A GENERALIZATION OF THE BANG-BANG PRINCIPLE OF LINEAR CONTROL THEORY*

Richard Datko

(received March 5, 1965)

In a paper by LaSalle [1] on linear time optimal control the following lemma is proved:

LEMMA. Let Ω be the set of all r-dimensional vector functions $u(T)$ measurable on $[0, t]$ with $\left|u_{i}(T)\right| \leqq 1$. Let Ω^{0} be the subset of functions $u^{0}(T)$ with $\left|u_{i}^{O}(T)\right|=1$. Let $Y(T)$ be any ($n \times r$) matrix function in $L^{1}([0, t])$. Define

$$
A(t)=\left\{\int_{0}^{t} Y(\tau) u(\tau) d \tau ; u \in \Omega\right\}
$$

and

$$
A^{o}(t)=\left\{\int_{0}^{t} Y(\tau) u^{o}(\tau) d \tau ; u^{o} \in \Omega^{o}\right\}
$$

Then $A^{0}(t)$ is closed and $A(t)=A^{\circ}(t)$.

In theorem 1 we generalize the above lemma to the case where the functions u take their values on an arbitrary convex set in R^{m} which may vary with time. Theorem 2 gives a characterization of the boundary points of a set which corresponds to the set $A(t)$ of the lemma.

Canad. Math. Bull. vol. 8, no. 6, 1965

It should be pointed out that the above lemma has been generalized in another direction by L. W. Neustadt [3]. However, theorem 1 of this note and Neustadt's result have an intersection which is larger than the above lemma. For example the result of the remark at the end of this note can also be found in [3].

Let K_{o} be a compact convex set in R^{n} and as sume:

1. For each t in some measurable set $I \subset R$ containing the point $t=0$, with Lebesgue measure $\mu(I)<\infty$, that there corresponds a mapping $F_{t}: K_{o} \rightarrow K_{t} \subset R^{n}$, where K_{t} is a compact convex set.
2. There exist a ball in $R^{n}, S(0, p)$, of radius $p<\infty$ such that $K_{t} \subset S(0, p)$ for all $t \in I$.
3. If x_{0} is on the boundary, $\partial\left(K_{0}\right)$, of K_{o} then the mapping $F_{t}\left(x_{0}\right)=x_{t} \in \partial\left(K_{t}\right)$ for $t \in I$, and is the value of a measurable mapping $x: I \rightarrow R^{n}$ evaluated at the point t.
4. If $\left\{x_{i}(0)\right\}$ is countably dense in the set of extremal points of K_{o} then for each $t \in I\left\{x_{i}(t)\right\}$ is countably dense in the set of extremal points of K_{t}.

THEOREM 1. If $f: I \rightarrow R^{n}$ is a measurable mapping such that $f(t) \in K_{t}$ for each $t \in I$ then there exists a measurable mapping $\bar{f}: I \rightarrow R^{n}$ such that $\bar{f}(t) \in \partial\left(K_{t}\right)$ for each $t \in I$ and $\int_{I} f(t) d t=\int_{I} \bar{f}(t) d t$.

Proof. Consider the family U of measurable maps $z: I \rightarrow R^{n}$ with the property that $z(t) \in \partial\left(K_{t}\right)$ for each $t \in I$. Let

$$
A=\left\{\int_{I} z(t) d t \mid z \in U\right\}
$$

The theorem will be proved if we can show that $\int f(t) d t \in A$. To do this we show the following:
(i) A is convex.
(ii) A is closed and hence since $K_{t} \subset S(0, p)$, for each $t \in I, A$ is compact. Then using (i) and (ii) we show $\int f(t) d t \in A$.

I

Proof of (i). Suppose $z_{i}, i=1,2$, are in U. Let $r_{i}=\int z_{i}(t) d t, i=1,2$. Then by Lyapunov's Theorem on the
Range of a Vector Measure [2], given any $\alpha \in(0,1)$ there exists a measurable set $D \subset I$ such that $\int_{D} z_{i}(t) d t=\alpha r_{i}$,
$i=1,2$, and $\mu(D)=\alpha \mu(I)$. Let $z=C_{D} z_{1}+\left(1-C_{D}\right) z_{2}$ where
C_{D} is the characteristic function of D. Obviously $z(t) \in \partial\left(K_{t}\right)$
for each $t \in I$, and $\int_{I} z(t) d t=\int_{D} z_{i}(t) d t+\int_{I-D} z_{2}(t) d t$
$=\alpha r_{1}+(1-\alpha) r_{2}$ which shows the convexity of A.
(ii) Proof that A is closed. Since A is convex, to show A is closed it is only necessary to prove that the extremal points of \bar{A} (which is also convex) belong to A. Suppose r is an extremal point of \bar{A}. Then there exists a sequence $\left\{r_{n}\right\} \subset A$ converging to r. Each r_{n} has the representation $r_{n}=\int_{I} z_{n}(t) d t$ with $z_{n} \in U$. Using theorem 4 of Blackwell's paper [2] we can find a subsequence in $\left\{z_{n}\right\}$, which for convenience is assumed to be the original sequence, such that $\operatorname{Iim} z_{n}(t)=z(t)$ [a.e.] on I. The Lebesgue bounded $n \rightarrow \infty$
convergence theorem shows that $\lim _{n \rightarrow \infty} \int_{I} z_{n}(t) d t=\int_{I} z(t) d t$
i. e., $\lim _{n \rightarrow \infty} r_{n}=r$.

Let $T_{1}=\left\{t: \lim _{n \rightarrow \infty} z_{n}(t)=z(t)\right\}, T_{2}=I-T_{1}$. Thus the measure of T_{2} is zero and $z(t) \in \partial\left(K_{t}\right)$ for $t \in T_{1}$. Define $\bar{z}(t)=\left\{\begin{array}{l}z(t) \text { on } T_{1} . \\ z_{1}(t) \text { on } T_{2}\end{array}\right.$. Then obviously $\int_{I} \bar{z}(t) d t=r$ which shows that $\mathrm{A}=\overline{\mathrm{A}}$.

Finally we show that $r \in A$. Suppose $r \notin A$. Since A is a compact convex set in R^{n} there exists a point $y \in R^{n}$ such that $y \cdot r>y \cdot p+\alpha$ for all $p \in A$ and some $\alpha>0$.
Let $\epsilon=\frac{\alpha}{2 \mu(I)}$ and consider the sets $E_{j}(\alpha)=\left\{t: y \cdot f(t)<y \cdot x_{j}(t)\right.$ $\left.+\frac{\alpha}{2 \mu(\mathrm{I})}\right\}$ where $\left\{\mathrm{x}_{\mathrm{j}}(\mathrm{t})\right\}$ are the mappings postulated in assumption 4. It is easy to verify that $\bigcup_{j=1} E_{j}(\alpha)=I$. Let k-1
$E_{1}=E_{1}(\alpha), \ldots, E_{k}=E_{k}(\alpha)-\bigcup_{j=1} E_{j}(\alpha)$. Then the $\left\{E_{k}\right\}$ form a measurable partition of I. Let $C_{E_{j}}$ be the characteristic function of $E_{j}, j=1,2, \ldots$ Define $z=\sum_{j=1}^{\infty} C_{E_{j}} x_{j}$.

Then $p=\int_{I} z(t) d t \in A$ and $y \cdot \int_{I} f(t) d t<y \cdot \int_{I} z(t) d t+\frac{\alpha}{2}$. i.e. $y \cdot \mathrm{r}<\mathrm{y} \cdot \mathrm{p}+\frac{\alpha}{2}$. But this implies $\mathrm{y} \cdot \mathrm{p}+\frac{\alpha}{2}>\mathrm{y} \cdot \mathrm{r}>\mathrm{y} \cdot \mathrm{p}+\alpha$ and hence $\frac{\alpha}{2}>\alpha$ which is a contradiction since $\alpha>0$. Hence $r \in A$ and the theorem is proved.

THEOREM 2. Let $f(t) \in K_{t}$ for each $t \in I$. Then the point $p=\int_{I} f(t) d t$ is in $\partial(A)$ if and only if there exists a $y \neq 0$ in R^{n} such that $y \cdot f(t)=\sup y \cdot x_{i}(t)$ a.e. on I.

Proof. If f has the above property then since $\int_{I} \sup _{i} y \cdot x_{i}(t) d t=\int_{I} y \cdot f(t) d t=y \cdot p$ it follows that p must be in $\partial(A)$.

Next we suppose that $f(t) \in K_{t}$ for each $t \in I$ and that $p=\int_{I} f(t) d t \in \partial(A)$. Since A is convex it follows that there exists a $y \neq 0$ in R^{n} such that $y \cdot p \geqq y \cdot a$ for all $a \in A$.

Assume that f does not possess the property stated in the theorem. This implies that the set $E=\{t: y \cdot f(t)$ $\left.<\sup _{i} y \cdot x_{i}(t)\right\}$ is a measurable set with Lebe sgue measure $\mu(E)>0$. We consider the sequence $\left\{\frac{1}{2^{k}}\right\}, k=1,2, \ldots$, and define a corresponding sequence of measurable sets $E_{k}=\left\{t: y \cdot f(t)+\frac{1}{2^{k}}<\sup _{i} y \cdot x_{i}(t)\right\} \cap E$. It is evident that $\bigcup_{k=1}^{\infty} E_{k}=E$. Hence since E has a positive measure there exists a j and an $\alpha>0$ such that $\mu\left(E_{j}\right)=\alpha$.

Let $E_{j i}=\left\{t: y \cdot f(t)+\frac{1}{2^{j+1}}<y \cdot x_{i}(t)\right\} \cap E_{j}$. ObviousIy $U_{i} E_{j i}=E_{j}$ Since $\mu\left(E_{j}\right)=\alpha>0$ there is an i such that $\mu\left(E_{j i}\right)>0$.

Define

$$
\bar{f}(t)= \begin{cases}f(t) & \text { on } I-E_{j i} \\ x_{i}(t) & \text { on } E_{j i}\end{cases}
$$

Then $y \cdot \int_{I} \bar{f}(t) d t=y \cdot \int_{E_{j i}} x_{i}(t) d t+y \cdot \int_{I-E_{j i}} f(t) d t$
$>y \cdot \int_{E_{j i}} f(t) d t+y \cdot \int_{I-E_{j i}} f(t) d t=y \cdot p$ which contradicts the assumption that $p \in \partial(A)$.

Remark. As an application of theorem 1 we consider the system

$$
\begin{equation*}
\dot{x}=A(t) x+B(t) u(t) \tag{1}
\end{equation*}
$$

where $A(t)$ is a continuous $n \times n$ matrix, $B(t)$ is a continuous $n \times m$ matrix and u is in the family U of measurable mappings from $[0, \infty) \rightarrow K$ a compact convex set in R^{m}.

For any $u \in U$ the solution of sytem (1) with initial condition x_{0} at time t_{0} is given by

$$
\begin{equation*}
x_{u}(t)=X(t)\left[x_{0}+\int_{t_{0}}^{t} X^{-1}(s) B(s) u(s) d s\right] \tag{2}
\end{equation*}
$$

where $X(t)$ is a fundamental matrix of the system $\dot{X}(t)=A(t) X(t)$ with $X\left(t_{0}\right)=I$ the identity matrix.

Since linear mappings have the property that they map convex sets into convex sets and the extremal points of such sets into the extremal points of the image sets we see that the mappings $K_{s}: K \rightarrow R^{n}$ given by $X^{-1}(s) B(s) K$ satisfy assumptions $1-3$. Moreover if $\left\{u_{i}\right\}$ is dense in the set of extremal points on K then $\left\{K_{s}\left(u_{i}\right)\right\}=\left\{X^{-1}(s) B(s) u_{i}\right\} \quad$ will also be dense on the set of extremal points of $X^{-1}(s) B(s) K$. Thus assumption 4 is also satisfied.

Suppose we are given a $u \in U$ and $T<+\infty$. Let $x_{u}(T)=x_{1}$. Applying theorem 1 it follows that there exists a $\bar{u} \in U$ with the property that $x_{\bar{u}}(T)=x_{1}$ and for each $t \in\left[t_{0}, T\right] \quad \bar{u}(t) \in \partial\left(K_{t}\right)$.

I should like to thank the referee for suggesting the inclusion of [3].

REFERENCES

1. J. P. LaSalle, The Time Optimal Control Problem. Annals of Math. Studies, No. 45, pp.1-24.
2. D. Blackwell, The Range of Certain Vector Integrals. Proc. Amer. Math. Soc. 2 (1951), 390-395.
3. L. W. Neustadt, The Existence of Optimal Controls in the Absence of Convexity Conditions. J. Math. Anal. Appl. 7, (1963), 110-117.

McGill University

