi, mi,M
′
i )i∈[1,n] be the updated proof development. By

proposition 5.7, for all i ∈ [1, n], we have

x1 : M1; . . . ; xi−1 : Mi−1 � mi : Mi
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Therefore, by definition of M ′
i , for all i < j, we have

x1 : M ′
1; . . . ; xi−1 : M ′

i−1 � mi : M ′
i

Moreover, as (j,M ′) is a locally correct interface change, we have

x1 : M ′
1; . . . ; xj−1 : M ′

j−1 � mj : M ′
j

At last, since x1 : M ′
1; . . . ; xj−1 : M ′

j−1 � M ′
j <: Mj , applying the weakening

lemma 5.14, for all j > i we get

x1 : M ′
1; . . . ; xi−1 : M ′

i−1 � mi : M ′
i

Therefore, by proposition 5.7, (xi, mi,M
′
i )i∈[1,n] is a correct proof development.

Moreover, by hypothesis and lemma 5.13, we have

x1 : M ′
1; . . . ; xn : M ′

n �M ′
j <: Mj

so that, by rule [M/SUB], we have

x1 : M ′
1; . . . ; xn : M ′

n � xj : Mj

For all i = j, we also have trivially

x1 : M ′
1; . . . ; xn : M ′

n � xj : Mj

Therefore, for all i ∈ [1, n], we have

x1 : M ′
1; . . . ; xn : M ′

n|{x1 ,...,xn} � x1:M1; . . . ;xn:Mn;

Therefore, (j,M ′) is a refinement step. �

Note that the upward compatibility property generally does not hold in programming

languages such as Standard ML or Objective Caml, because of the open construct,

as shown in Section 3.5.2.

Proposition 5.10 (Horizontal compatibility property)

Let (xi, mi,Mi)i∈[1,n] be a correct proof development. Let (j, x′, m′,M ′) be an intro-

duction of a new module in it. (j, x′, m′,M ′) is a refinement step if and only if we

have

x1 : M1; . . . ; xj−1 : Mj−1 � m′ : M ′

Proof

This follows trivially from proposition 5.7 and lemma 5.13. �

Several Pure Type Systems are known as rigorous formal basis for developing

proofs as they have been proved logically consistent. This is the case for instance of

the Calculus of Construction (Coquand & Gallier, 1990). One may wonder whether

the module layer we add to a given PTS might endanger this consistency or even if

it changes its logical expressive power. Fortunately, the answer is no forMC2(CC):

Proposition 5.11 (Conservativity of MC2(CC))

MC2(CC) is conservative. More precisely assume Γ is an environment containing

no module declaration, assume no module expressions appears in the specifications
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contained in Γ, and assume t is a base term expression containing no module

expressions. If t is an inhabited type in MC2(CC), i.e. if there exists t′ such that

Γ � t′ : t is derivable in MC2(CC), then there exists a base term expression t′′,

containing no module expression, such that Γ � t′′ : t is derivable in CC.

Proof

This theorem is a corollary of the subject-reduction and strong normalization

theorems (theorems 5.15 and 5.17, below): as t′ normalizes by 	βmρδ , let t′′ be a

normal form of it ; Γ � t′′ : t is derivable in MC2(CC). Consider the derivation

of this judgment we get by applying the strategy given by the algorithmic rules

given section 5.4. As no module expression appears in t′′ nor in Γ nor in t then

this derivation uses only PTS rules and the rule [SPEC/VAR]. Therefore, it can be

derived in CC. �

Remark 5.12

Although we did not prove it formally, we conjecture this result still holds for

other PTS. The difficulty here lies more in the PTS structure than in MC2 itself:

the problem is the rule [T/LAM], like for the well-known expansion postponement

problem (van Benthem Jutting et al., 1993).

5.3 Metatheoretical foundations

The modular properties of MC2(S,A,R) expressed in the previous section are no

accident. Indeed they are rooted in very strong metatheoretical properties of this

calculus. We give in this section the salient metatheoretical results ofMC2(S,A,R).

In section 5.3.1, we give the usual weakening results. In section 5.3.2, we present

the main results about reduction in MC2(S,A,R) and we briefly sketch the proof

method we used to prove them.

5.3.1 Weakening

MC2(S,A,R) enjoys the usual weakening lemma of type systems:

Lemma 5.13 (Weakening)

Let Γ and Γ′ be any two environments. Let γ be any expression and γ′ be wfs or

sigbody or modtype or any expression. Let M be any module type and x be a

variable not appearing in Γ nor Γ′. If

Γ; Γ′ � γ : γ′

then

Γ; x : M; Γ′ � γ : γ′

Moreover, a judgment may also be weakened by subtyping:

Lemma 5.14 (Weakening by subtyping)

Let Γ and Γ′ be any two environments. Let γ be any expression and γ′ be wfs or

sigbody or modtype or any expression. Let M and M ′ be any two module types
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and x be a variable not appearing in Γ nor Γ′. If
⎧⎪⎨
⎪⎩

Γ �M : modtype and

Γ �M ′ <: M and

Γ; x : M; Γ′ � γ : γ′

then

Γ; x : M ′; Γ′ � γ : γ′

5.3.2 Properties of the reduction

The three expected main metatheoretical properties for MC2(S,A,R) hold. We

give here only a brief sketch of their proof; the interested reader may consult our

research report for the details (Courant, 1999).

The subject-reduction statement is a straightforward generalization of subject-

reduction theorems for typed lambda-calculi to env-dependent reduction relations.

Theorem 5.15 (Subject-reduction)

Let Γ be any environment. Let γ and γ′ be any two expressions and γ′′ be wfs or

sigbody or modtype or any expression. Assume Γ � γ 	� γ′ and Γ � γ : γ′′. Then we

have Γ � γ : γ′.

Similarly, the statement of the Church-Rosser property is a straightforward gen-

eralization of the Church-Rosser property to an env-dependent reduction relation.

Theorem 5.16 (Church-Rosser property)

	� is Church-Rosser on typed terms. More formally, let Γ be an environment such

that Γ � ok and γ, γ1, γ2 be any three expressions such that γ is well-typed, Γ � γ 	� γ1

and Γ � γ 	� γ2. Then there exists γ′ such that Γ � γ1 	
� γ′ and Γ � γ2 	

� γ′.

Theorem 5.17 (Strong normalization)

	βmρδ is strongly normalizing on well-typed terms. Formally: let Γ be an environment

such that Γ � ok and γ1 is well-typed, then any sequence γ1, . . . , γn, . . . verifying

∀i Γ � γi 	 γi+1 is a finite sequence.

Remark 5.18

The normalization result is only for 	βmρδ , not for 	, as 	 can be non-normalizing:

if β-reduction in the base PTS is non-normalizing, 	 is of course non-normalizing.

If β-reduction is normalizing, from the normalization of 	βmρδ and 	β , one can

trivially derive a weak normalization result for 	 (as it is their union). We conjecture

that the strong normalization of 	 can be proved if the base PTS is the Calculus

of Constructions; however this would much complicate the normalization proof.

Whether the strong normalization of the base PTS implies the strong normalization

of 	 in general is an open question.

The proof of the Church-Rosser property is quite complex: it relies on the strong

normalization of typed expressions and even appears to be as complex as the

normalization proof itself. Therefore, we chose to prove at once the Church-Rosser
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property (for βmρδ-reduction, modulo β-equivalence) and strong normalization of

the βmρδ reduction over typed expressions.

This raises another problem: with the presentation given in this paper, the Church-

Rosser property is required in order to prove for instance the transitivity of subtyping

(since this latter relies on the transitivity of convertibility). Unfortunately, the subject-

reduction property relies on this transitivity property. A possible solution to treat

this could be to prove the Church-Rosser property, strong normalization and subject-

reduction at once, in the style of Goguen’s normalization proof for UTT (Goguen,

1994). We recently showed such an approach was possible in the simpler framework

of singleton types (Courant, 2002b). However we chose another approach (Courant,

1999): we explicitly added a transitivity rule for convertibility. In order to prevent the

problem we have with the untyped conversion, this rule is put under type conditions.

Then we could prove the subject-reduction first, and then the strong normalization

and Church-Rosser property at once.

5.4 Type inference

In this section, we present the rules for type inference in MC2(CC). As for base

terms, type inference for PTS is a quite complex subject (van Benthem Jutting

et al., 1993) and goes beyond the scope of this paper. For the sake of simplicity

we therefore restrict ourselves to the Calculus of Constructions (which is a full

functional PTS) for our base terms and focus on the typing rules for module

expressions. However, we believe the usual systems for typechecking different classes

of PTS (van Benthem Jutting et al., 1993) could be lifted to MC2(S,A,R).

As usual for type systems involving subtyping, the inference rules defining

MC2(CC) are non-deterministic. However, as every well-typed module expression

has a principal type (most general type), type-checking is quite simple and mainly

amounts to enforce the right strategy over the application of the rules.

Typing a module expression is done by computing its principal type (also called

most general type); checking that the module expression belongs to some given type

is done by checking that its principal type belongs to the latter.

We introduce some new judgments, whose rules are deterministic, in order to

type-check module expressions:

• Γ � m :P M, read “in the environment Γ, m has principal type M”

• Γ � p :P S, read “in the environment Γ, p has principal specification S”

• Γ � m :c M (“algorithmically m has type M”) which is defined as the

algorithmic counterpart of the previously used judgment Γ � m : M. (“m

has type M”). The intent is that m has type M if and only if algorithmically

m has type M.

Similarly, we introduce

• Γ � p :c S,

• Γ �M<:cM
′,

• Γ � S<:cS
′,

• Γ �M :c modtype,
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• Γ � S :c sigbody,

• Γ � S :c wfs and

• Γ|dom �c S

as the respective algorithmic counterparts of Γ � p : S, Γ �M <: M ′, Γ � S <: S′,

Γ �M : modtype, Γ � S : sigbody, Γ � S : wfs and Γ|dom � S .

Well-formedness Checking module types, module signatures and subtyping is done

as in the non-algorithmic system. See figure A 1 and A 2 in appendix A.

Checking a module belongs to a given type Checking that a module expression

belongs to some given type is just a matter of applying the rule [M/SUB], which is

the only rule for the judgment Γ � m :c M:

M/SUB
Γ � m :P M Γ �M ′ :c modtype Γ �M<:cM

′

Γ � m :c M ′

Checking a path belongs to some specification is just a matter of applying the

rule [SPEC/SUB], which is the only rule for the judgment Γ � p :c S:

SPEC/SUB
Γ � S′ :c wfs Γ � p :P S Γ � S<:cS

′

Γ � p :c S′

Inferring the principal type of a module As we have seen, strengthening might be

needed in some cases to compute the most general type of an expression. Therefore,

in order to compute the principal type of a module expression m, we first apply

the rule whose conclusion syntactically matches m, getting a type M we call the

quasi-principal type of m. Then, we apply strengthening to this type. Similarly, we

introduce a notion of quasi-principal specification for module paths. In other words,

we introduce the following new judgments:

• Γ � m :qp M, read “in Γ, m has quasi-principal type M”,

• Γ � p :qp S, read “in Γ, p has quasi-principal specification S”,

• Γ � s::qpS , read “in Γ, the structure body s has quasi-principal type S”,

• and Γ � d::qpS, read “in Γ, the definition d has quasi-principal specification

S”.

The inference rules for these judgments are given figure 4.

Actually, the only rules for principal typing are the strengthening rules for module

expressions and module paths:

M/STR
Γ � m :qp M

Γ � m :P M/m

SPEC/STR
Γ � p :qp S

Γ � p :P S/p

Base terms Finally, the algorithmic rules for the Calculus of Constructions are given

figure 5. We make use of three new judgments:

• Γ � t :c t
′, used to check that t′ is a type of t,
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Module expressions

M/STRUCT
Γ � s::qpS Alldiff(S )

Γ � struct s end :qp sig S end

M/APP
Γ � m1 :qp funcT x:M →M ′ Γ � m2 :c M

Γ � (m1 m2) :qp M ′{x← m2}

M/LAM
Γ �M :c modtype Γ; x : M � m :qp M

′

Γ � functor x:M → m :qp funcT x:M →M ′

M/PATH
Γ � p :qp S

Γ � p :qp ty(S)

Structure bodies

S/EMPTY
Γ � ε::qpε

S/DECL
Γ � d::qpS Γ ; x : S � s::qpS

Γ � x:=d;s::qpx:S;S

Definitions

DEF/M1
Γ � m :P M

Γ � m::qpM
DEF/M2

Γ � m :c M

Γ � m:M::qpM

DEF/TRANSPM
Γ � m :P M

Γ � transparent m::qpM:=m

DEF/TERM
Γ � t1 :P t2

Γ � t1::qpt2:=t1

Paths

SPEC/VAR
Γ � x :qp Γ(x)

SPEC/SELECT
Γ � m :qp sig S end field(m, x, S ) = S

Γ � m.x :qp S

Fig. 4. Rules for quasi-principal typing in MC2(CC).

• Γ � t :P t′, used to infer one type of t

• and Γ � t :w t′, used to infer a type in weak-head normal form for t.

5.4.1 Properties of the rules for type inference

Notice that if you replace in each rule the algorithmic judgment by its non-

algorithmic counterpart, you get exactly the non-algorithmic rules of MC2(CC),

as presented in section 4.2.3, except for the rule [T/WHNF] whose non-algorithmic

counterpart is [T/CONV].

Proposition 5.19 (Soundness)

Let Γ be such that Γ � ok. For all m and M, if

• Γ � m :P M or
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T/PATH
Γ � p :qp S

Γ � p :P ty(S)

T/SORT
(σ1, σ2) ∈ A
Γ � σ1 :P σ2

T/LAM
Γ � t1 :w σ1 Γ; x : t1 � t2 :P t3 Γ � ∀x:t1.t3 :P σ2

Γ � λx:t1.t2 :P ∀x:t1.t3

T/PROD
Γ � t1 :w σ1 Γ; x : t1 � t2 :w σ2 (σ1, σ2, σ3) ∈ R

Γ � ∀x:t1.t2 :P σ3

T/APP
Γ � t1 :w ∀x:t4.t5 Γ � t2 :c t4

Γ � (t1 t2) :P t5{x← t2}

T/WHNF
Γ � t1 :P t2 Γ � t2 	

whnf t3
Γ � t1 :w t3

T/CONV
Γ � t1 :P t3 Γ � t2 :w σ Γ � t2 	
 t3

Γ � t1 :c t2
Fig. 5. Type checking base terms in MC2(CC).

• Γ � m :qp M or

• Γ � m :c M

then Γ � m : M.

Proposition 5.20 (Completeness)

Let Γ be such that Γ � ok. For all m and M, if Γ � m : M then

• Γ � m :c M

• there exists a unique M ′ such that Γ � m :P M ′. Moreover, Γ �M ′<:cM.

• there exists a unique M ′ such that Γ � m :qp M
′. Moreover, Γ �M ′/m<:cM.

Corollary 5.21 (Principal type)

Every well-type module expression has a most general module type, also called

principal type.

Finally, the reader can check that the rules we have given are deterministic. The

conversion test involved in rules [SUBSPEC/MANM], [SUBSPEC/MANT] and [SUB-

SPEC/ABST] is decidable as 	 is Church-Rosser and normalizing (see theorems 5.16

and 5.17). Therefore, we have an algorithm to decide the type of a given module

expression.

6 Implementations

MC2 can be seen as an a posteriori formal justification of a subset of the proof-

assistant Agda (Coquand, 2000). It has also been used as the formal basis of

the module system of Coq, implemented by Jacek Chrząszcz (Chrząszcz, 2004b;

Chrząszcz, 2004a; Chrząszcz, 2003). Roughly, this implementation accepts MC2
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expressions, where module paths are restricted to identifiers and accesses of fields of

module paths.

As a proof of concept, we also developed a prototype type-checker ofMC2(CC),

called oeuf . oeuf accepts exactly MC2(CC) expressions. oeuf notably features

separate verification of modules, as presented in Section 5.

6.1 Faithfulness to the theory

When we wrote oeuf , our main concern was to ensure consistency between our

implementation and the rules we describe here. In order to achieve this, we wrote

a rule compiler, tpresent, able to compile first-order inference rules into Objective

Caml code as well as into LATEX code. All rules presented in this paper have been

generated that way.

The translation process into LATEX being quite flexible, we could hide some

implementation details. This does not alter the consistency between the printed and

the implemented rules as we can precisely know what the differences are by a simple

look at the rules governing the translation. The only differences are:

• As the mathematical presentation of a rule can harmlessly be a little more

ambiguous than its implementation, we chose to use the same notation for

typing judgments for terms, for modules and for paths. Likewise, while the

implementation distinguishes term specifications and module specifications,

providing specification as their disjoint sum, we chose not to write the canonical

injection from term specifications to specifications nor the one from module

specifications to specifications.

• For two of the given rules, we chose to hide some information that would

have made them less readable. The first one is the rule [SUB/SIG] ; as we use

De Bruijn indices, we needed to lift an expression once in this rule:

SUB/SIG
Γ; S1|Dom(S1) �c↑|S1| S2

Γ � sig S1 end<:csig S2 end

where ↑n S denotes the signature S lifted n times. The second one is the rule

[ENT/DECL]. Because of the renaming problem discussed in appendix C, dom

in the judgment Γ|dom �c S is not a set of fields but rather a table from field

names to De Bruijn indices. Likewise Dom(S) denotes the table obtained for

S . Then, the rule ENT/DECL is in reality

ENT/DECL
(w, x) ∈ dom Γ � x :c S Γ|dom �c S {w ← x}

Γ|dom �c w:S;S

6.2 Bells and Whistles

The concrete syntax of the input files is close to that given in section 4.2 with very

few differences:

• The notations “λ”, “∀”, “→” have been replaced by the ASCII strings “\”,

“!” and ->.
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• Products and abstractions can be done on several variables at once, thus one

can write \x y : nat . y instead of \x : nat . \y : nat . y.
• Variables whose names contain non-alphanumeric characters are infix (thus,

<= is infix);
• Any term can be considered infix as long as it appears between backquotes.

Also, we added local definitions (let ...in expressions) to base terms, using the

rules found in (Severi, 1996). The rules have not been given in this paper for the

sake of simplicity.

6.3 Separate development

oeuf knows three kinds of files:

Interfaces these are files with a name ending with .iv; they should contain a module

type;
Implementations these are files with a name ending with .pv; they should contain a

module expression;
Compiled interfaces these are files with a name ending with .civ; they should

contain a compiled representation of an interface.

Compiling a f.iv file with oeuf makes oeuf check the module type contain in f.iv

in the environment built with the interfaces contained in the compiled interfaces of

the current directory.

Compiling a f.pv file with oeuf makes oeuf typecheck the module expression

contained in f.pv in the same environment. Moreover, oeuf checks that a compiled

interface f.civ exists and that the inferred type for the contents of f.pv is a subtype

of it.

Then, if one wants to check a proof development (xi, mi,Mi)i∈[1,n] (in the sense of

definition 5.1), one just has to write each mi in a file named xi.pv, each Mi in a

file xi.iv, compile successively x1.iv, . . . , xn.iv, then compile all the xi.pv in any

order.

6.4 Availability

oeuf is available on the World-Wide-Web, at http://www-verimag.imag.fr/

~courant/soft/oeuf/

7 Future work

In this section, we describe several extensions we would like to add to MC2 in

decreasing order of need.

7.1 Inductive types

Adding inductive types such as those found in Coq to our calculus does not seem too

difficult. However, this would raise interesting issues about the status of inductive

types.
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In Coq, until version V5.8, inductive types were first-class objects and isomorphic

inductive types were identified. This semantics would fit well withinMC2. However,

this semantics has an annoying drawback: if the user defines an inductive with a

name, and the reduction machine unfolds this name, the user then face a first-class

inductive type, which is quite confusing.

In order to solve this problem, the semantics changed since V5.10: inductive type

definitions became generative, that is an inductive type definition always generates

a new type, incompatible with all previously defined types. Unfortunately, this

semantics does not fit well within MC2 since a type definition in a structure can

potentially be duplicated by reduction; in other words, this semantics would make

MC2 lack the subject-reduction property.

Let us explain this with an example. Consider first the following functor definition:

module F :=

functor X : sig

t : Set;

f : t → t;

v : t;

end

→
struct

Y := X; (* Y.t = X.t *)

Z := X; (* Z.t = X.t *)

r := Y.f Z.v; (* ok since Y.t = X.t = Z.t *)

end

Now, assuming such inductive type definitions exist in MC2, let us apply this

module to an anonymous structure defining t as an inductive definition:

module APP := F(struct

inductive t : Set := A : Set | B : Set;

f := x : A . x;

v := A;

end)

Now, if we replace the formal parameter of F by its actual argument, we get the

following module:

APP’ :=

struct

Y :=

struct

inductive t : Set := A : t | B : t;

f := λ x : t . x;

v := A;

end

module Z =

struct
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inductive t : Set := A : t | B : t;

f := λ x : t . x;

v := A;

end

r := Y.f Z.v;

end

In the former V5.8 version of Coq, inductive types are first-class object (there are

anonymous inductive types), and an inductive definition is just a definition binding a

name to an anonymous inductive type. Any isomorphic types are considered equal.

Therefore, since APP’.Y.t and APP’.Z.t have the same definition, they are equal

types. On the contrary, starting with the V5.10 release, they are inductive types with

different names, hence they are considered different — as in ML — which implies

the definition of APP’.r is ill-typed.

However the V5.8 has two problems:

• First, it identifies too many types. For instance, with the following inductive

definitions, nat and X are considered equal:

Inductive nat : Set := O : nat | S : nat -> nat.

Inductive X : Set := A : X | B : X -> X.

Moreover, the order in which the constructors are given is significant (if the

declaration of A and B were swapped in the definition of X, X and nat would

be considered different) which is not nice from a software engineering point

of view: equality should be intentionnal, not accidental.

• Second, as you prefer to show inductive names rather than the anonymous

inductive they are bound to, Coq V5.8 has to deal carefully with reductions.

The variants types of OCaml are better with respect to the former issue (they

identify types by name), and they are compatible with subject-reduction:

module APP’ =

struct

module Y =

struct

type t = [‘A | ‘B]

let f (x:t) = x

let v = ‘A

end

module Z =

struct

type t = [‘A | ‘B]

let f (x:t) = x

let v = ‘A

end

let x = Y.f Z.v

end

is accepted by OCaml. However they do not solve the latter issue.
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We conjecture there is a solution to the subject-reduction problem where inductive

types are not first-class objects, hence solving both problems:

Although in order to make APP’ well-typed, Y.t and Z.t should convert in

module Y = struct inductive t : Set := A : t | B : t end;

module Z = struct inductive t : Set := A : t | B : t end;

there seems to exists an equality notion that is compatible with subject-reduction

and that does not make Y.t and Z.t convert in

module Y := struct inductive t : Set := A : t | B : t end

: sig inductive t : Set := A : t | B : t end;

module Z : struct inductive t : Set := A : t | B : t end

: sig inductive t : Set := A : t | B : t end;

(Whereas Objective Caml would consider them as equal types if t is declared as a

variant type.)

The idea is in the former case, Y and Z, would both have a signature telling t

is equal to (struct inductive t : Set := A : t | B : t end).t, the normal

form Y.t and Z.t would reduce to, whereas in the latter case, they would just have

a signature telling t is an inductive type build with A and B, and Y.t and Z.t would

be different, hence incompatible, normal form.

7.2 Hierarchy of universes

Adding a cumulative hierarchy of universes in the style of (Luo, 1990) to our calculus

seems easy since MC2 is quite independent from the base language. However, we

would like more: we would like to have some universe polymorphism. The current

way Coq deals with universes polymorphism is not satisfying from the point of view

of modularity (Asperti, 1999). This is due partly to Coq not fully implementing

typical ambiguity (Harper & Pollack, 1991), but also to separate checking requiring

explicit universe constraints. We recently proposed an extension of ECC with explicit

polymorphic universes (Courant, 2002a) and we implemented it in our prototype

oeuf . Further work is needed to see whether these explicit universes are convenient

for daily use.

7.3 Overloaded Functors

Marı́a Virginia Aponte and Giuseppe Castagna proposed the addition of overloaded

functors to SML (Aponte & Castagna, 1996). Such functors are providing imple-

mentations of structures that depend on the actual parameters they are fed with. For

instance, a functor implementing dictionaries may implement them as associations

lists when it is only applied to a structure defining only a type and an equivalence

relation over this type, and as balanced binary trees when applied to a structure

defining a type together with a comparison function over this type.

These functors should help managing the namespace when dealing with large

developments. Indeed remembering names would be easier since names could be
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overloaded. Moreover, it would help reusing code since the resolution of overloading

is done at run-time.

These overloaded functors seem to be especially interesting when developing

abstract algebra. Many operations on algebraic structures indeed share the same

name, although they are distinct. For instance the name “product” applies to

monoids, groups, rings, vector spaces; the “polynomial ring of” functor produces a

ring when applied to a ring, an integral domain when applied to an integral domain.

Unfortunately, no subject-reduction result could be given for the proposal of

Aponte and Castagna as the underlying module system does not enjoy the subject-

reduction property. We hope our work provides a framework in which this proof

can be done.

8 Conclusion

We identified some issues related to the separate development of large proofs such as

independence with respect to the implementation, horizontal compatibility, upward

compatibility and composability. We introduced MC2, a kernel module system for

proof languages based on Pure Type Systems aimed at giving a formal basis for

solving these issues. MC2 over the Calculus of Construction is the formal basis

upon which modules have been implemented in Coq (Chrząszcz, 2004b; Chrząszcz,

2004a; Chrząszcz, 2003). It can also be seen as a justification of a subset of the

proof-assistant Agda.

Through basic examples, we showed howMC2 helps structuring the development

of mathematical structures and theories.

We formalized the issues related to separate development as metatheoretical

properties of MC2 and proved it enjoys them. MC2 also enjoys metatheoretical

properties making it a safe basis for proof development: it has a reduction

semantics (subject-reduction holds), it enjoys the Church-Rosser property, and it

strongly normalizes. MC2(CC) — MC2 over the Calculus of Constructions — is a

conservative extension of CC . We have shown that type inference is decidable in

MC2(CC).

Moreover, as MC2 is quite independent from base terms, it is likely to be robust

with respect to changes in the base calculus (such as the addition of inductive types

or universes).

Finally, the idea of defining a module system for proof languages incorporating

the “manifest field” feature of SML-like module systems is quite original as far as

we know. Therefore, it opens many directions for future work.

A MC2(CC) type inference algorithm

We give figure A 1 the algorithmic inference rules for checking the formation of

module types and specifications, and figure A2 the rules for checking subtyping.

We recall figure A 3 the rules for quasi-principal typing already given figure 4 and

give figure A4 the rules for inferring the principal type of a module, for inferring

the principal specification of a path, for checking a module has a given type, and

for checking a path has a given specification.
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Module types

SB/EMPTY
Γ � ε :c sigbody

SB/DECL
Γ � S :c wfs Γ; x : S � S :c sigbody

Γ � x:S;S :c sigbody

MT/SIG
Γ � S :c sigbody Alldiff(S )

Γ � sig S end :c modtype

MT/PROD
Γ �M :c modtype Γ; x : M �M ′ :c modtype

Γ � funcT x:M →M ′ :c modtype

Specifications

WFS/ABSTERM
Γ � t :w σ

Γ � t :c wfs

WFS/MANTERM
Γ � t :c t

′

Γ � t′:=t :c wfs

WFS/ABSMOD
Γ �M :c modtype

Γ �M :c wfs

WFS/MANMOD
Γ � m :c M

Γ �M:=m :c wfs

Fig. A 1. Checking module types and specifications.

B Code of the examples

In this appendix, we complete the examples given in our informal presentation,

section 3.

In section B.1, we show the content of the current oeuf library. Then, in section B.2

we give the proof chunks missing from the informal presentation.

B.1 Standard Library

For the moment, oeuf has a minimal standard library. It contains the following

declarations packaged in an Std.iv interface file:

〈standard declarations〉≡
∨ : Prop → Prop → Prop;

or_introl : ∀ p1 p2 : Prop . p1 → p1 ∨ p2;

or_intror : ∀ p1 p2 : Prop . p2 → p1 ∨ p2;

or_elim : ∀ p1 p2 p : Prop .

(p1 → p) → (p2 → p) → p1 ∨ p2 → p;

∧ : Prop → Prop → Prop;

and_intro : ∀ p1 p2 : Prop . p1 → p2 → p1 ∧ p2;

and_sym : ∀ p1 p2 : Prop . p1 ∧ p2 → p2 ∧ p1;

fst : ∀ p1 p2 : Prop . p1 ∧ p2 → p1;

snd : ∀ p1 p2 : Prop . p1 ∧ p2 → p2;
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Subtyping

SUB/PROD
Γ �M2<:cM1 Γ; x1 : M2 �M ′

1<:cM
′
2

Γ � funcT x1:M1 →M ′
1<:cfuncT x2:M2 →M ′

2

SUB/SIG
Γ; S1|Dom(S1) �c S2

Γ � sig S1 end<:csig S2 end

ENT/DECL
x ∈ dom Γ � x :c S Γ|dom �c S

Γ|dom �c x:S;S

ENT/EMPTY
Γ|dom �c ε

Subspecing

SUBSPEC/MANM
Γ �M<:cM

′ Γ � m 	
 m′

Γ �M:=m<:cM ′:=m′

SUBSPEC/ABSM
Γ � ty(S)<:cM

Γ � S<:cM

SUBSPEC/MANT
Γ � t1 	
 t′1 Γ � t2 	
 t′2

Γ � t1:=t2<:ct
′
1:=t

′
2

SUBSPEC/ABST
Γ � ty(S) 	
 t

Γ � S<:ct

Fig. A 2. Checking subtyping and subspecing.

nat : Set;

zero : nat;

succ : nat → nat;

le_nat : nat → nat → Prop;

leq_refl : ∀x : nat . x ‘le_nat‘ x;

leq_trans : ∀x y z : nat .

x ‘le_nat‘ y → y ‘le_nat‘ z → x ‘le_nat‘ z;

s_leq : ∀ x y : nat .

x ‘le_nat‘ y → (succ x) ‘le_nat‘ (succ y);

B.2 Proof chunks not given in the informal presentation

Reflexivity and transitivity of le nat are in fact standard library results:

〈proof of reflexivity of �〉≡
Std.leq_refl

〈proof of transitivity of �〉≡
Std.leq_trans

〈proof that for all x,y in (greatest s), x � y〉≡
λ s : a_subset . λ x y : P.a .

λ maxx : (x ‘elt‘ (greatest s)) .
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Module expressions

M/STRUCT
Γ � s::qpS Alldiff(S )

Γ � struct s end :qp sig S end

M/APP
Γ � m1 :qp funcT x:M →M ′ Γ � m2 :c M

Γ � (m1 m2) :qp M ′{x← m2}

M/LAM
Γ �M :c modtype Γ; x : M � m :qp M

′

Γ � functor x:M → m :qp funcT x:M →M ′

M/PATH
Γ � p :qp S

Γ � p :qp ty(S)

Structure bodies

S/EMPTY
Γ � ε::qpε

S/DECL
Γ � d::qpS Γ ; x : S � s::qpS

Γ � x:=d;s::qpx:S;S

Definitions

DEF/M1
Γ � m :P M

Γ � m::qpM
DEF/M2

Γ � m :c M

Γ � m:M::qpM

DEF/TRANSPM
Γ � m :P M

Γ � transparent m::qpM:=m

DEF/TERM
Γ � t1 :P t2

Γ � t1::qpt2:=t1

Paths

SPEC/VAR
Γ � x :qp Γ(x)

SPEC/SELECT
Γ � m :qp sig S end field(m, x, S ) = S

Γ � m.x :qp S

Fig. A 3. Rules for quasi-principal typing.

λ maxy : (y ‘elt‘ (greatest s)) .

(* y_upper_bound : ∀ z : P.a . z ‘elt‘ s → z � y *)

let y_upper_bound :=

Std.snd (y ‘elt‘ s) (y ‘elt‘ (upper_bounds s)) maxy

in

(* x_in_s : x ‘elt‘ s *)

let x_in_s :=

Std.fst (x ‘elt‘ s) (x ‘elt‘ (upper_bounds s)) maxx

in

y_upper_bound x x_in_s

Symmetrically:
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Principal type of a module

M/STR
Γ � m :qp M

Γ � m :P M/m

Principal specification of a path

SPEC/STR
Γ � p :qp S

Γ � p :P S/p

Checking typing

M/SUB
Γ � m :P M Γ �M ′ :c modtype Γ �M<:cM

′

Γ � m :c M ′

Checking specification

SPEC/SUB
Γ � S′ :c wfs Γ � p :P S Γ � S<:cS

′

Γ � p :c S′

Fig. A 4. Principal type inference and type checking.

〈proof that for all x,y in (lowest s), x � y〉≡
λ s : a_subset . λ x y : P.a .

λ minx : (x ‘elt‘ lowest s) .

λ miny : (y ‘elt‘ lowest s) .

(* x_lower_bound : ∀ z : P.a . z ‘elt‘ s → x � z *)

let x_lower_bound :=

Std.snd (x ‘elt‘ s) (x ‘elt‘ (lower_bounds s)) minx

in

(* y_in_s : y ‘elt‘ s *)

let y_in_s :=

Std.fst (y ‘elt‘ s) (y ‘elt‘ (lower_bounds s)) miny

in

x_lower_bound y y_in_s

〈proof of compatibility of succ with �〉≡
Std.s_leq

〈proof of compatibility of f with �〉≡
λx y : Std.nat .

λh : x ‘Std.le_nat‘ y . Std.leq_refl Std.zero

〈proof of reflexivity of the intersection �〉≡
λx : a .

Std.and_intro (x ‘P1.�‘ x) (x ‘P2.�‘ x)

(P1.refl x) (P2.refl x)

〈proof of transitivity of the intersection �〉≡
λ x y z : a . λ xy : x � y . λ yz : y � z .

let x1y := Std.fst (x ‘P1.�‘ y) (x ‘P2.�‘ y) xy in

let y1z := Std.fst (y ‘P1.�‘ z) (y ‘P2.�‘ z) yz in
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let x1z := P1.trans x y z x1y y1z in

let x2y := Std.snd (x ‘P1.�‘ y) (x ‘P2.�‘ y) xy in

let y2z := Std.snd (y ‘P1.�‘ z) (y ‘P2.�‘ z) yz in

let x2z := P2.trans x y z x2y y2z in

Std.and_intro (x ‘P1.�‘ z) (x ‘P2.�‘ z) x1z x2z

C Names and α-conversion

One would be tempted to say that we can deal with renaming and α-conversion

the usual way, for instance saying that we perform renaming when substituting and

when introducing a variable in a context (in order the introduced variable to be

fresh). However renaming raises some problems with structures (as well as with

signatures) as they are dependently typed (Harper & Lillibridge, 1994). For instance

if m is a structure struct x:=m′;y:=z.w; end then what should be m{z ← x}? If

we replace z.w by x.w, as in struct x:=m′;y:=x.w; end then x in x.w is captured

by the definition x:=m′. On the other hand, we cannot rename the field x of m

as field names are meaningful (whereas names of lambda-abstraction can be freely

renamed). In order to solve this problem, Harper and Lillibridge noticed that x had

two roles in the signatures: it is both a name which helps accessing a field from the

outside and a binder for fields that follow it in the signature declaration.

Therefore, adopting their solution, we distinguish these roles. A field declaration

in a structure or a signature has shape x as y : . . . , the former identifier being

a name, and the latter being a binder, whose name is subject to renaming. For

instance, the following three signatures are α-equivalent:

sig

a as a: Set;

r as r: a -> a -> Prop;

end

sig

a as a’: Set;

r as r’: a’ -> a’ -> Prop;

end

sig

a as a’’: Set;

r as r’’: a’’ -> a’’ -> Prop;

end

while in the following signature, the variable a is free:

sig

a as a’: Set;

r as r’: a -> a -> Prop;

end

In fact, the notation x : . . . we used in this paper was just syntactic sugar for

x as x : . . . .
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Note that the only rule that really needs to deal explicitly with this distinction is

the rule [ENT/DECL] described in 6.1.

Finally, as we work with De Bruijn indices, the only rule that needs a special

treatment with respect to renaming is [SUB/SIG] described in 6.1, let alone the usual

lifting operations (the function looking for a declaration in the environment much

appropriately lift the specification it returns and the substitution function must also

apply the adequate lifting operations).

D Untyped βmρδ-reduction is not Church-Rosser

In lambda-calculi with dependent types or higher-order types, convertibility is most

often defined as the congruent closure of β-reduction on untyped terms. This notion

of convertibility can then be proved equivalent to the equality of β-normal forms.

Since the work of Hermann Geuvers (Geuvers, 1993), it is well known that things

do not go that smooth with βη-reduction: the untyped congruent closure of βη-

reduction is not equivalent to the equality of βη-normal form on untyped terms as

the βη-reduction does not enjoy the Church-Rosser on untyped terms. However, the

divergence is quite limited as two terms obtained by βη-reduction can reduce to two

terms differing only by the types labeling binders in lambda-abstractions. Geuvers

used this fact to prove that βη-reduction is Church-Rosser on typed terms and that

the untyped congruent closure of βη-reduction is equivalent to the relation “having

a common reduct by βη” on typed terms.

However, Geuvers’ approach can not apply to MC2, as 	 in MC2 diverges much

more, as the following lemma shows.

Lemma D.1

Given an environment Γ and two base terms (resp. two module expressions) q1 and

q2, there exists a base term (resp. a module expression) q such that Γ � q 	� q1 and

Γ � q 	� q2.

Proof

Let q1 and q2 be two modules expressions (resp. two base terms) and τ be a module

type (resp. a base term). Let

M2 = sig X: τ:=q2; end

m1 = struct X:=q1; end

m2 = struct Y:=q2; end

m = functor Z:M2 → struct Y:=Z.X; end

q = (m m1).Y

q reduces (in many steps) to both q1 and q2. Indeed, we have

q 	βm struct Y:=m1.X; end.Y

	ρ m1.X

	ρ q1
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and also

q 	δ ((functor Z:M2 → m2) m1).Y

	βm m2.Y

	ρ q2

�

Proposition D.2

The reflexive transitive closure of 	 is the full relation.

Proof

This is a direct corollary of the previous lemma. �

Therefore, one has to consider the reflexive transitive closure of 	 restricted to

typed terms and typed modules. As dealing with the metatheory of this relation is

difficult, we choose to consider instead the equality of ββmρδ normal forms instead.

Once the metatheory is done, it is easy to show both of them are equivalent, thanks

to subject-reduction, Church-Rosser and normalization.
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Chrząszcz, Jacek. (2004b). Modules in type theory with generative definitions. Ph.D. thesis,
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(Mar.). The Objective Caml system release 3.01, documentation and user’s manual. http:

//www.caml.org/ocaml/htmlman/index.html.

Lillibridge, Mark. 1997 (May). Translucent Sums: A Foundation for Higher-Order Module

Systems. Ph.D. thesis, School of Computer Science, Carnegie Mellon University.

Luo, Zhaohui. (1990). An extended calculus of constructions. Ph.D. thesis, University of

Edinburgh.

MacQueen, David B. (1984). Modules for Standard ML. Pages 198–207 of: Proceedings of

the 1984 ACM conference on LISP and functional programming. ACM Press.

Milner, Robin, Tofte, Mads, Harper, Robert, & MacQueen, David. (1997). The definition of

standard ml (revised). MIT Press.

Owre, S., Shankar, N., Rushby, J. M., & Stringer-Calvert, D. W. J. 1999 (Sept.). Pvs language

reference. Computer Science Laboratory, SRI International, Menlo Park, CA.

Owre, Sam, & Shankar, Natarajan. 1997 (Aug.). The formal semantics of PVS. Tech. rept.

SRI-CSL-97-2. Computer Science Laboratory, SRI International, Menlo Park, CA.

Pollack, Randy. 1997 (Aug.). Theories in Type Theory. Talk at the Types Working Group

Workshop on Subtyping, Inheritance and Modular Development of Proofs. Draft available

at http://www.dcs.ed.ac.uk/home/rap/export/.

Pollack, Randy. 2000 (Aug.). Dependently Typed Records for Representing Mathematical

Structures. Available at http://www.dcs.ed.ac.uk/home/rap/export/records.ps.gz.

A previous version of this paper appears in Theorem Proving in Higher Order Logics

(TPHOLs 2000).

POPL’94. (1994). Conference record of the 21st symposium on principles of programming

languages. Portland, Oregon: ACM Press.

Ramsey, Norman. (1994). Literate programming simplified. Ieee software, 11(5), 97–105.

Ramsey, Norman. (2001). Noweb — A Simple, Extensible Tool for Literate Programming.

http://www.eecs.harvard.edu/~nr/noweb/.

Russo, Claudio V. (1998). Types for modules. LFCS thesis ECS-LFCS-98-389, University of

Edinburgh.

Severi, Paula. (1996). Normalisation in lambda calculus and its relation to type inference. Ph.D.

thesis, Eindhoven University of Technology.

Shankar, N., Owre, S., & Rushby, J. M. 1993 (Feb.). Pvs tutorial. Computer Science Laboratory,

SRI International, Menlo Park, CA. Also appears in Tutorial Notes, Formal Methods Europe

’93: Industrial-Strength Formal Methods, pages 357–406, Odense, Denmark, April 1993.

Stone, Christopher A., & Harper, Robert. (2000). Deciding type equivalence in a language

with singleton kinds. Pages 214–227 of: Reps, Thomas (ed), Conference record of the

27th symposium on principles of programming languages. Boston, Masschusetts: ACM Press.

Available at http://www.cs.hmc.edu/~stone/papers/popl00-preprint.ps.

https://doi.org/10.1017/S0956796806005867 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796806005867


352 J. Courant

Tasistro, Alvaro. (1997). Substitution, record types and subtyping in type theory, with

applications to the theory of programming. Ph.D. thesis, PMG, Dept. of Computing Science,
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