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Abstract. A question of Ilgusa (from 1978) inquires about the singular behavior of the singular series,
determined by a polynomial mappifgk” — K™, m < n, wherek is alocal field of characteristic

zero. This paper describes in geometric terms the singularities of the singular series for two classes of
polynomial map® = (Pq, P):K" — K 2. The main result, which makes possible this description,

is a type of uniformization o by finitely many monomial mapg(x) = (le, xMZ), such thatank

(m;) = 2. This is proved using resolution of singularities. Using this result, nontrivial estimates of
oscillatory integrals with phasey P1 + A, P are possible. These will be described elsewhere.
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Introduction

Mellin inversion overp-adic fields is the method used by Igusa to determine the
singular behavior of the local singular series determined by one polynomial. In
particular, forP € Q,[x1, ..., x,], this is the function

t = regular value of P — F(¢)
=dget im p""V#E € (Z/p)"PE) = 1(p)}.

It is a locally constant function in a neighborhood of a regular valug dlt has
nontrivial singular behavior as converges to a critical value a?. A standard
argument [I, pg. 83ff.] also shows that

Ft) = f idx/dP|,
{P:t}ﬂZ';,

where|dx/dP| denotes a Borel measure on the fiber that is induced by the Leray
residue differential form.

The inverse Mellin transform [T] ove®, expresses the local singular series
as an infinite trigopnometric sum, each summand of which has a factor equal to
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the residue of a certain zeta function, or of its twist by one of an infinite set of
characters ofU, =qet Z, — pZ,. The key to Igusa’s method is a finiteness result

[, pg. 96], proved by applying (embedded) resolution of singularities to the divisor
{P = 0} in Q. This shows that only finitely many twists of the zeta function con-
tribute to the inverse Mellin transform. Thus, describing the asymptotic behavior
(ast converges to a critical value at) of the local singular series reduces to a
problem that can be solved in terms of a finite set of numerical data, created by the
resolution of singularities.

Igusa’s principal motivation, however, was to estimate the asymptotic behavior
of the Fourier transform of the local singular series. For this, knowledge of the pre-
cise singular behavior of the singular series is an essential prerequisite. The value
of the Fourier transform at the argumentp”, (a, p) = 1, equals the generalized
Gaussian sum

2riaP(§)
Ga/py=p™ Y e

seZ/pr )"

The ability to obtain strong decay in~", for each primep, such asG(a/p") =
O(p~*) for somea > 2, when certain geometric properties were satisfied, was
an important consequence of his theory of ‘asymptotic expansions’ irpeaic
variable.

Motivated by this work, Igusa asked in his book [l, pg. 32] how one could extend
his method to analyze the singularities of the local singular series, determined by a
polynomial mapP = (P4, ..., P), k > 2, along the critical values d@?. As in the
one variable case, when eaghis defined ovefQ,, this is the function

t=(t,..., 1) — F(t)

#s e (Zy/p)"PiE)=14(p)i=1 ...k}
pe(nfk)

=def lim
e—> 00

’

wheret is a regular value dP. This function is also a fiber integral [Y]:
F() =/ |dxy - --dx, /dPy A - - AP,
{P=t}ﬂZ';

where the measure is, again, induced by the Leray residue form on each smooth
fiber of dimensiom — k.

Typically, though not necessarily always, an effective estimate for the Fourier
transform of F(t) is of interest. A standard argument [I, pg. 83] shows that the
transform determines a ‘generalized Gaussian sum’,

G(al/pra~--,ak/pr)=p7rn Z epr Zzalpx(x)’
XG(Zp/pr)"
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when evaluated at a vectt,/p’, ..., a./p") such that gctb, a4, ..., a;) = 1.
Estimating the sum for largeis a basic problem in the circle method.

Unfortunately, a multivariable extension of Igusa’s geometric method is not at
allimmediate. Indeed, the proof of his finiteness theorem does not extend to-treat
tuples of polynomials except in a very limited way. In attempting to discover such a
generalization, the most important problem seems to occur for pairs of polynomials
since a solution for pairs should indicate what one needs to dooB vectors.

The main result of this paper extends Igusa’s method to two classes of pairs of
polynomials, defined ove,. These are as follows

Cl =ger all P:Q5 — Q3 satisfying the very mild hypothesis (1.5).

Cl) =get all P:Q), — @f,, n > 2, such that eaclp; is homogeneous with at most
one singular point, and so that the singular locus SofgP (as a map-
ping) is a curve with at most one singular point (see Sections 2,3).

For each pair, a finite amount of geometric data is shown to determine the
precise singular behavior of the corresponding local singular series. Further, this
data is created by a finite number of blowing up morphisms. Each morphism de-
termines an embedded resolution of singularities. Thus, each is a finite composition
of monoidal transformations with center a nonsingular variety. The same property
also holds if each polynomial is defined over any finite extensio@ of

The first three sections of this paper are geometric in nature. Here one derives
all the needed ingredients for the local analysis of the singular series in Sections 5—
6. Section 4 contains the statement and proof of the main result of the paper,
Theorem 4.3. The essential new idea required to establish this is a type of local
uniformisation for a maj® by ‘good P wedges’ (see (4.2)). That is, one shows that
a compact neighborhood of Singan be decomposed into the union of finitely
many goodP wedges. This is not a difficult result for elements@f;. However,
for elements ofe¢,, the underlying geometric argument is a bit intricate (see
sections 2,3). Work in progress intends to show that Theorem 4.3 is true in far
greater generality.

Igusa’s finiteness theorem extends easily within any gBadedge. This is
shown in Proposition 5.3. The combination of (4.3) and (5.3) proves that the singu-
larities of the local singular series are determined by a finite amount of effectively
determined geometric data. This is shown in (5.7), (5.11), and (6.11). Section 6,
part ii also works out a complete description of the singular behavior from within
the image (byP) of any goodP wedge wherP; is a linear form.

In the case of one polynomial, this geometric data takes the form of a finite set
of n + 1 tuples of nonnegative integers, each determined by that polynomial. In the
case of paird, the data consists of a finite number of explicitly computed 3
matrices with nonnegative integer entries. However, unlike the one variable case,
a finite number of additional pairs of maps is needed to generate all the matrices.
A pair P, by itself, is incapable of generating all the data needed to describe the
singularities of the singular series Bf It should also be noted that a convenient
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geometric encoding of this data produces a finite set of polygons (see (6.12)), in
terms of which one can describe certain essential features of the singular behavior
of the singular series d®. This property is a simple consequence of Theorem 4.3.

Evidently, there needs to be a connection between each ancillary pair)
andP itself. The relation between the two pairs is described by a transformation
(F,G) — Pthatis called an ‘amelioration’ (or ‘improvement’) (see (1.2)). This
is a local notion that is defined in the image of the maps. So, it is a type of ‘base
change’ morphism.

The main observation of this paper is that local resolution data (in the domain)
can be used to construct all necessary ancillary gdir<s), as well as the maps
(F,G) — P (in the range). Establishing this principle is the key to extending
Theorem 4.3 to other classes of polynomial maps. The reader is encouraged to read
the introductory remarks of Section 3 where this is discussed more completely.

Theorem 4.3 applied t& € C¢, extends a result of Loeser [Lo, Thm. 1.4.3]
to a large class of nonfinite maps (@i However, since Loeser's method does
not extend to treat pairs of polynomials in more than two variables, (4.3), applied
to ¢y, is the first case known to the author in which an effective (and explicit)
description has been given of the singularities of the local singular series of a
mapping in which the number of variables exceeds the number of functions.

Since the first version of this paper was completed and circulated in the spring
of 1997, generalizations of the principal result have been found by Denef [De] in
the p-adic field case, and Lion—Rolin [L—R] in the real case. Abramovich and Karu
[Ab—K] also have found a generalization that applies (in the algebraic case) over
algebraically closed fields of characteristic zero. These papers imply very general
results on the singular behavior of a fiber integral, determined by integrating a
compactly supported differential form over the nonsingular fibers of a polynomial
(or analytic in [L—R]) map, as a critical value is approached.

What however is, so far, lacking with all three of these papers is the effectiveness
of the procedure by means of which this behavior can be described. Moreover,
one is limited to fairly general assertions about the form of the singularities, and
cannot, as yet, say anything very precise. As a result, it does not yet seem possible
to apply these results to estimate, in any useful sense, the Fourier transform of the
fiber integral. Since the ability to do just that is one of the principal motivations
for studying the singularities of a fiber integral in the first place, it would appear
to be very interesting to extend the more constructive methods of this paper. This
should make it possible to determine nontrivial estimates for the Fourier transform
of many classes of mappings.

Indeed, the article [Li-1] uses the purely geometric results of this paper to derive
a nontrivial decay estimate foG (a1/p", az/p")| (@sr — oo) for P € C¢, U CYy,
that is uniform in(as, a»). The estimate is most conveniently described in terms of
the polygons, defined in (6.12). In particular, wheiix) = 8 - x, B € Zj,, and P,
has degred, > 2, a simple estimate for the rate of decay can explicitly be given
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and seen to be independent/fThis requires the data obtained in Section 6 part
i
In this way, for fixedB, a nontrivial decay estimate is found for generalized
Kloosterman sums as follows
2miuag
Su«(p",B) =det P Y. €7 G(=1/p’,az/p")

aq,ap€[l,p")
ajag=1modp’)

= 0, (pr(n7%+l+s))’ (01)

for any (sufficiently small > 0. These sums have been intensively studied in
the cubic case in [H-B-1]. It has also been suggested in [H-B-2, pg. 152] that an
estimate for the averag{s:{ﬁez,,”m@} |S.(p", B)| is a needed ingredient to detect
rational points or{ P, = 0} when P, is of higher degree, in particular, of degree

4. Using very different methods than those developed in [Li-1], the article [Li-5]
was able to establish estimates on average that are comparable to (0.1). It would be
interesting to know if similar estimates could be found that use only the methods
from [op cif].

The methods of this paper, because they are purely geometric, also apply over
R andC (see Remark 6.13). Using them, problems in classical analysis can be ad-
dressed. OveR, the pairsC¢,, C¢, can be defined, and the asymptotic behavior of
the oscillatory integral with phase P, + A, P, can be analyzed for larg@4|, |15|.
Although the techniques of integration are completely different than those of [Li-
1], the estimates obtained are entirely similar. The results are given in [Li-3]. These
too should be true in much greater generality.

In contrast to estimating oscillatory integrals, the works of Phong—Stein (e.g.
[P-S-1, 2, 3]) have emphasized the estimate of oscillatory integralatorson
variousL? spaces. A related problem is the ‘stability’ of oscillatory integral operat-
ors, or of integrals of the typg, | /|~ dx, whereB C R" is a small box containing
a singularity of the polynomial/analytic functiofi (see [P-S-St]). The proxim-
ity to the classical subject of oscillatory integrals suggests that algebro-geometric
methods based upon Singularity theory should exist to deal with such problems. So
far, this has proved elusive. It seems that one can attack such problems using the
existence of a several variable asymptotic expansion for appropriately defined fiber
integrals. The article [Li-6] shows that this is possible when the phase function is
homogeneous in two variables. To do this, the singular behavior of a three variable
fiber integral needs to be understood very precisely.

OverC, there is the problem of obtaining a good definition of residual current
(see [P]), using families of paths other than ‘admissible’ paths. This problem was
posed in [Be-Y, Thm. 5.23ff], and solved in the case of complete intersections in
[P-T-1,2]. It is not difficult to show, see [Li-4], that this question can also be un-
derstood in terms of the singularities of a fiber integral. It follows that the methods
of this paper also apply to this problem. As a result,(®r, P,) € C¢, U C¢), one
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can analyze the limiting behavior of the integrals (wherdenotes a compactly
supportedn, n — 2) form)

/ 1 as n,tp— 0.
{|Pyl=t0){| Pol=tp) PLP2

This is particularly of interest fo€¢, since such pairs need not define a complete
intersection.

To simplify the discussion, this paper has only treated the casg,ofThe
reader, who is assumed to be familiar with Igusa’s theory in 1 variable, for which
[1]is an excellent reference, will easily be able to make the needed changes for any
finite extensionk of Q,. For the reader who is not, it suffices to replaggeresp.
the ideal(p)Z, by Ok, the ring of elements of norm at most 1 resp. idgalO,
whereu is a generator for the elements of norm strictly smaller than 1. Then, in
the expressions below, one replaces the nurpldey p/ = #09/(n).

An initial version of this paper was prepared while the author was a visitor at
IHES, to which he expresses his appreciation for its support.

Section 1

Part i gives the two basic definitions that are used in the rest of the article. Part ii
treats the case @f¢,.

Part i. Good-Bad points
Let(f, 8):U(p) C Q) — Qf, denote any pair of nonzep-adic analyticfunctions,
defined on a compact open neighborhood of a ppinand such thatf (p) =

gp) =0.

DEFINITION 1.1. p is a good point of( f, g) if there exist analytic coordinates
x = (x1,...,x,), defined onl (p) and centered ai, such that

n n
fx) = l_lxl.N" Uy, g(x) = l_lxl.M" “uz,  uq, uzanalytic units orv (p),
i=1 i=1

Nl N Nn
rankA(p) =es ( ) =2
Ml N Mn
p is a bad point if it is not good. O

So, if each function has the form of monomial times a unit (in the same coordinate
system) but rankA(p) = 1, thenp is bad. As a second example, if at least one
function is singular ap but cannot be expressed as the product of a monomial and
unit, thenp is bad.
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Note In this article, when a point and compact open neighborhood of the point
are given, one writes ‘coordinates on the neighborhood’ to mean a systeadi¢
analytic coordinates defined on the neighborhood and centered at the point. If no
neighborhood is indicated, ‘coordinates at the point’ means a system of coordinates
defined on some unspecified compact open neighborhood of the point. Further,
units (on some neighborhood) are alwgysadic analytic functions that do not
vanish on the neighborhood. Given a painthe notationU (y) denotes a compact
open neighborhood of. O

DEFINITION 1.2. Letp € Q, Let(f, g), (F, G) be two pairs of analytic functions
defined on somé& (p). A permissible modificatiois a map(F, G) — (f, g) such
that (up to a permutation of, g)

f=cF’ and g=v(F)+GonU(p), (1.2.1)

and where- # 0,4 € N, andvy (t) is a p-adic analytic function.
A permissible modificatiortF, G) — (f, g) is anameliorationatp if p is bad
for (f, g) but good for(F, G). O

Note Given some neighborhodd, the expressioF, G) — (f, g) onU will
mean that equations of the form (1.2.1) hold between the two pairs of functions on
U. Unless greater precision is required, the neighbortidadll not be written.

Partii. The case: = 2
In this part,p always denotes a bad point of a mgf) ¢):U (p) C Qf) — Qf,. At
first, a simple criterion is given that ‘improves’ a mappafThen, the definition of
C¢, is presented, and one shows how to apply the criterion to improve any element
of ¢, in a neighborhood of a bad point.
Suppose the following two properties hold in a neighborh@ogb) (always up
to a permutation of, g, if needed)

(1.3a) There exist coordinates= (z1, z2) on W(p), nonnegative integers;;, j =
1,2, at least one of which is positive, and a unit on W(p) such that
@) =27 25%u1(2).

(1.3b) Letd, denote the Jacobian ¢f g in the z coordinates. There exist non-
negative integers4 ;, j = 1, 2, at least one of which is positive, and a unit
u on W (p) such thatd ;. (z) = 21 25%u(2).

PROPOSITION 1.4.If (1.3a), (1.3b) are satisfied, then there exists an ameli-
oration (F, G) — (f, g) on some (possibly smaller) subneighborhda¢p) of

W(p).
Proof. By permuting the coordinates, one may assumeNhat 0. By factoring
out from u; the constant termx,(p), and shrinkingW (p) to a subneighborhood
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U (p), if needed, one may assume that the binomial seriesfa)'/"* converges
forall z € U(p) and that

wr=z1- W)™, wy =12
determine coordinates di(p). One can then write
fw) = ur@wy wd?, e (w) = witwsu(w), (1.4.1)

whereu(w) is a unit onU (p).
Let the power series expansionti(p) for g(w) be given by

sy = Y g, where w! = wiufit ] = (i, o).
J#(0,0)
o . N1 j1
For simplicity in the following, setN; J| = ‘ -
N2 2

A simple calculation then indicates that

Fr.e(w) = ur(E)wy* wy? "t Y " gy IN: J|w! if Ny >0,

L 00 (1.4.2)
wadpe(w) = ur(Pwy* " D gyIN; Jlw!  if Np=0.
J#(0,0)

Sinced s, (w) is given by (1.4.1), it follows thav; —1 < A, j =1, 2, if each
Nj > 0,andN; — 1< A, if N, =0. Set

(e1,82) = (A1 — N1+1, A, — N>+ 1). (143)

Dividing both sides of (1.4.2) by the monomial factor written on the right side of
(1.4.2), one concludes

Z gsIN; Jlw’ = witws? - u(w) whereuis a unit onl (p). (1.4.4)
J#(0.0)

Next, one writeg (w) = g1(w) + g2(w), where

g1(w) = Z ngJ and gy(w) = Z gjwj.

IN;J|=0 IN;J|#0
Now set
§ = gcd(Ny, N), N =qef (n1, n2) = (N1/8, N2/3),
F=uw", G = g(w).
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Since eacly in the index set fog; is an integral multiple oh, setg = {j:jn €
suppgi}. It follows thatg: = ¥ (F) wherey (t) = 3,4 gjnt’.

It is then clear thatF, G) — (f, g) determines a permissible modification on
U (p). To show that it is an amelioration gt one first notes that # 0, since
g = Y (F) implies thatg s, would be identically zero it/ (p). In addition, it is
clear that

suppgz =def {J:IN; J| #0 and g, # 0}
= supp(the function defined on the left side @f.4.4)).

Thus, (1.4.4) impliegz(w) = witwy?- (@n analytic unit inU (p)). Since(es, &2)
cannot be linearly dependent wifv,, N,) it follows that p is a good point for
(F, G). O

Now letP = (P, P,), where Py, P, are polynomial functions o@f,. Recall that
Sing denote the singular set of the mappifgSetdp to equal the jacobian d?
with respect to a fixed set of affine coordinates, x,) on Qﬁ.

DEFINITION 1.5. P € ¢¢, iff for any compact open neighborhodd of a point
in Sings, P(U) has positive measure @2, andP(U — C¢p) is dense irP(U). O

Remark. This property avoids a certain degeneracy in the imade thfat can
arise when one works with a pair of polynomials. One wants the inR4ge to
have positive Haar measure, so that, in particular, it does not lie on an analytic
curve, as would be the casehf, P, satisfied an analytic relation dii. One also
wants to insure that any singular fiberRjf; can be approached along nonsingular
fibers. O

The main observation is the following.

THEOREM 1.6. LetP € €4, andg € Sing, be a bad point foP — P(g).

() If at least oneP; is nonsingular aly, and Sing is a normal crossing divisor
in a compact open neighborhodd(q) of ¢, then there exists an amelioration
(F,G) — P—P(g) atgq.

(b) If (a) fails to hold atg, then there exist a compact open neighborhotd) of
g, a nonsingularp-adic manifoldX, and a morphismy:X — U (g) such that:

(i) n is the composition of finitely many point blowing ups
(i) the exceptional diviso€ of n blows down tay,
(iii) each pointp on & is either good folP o  — P(g), or there exists an amel-
ioration (F, G) - Pon — P(g) atp.
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Proof of (a). By a permutation if necessary, one may assume there exist co-
ordinatesy = (y1, y,) such thatP; — Pi(g) = y1 andgp = 9 P2/dy> = yi ys2u,
whereu is a unit atg. Setting(f, g) = P — P(qg), it follows that Proposition 1.4
applies immediately to finish the proof.

To prove (b), note first that in the ring of analytic germg athere exist distinct,
irreducibleshy, ..., h, # 0, each vanishing at, and unitsuq, u,, u atg such that
for suitable nonnegative integeats b;, ¢;, one has

“ b
Py — Pi(q) = h{ .. hy' -ua, Py — Pa(q) = hi*.. . hy' - uz,

Jp=h$ ... hy - u.

Notation. For a function gernk at a pointg, one writes here and in the rest of
the articleh,, to denote the ‘reduced’ function germ, obtained by setting any pos-
itive exponent on the right side to 1. A similar notation is used for a representative
function defined in a neighborhood ¢f O

Let U(g) denote a compact open neighborhood on which all these functions are
defined, and so that the above equations hold at each point.

Now observe that the hypothesis in (b) implies eitheg (i$ a singular point of
(P1 — P1(q))ra @nd (P2 — P2(q)),a, OF (ii) both (P — P1(¢))ra, (P2 — P2(9))ra
are nonsingular ag, and (gp),s is singular atg, but does not define a normal
crossing divisor ag. It follows that the set of pointg, satisfying the hypothesis
in (b), is a discrete subset since it is defined purely in terms of the underlying
reduced functions. Thus, by shrinkidg(g), if needed, one may assume that the
only singular point inU (¢) notsatisfying (a) is the poing.

In either case, there exist finitely many point blow ups = 1, ..., R, so that
the following hold

(1) the first blowing upy, blows upg;
(2) foreach > 2,n; blows up exactly one point in the exceptional divisonpf;;
(3) definingn = n10---ong, andX = n~1U(g), the divisor
D =gef {(PL— P1(q)) - (P2 — P2(q)) - Jpon=0}NX
is a locally normal crossing divisor.

Now setdp,, to denote the jacobian &fo . Then, because = 2, one concludes:

Fpon = (§pon) - (detdn). (1.6.1)

Sincedp o and det @ are both locally the product of a monomial and unit at each
point of D, it follows from (1.6.1) that the same holds fgp.,. Hence, one can
now apply Proposition 1.4 to the pdif, g) = P o n — P(g) at any bad poinp on
the exceptional divisor of.

To conclude the proof of (b), it suffices to observe that& X N {gp o n = 0}
is a bad point foP o n — P o n(y), andn(y) # ¢, then (a) implies the existence of
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an amelioration ay. That is, no additional blowing up gfis required. O

Remark. The elementary argument that proves (1.6), it turns out, was first ob-
served in the work of Akbulut and King [A-K] on an entirely different problem
in topology. The author rediscovered the same idea in the course of work that led
to this paper. This should be another indication that a general method of ‘improv-
ing’ the singularities of mappings would find important applications in subjects far
removed from Singularity theory.

2. Local Normal Forms at Singular points for P € €¢,,

Convenient local forms are given in a neighborhood of a pgint Sing..
There are two cases. The first assugésnot the unique singular point of eaéh
denoted subsequently 8s(2.2) gives a local form that is sufficient for this paper.
Here the neighborhood (¢) will lie in the original affinen space on whiche is
defined. The rest of the section treats the case of a pantthe exceptional divisor
of the blowing up of0 in @Z' A system of affine coordinates= (x4, ..., x,) for
@}, is chosen and fixed throughout the discussion.

The assumptio® € C¢, easily is seen to imply the following.

LEMMA 2.1. There exist local coordinate, ..., y,) atg # 0 € Sings, such
that

P(y) = Pug) = y1. Pa(y) = Pa(q) = ¥4 (y1) + pa(y),
wherey, is a convergent power series witid,, v/, = 1, and so that
dy1 A d(0p2/0y2) A -+ Ad(dp2/0ya) # 0.

The standard proof of Morse’s Lemma [C—M, pg. 24] also applies in the ring of
germs ofp-adic analytic functions at the origin i@,. Using this and the Prepar-
ation Theorem applied t®, — P»(g), more explicit local forms forP; — Pi(g),

P, — P>(g) can be found.

LEMMA 2.2. There exist coordinateéts, ..., Y,), defined on a compact open
neighborhood (¢), such that

Pi(Y) — Pi(q) = T, (2.2.1)
Po(Y) = Pa(q) = Yy (YD) + Y ;Y7 4+ ) Yig(Ya, ..., Yy,
j=2 =2

where eaclr; # 0andg, (0, ..., 0) = 0for eacht.
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Remark. The ability to describe the functioR, — P»(q) — v, (Y1) with such
precision is a key ingredient to the arguments of Section 3. O

To analyze what occurs at the origin, one blows it up. The following is used.

Notation. 7:X — @}, denotes the blowing up &, whereX is covered by
affine chartsX ;, with coordinatesc(j) =ger (x1;, ..., X,;) SO that

TX(J)) = (X0 Xjjy ey Xjjyoens XnjXjj) = (X1, .0, Xp).

The exceptional divisorr ~(0) is denotedD and one setD N X; = D; for sim-
plicity. For eachj andp = (p1;, ..., pj) € Dj, setpY) = (p1j,..., pj-1;, 1,
Pj+1j» ---» Pnj), thought of as a point in the coordinate plane wheiis defined.

The strict transform of each; in any chart ; is written £;. The context will make
clear in which chart the strict transform is being considered Jnit follows that

ﬁi:R(xlj,...,xj,l)j,l,xjﬂ,j,...,x,,j). Oa
It is then easy to see thRte C¢, implies the following.

LEMMA 2.3.

(i) Foreachi, j, X; N {P, = 0} is a nonsingular hypersurface
(i) Foreachi, j, X; N {f’,» = 0} is transverse taD;.

Setd; = degP;,i = 1, 2.

LEMMA 2.4. Suppose € D; N{P, = P, = 0} is a singular point of the mapping

P =get (P1, Pp):{xj; =0} C X; — Q3. Then

(i) p is a singular point oP; ) ) )

(i) If d1 = d», then the singular locus dfP, = P, = 0} N 7~%(0) is a smooth
curve nearp.

Proof of (i). First, one notes thaP;(p"’) = 0 for eachi. Secondly, Euler’s
identity implies that for each,

opP; P ;i
. (PP = — Zpk-/ (pM. (2.4.1)
X Py BXk

Now, for eachk # j, 8 P;/dx;(p'”) = 8 P,/dx:;(p). So, if p singular for the map

P, and somepy; # 0, then (2.3)(i) implies the rank of the Jacobian matrix of this
mapping is precisely 1, and the preceding equation implies the same holds for the
rank of the Jacobian d? at p*/. If all p;; = 0, thend P, /dx; (p”’) = O for eachi

and (i) is immediate. This shows (i).
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To prove (ii), one shows that — 2 of the 2x 2 minors of the Jacobian matrix
of P have linearly independent differentials at To do so, one first notes that
sincep € CG¢y, there aren — 1 of the 2x 2 minors of the Jacobian matrix &f
at p'Y) whose differentials are linearly independentpé?. Denote these as, =
Ay, 0,(P),e =1,...,n— 1, wherek, < ¢, denote the columns from which the
minor is formed. Set/ to denote the common degree of eakh It follows that
eachh, is homogeneous of degreéZ2— 1), and, by (i) vanishes gi. Further,
P;(p) = 0 for eachi.

Now, if j & {k., £.}, for eache, then it is clear that

OP1/dx,;  dPy/ox,;

helix;=1) = Aspo,(P) =qef| . R
dP>/0xy, 0Py/0xy,;

It then follows that for anyt # j, ok /axu|{xj:1} = 0y, @e(ﬁ)/axu,. Forming

the matrixM = (% xj=1) ) withl<e <n-—1,u # j, it follows that a priori

its rank is at least — 2, provided one evaluates at a singular poinPoHowever,
by Lemma 2.3, one can always choose local coordingigs . ., x,,), centered at
p in O; such thatP = (X2, cX2 + @(Xp, ..., X,)) for somec # 0. This implies
there exist at most — 2 minors of the Jacobian matrix &f in these coordinates
that can be nonzero. Since the rankiéfis independent of local coordinates, its
rank can not be more than— 2. This shows (ii) in this case.

If, however,;j € {k., £.} for somee, then one uses the following easily verified
formula, obtained by applying Euler’'s formula. For ahguch thatj < ¢,

d aP aP
AP =— (10172 - Pz—l) Z i Z AP,

J k<t ¥ =t *

Sincep'Y) is a singular point oP at which eachP; vanishes, it follows that for any

r#E

AN (P (P)
— =) = —dy ey e o)
" k]
3 Ao (P)
- —d G b, 2.4.2
k; P (p) (2.4.2)

whereg, = 1ifk < £andg, = —1ifk > £.
Assumingpy; # 0, for somex, (2.4.2) then shows

rank( ’Z(P)( (/))> = rank(LAk’e(P)(p(”))
0x, vy 0x, ik}

r#j

AL (P
= rank A(p) .
9%y Jglit)

r#j
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The matrix on the left includes all but one column of a matrix @blumns whose
rank equals: — 1, which implies its rank is at least— 2. Arguing exactly as above
shows that the rank of the matrix on the right is at most 2. This verifies (ii),
assuming somgy; # 0.

On the other hand, ipy; = 0 for eachk # j, then homogeneity of each
A;¢(P), and the fact that each, ,(P)(p"’) = 0 for all (a, b), implies thatp'” is
a singular point of each ; ,(P). So, in that case, each row of the matrix on the left
in the preceding equation that contains the partiala pf(P) must be all zero. So
then it is clear that the rank of the matrix involving all other minors equailsl,
which implies that the rank of the submatrix formed by deleting ttiecolumn
must be at least — 2. Applying the prior argument then completes the proof of

(ii). 0

Using the prior results, one then deduces convenient local forms near any point on
the exceptional divisor in each chaft.

LEMMA 2.5. Supposg € D, N {P; = P, = 0}. Then

(i) If pis anonsingular point of, then there exist local coordinatéss. . . ., y,)
on some compact opdni(p), such that

Piom = yflyz, Prom = yfzyg.

(i) If di = d» =qer d, and p is a singular point of?, then there exist local
coordinates(y, ..., y,) On some compact opén(p) so that

Piom = y‘liyg,

W o)+ Y ey? + D vs8e(ya o) |

i>3 2

on]'[

where ¢, and eachg, is analytic, ord,,s, = 1, and eachg, vanishes at

(y3,...,y)=1(0,...,0). X
(i) If d1 # d, and p is a singular point ofP, then there exist local coordinates
(y1, - - -, y») ON SOMe compact opdn(p) so that

Prom =iy,  Prom = y{2ly2+¢,(s, ..., yu)llunitonU (p)l,

where the norm of the unit factor is constant agg is a p-adic analytic
function in(ys, ..., y,) that vanishes ato, . . ., 0).

Proof. (i) is evident. (ii) follows by applying Lemmas 2.2, 2.4 fo (iii) follows
from Lemma 2.3 and the Preparation Theorem. O
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One concludes the section by considering points on the exceptional divisor of
that are on fibers of other thanP~1(0, 0).

LEMMA 2.6. Supposep € = ~%(0) is such thatP;(p) # 0and P,(p) = 0. Then

there exist local coordinate®, .. ., y,) on some compact opdn(p) such that
Prom = y{MPuUp) + pr(ya. ...yl Paom = yiy,

wherep, is analytic onU (p) and|p1(y)| < | Pr(p)I.
Proof. This is clear from Lemma 2.3. O

LEMMA 2.7. Supposep € 7—1(0) is such thatP(p) - Po(p) # 0. Then there

exist local coordinatesys, ..., y,) on some compact opén(p) such that
Prom = Pup)yt,  Prom = yP[Pa(p) + pa(ya. -, yu)]s

where p, is analytic onU (p), p2(0,...,0) =0, |pa(y2, ..., y)| < |Pa(p)|, and
p2 is nonsingular outsid¢p, =0} N U(p) N {y1 = 0}.
Proof. By assumption each; has the following form in the chaiX ;:

s oA PR .
Piom =x}i P, Pi=Pi(p)+ Pi(X1js oo s Xjo1,js Xjgdjs - -+ > Xnj)s

wherep; vanishes ap.

One first restricts to a neighborhod#, (p) on which the binomial series for
(1+ p1/Pi(p))Y? is a p-adic analytic function. Insid&1(p), there is a possibly
smaller open compaé (p) so thaty; = x;;(1+ p1/P1(p))Y/* satisfies the condi-

tion |d)’1/dxjj| = 1. Then(ys, ..., y») =def (1, X1jy ooy Xjdjs Xjqdjs e s Xnj)
are local coordinates centeredpabn U (p) such that

Pom = Pi(p)yd,

p1(y2, .-, yn):|d2/dl

Prom = yP[PAp) + p2(ya, .-, yu)l [1 + ~
Pi(p)

One can now write

~ —dy/dy
[1+ p1(y2, ..., yn):|

— =14 pu(y2,...,y,) with u(0,...,0 =0,
P1(p)

whereu(ys, . .., y,) is p-adic analytic, and sety(ys, ..., y») = Po(p) + p2 +

pou. One then achieves the last property in the Lemma’s statement by shrinking

U(p)N{y, = 0}, if needed, so that the only critical value g@f can occur at 0. This

completes the proof of the Lemma.

https://doi.org/10.1023/A:1001743909924 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001743909924

40 BEN LICHTIN

3. Finding Good Points for Elements of®¥;,

By (1.1), it is clear that any point € 7= ~*(0) is a good point if the local form of

P o 7 is given by (2.5)(i) or (2.6). Any other point # 0 € Sing, whose local
form is given by (2.2), is bad for the ma&p— P(g). Furthermore, any € 7 ~1(0)

with local form given by (2.5)(ii), (iii), or (2.7) is bad fdPo . Parti of this section
treats (2.7), Part ii treats (2.5)(iii), Part iii treats (2.5)(ii), and Part iv treats (2.2).
This sequence is determined by increasing difficulty.

The goal in each part is to cover a compact open neighborhood of thegpoint
resp. p with finitely many images of neighborhoods of good points by monoidal
transformations (i.e. blowing up morphisms with nonsingular centers). The good
points will be good for some pair, obtained frd?- P(g) resp.Po s by combining
a permissible modification (see (1.2)) in the range and the composition of finitely
many blowing ups in the domain. As a result, it is essential to pay attentialh to
the points on the exceptional divisor of any blowing up.

NOTATION. In the following, morphisms will be noted by with sub or su-
perscripts appended when needed. A bold faced lgtt@enotes a point on the
exceptional divisor of some that is mapped tg # 0 € Sing, at which the local

form is (2.2). A bold faceg denotes a point on the exceptional divisor of some

n that maps to a poinp € 7~%(0), at which the local form is given by (2.5) or

(2.7). Anyn is defined so that it maps onto some neighborhti@g) or U (p). If

the point and its image do not need to be stressed in the discussion, then one uses
x to denote the point on the exceptional divisonof O

The main problem that one meets can be illustrated by considering axpmirthe
exceptional divisor ofr that is bad folP o . Let (P;, P,) denote the pair obtained
by a permissible modificatioqP;, P,) — P o m. If X is good for(P;, P,), then
one is finished with the local analysisgtand proceeds to another point on the
exceptional divisor. If, howevek is bad for(P;, P;) as well, then one applies a
second blowing ug’ of some nonsingular subvariety containigOne then must
analyze the behavior @P;, P;) o " ateachpoint of the exceptional divisor of .
Some points will be good, but others might be bad. At each bad ggiatsecond
permissible transformation would be mad®’, P,) — (P;, P,) and, ifx" is still
bad for (P, P;), then another blowing up” with smooth center containing
would need to be found, leading to the analysis of all the points on the exceptional
divisor of ”. Some would be good, others could be bad, and so forth and so on.
In principle, the combination of blowing up and permissible modification could
go on indefinitely. A priori, there is no reason that it should ever terminate, that is,
eachpoint of each exceptional divisor should be good for some pair of functions,
obtained by a combination of permissible modification in the range and blowing
up (with nonsingular center) in the domain.
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It turns out, however, that the proceduakvays terminates in finitely many
steps. In the two simpler cases of parts i, ii, this requires a use of resolution of
singularities, applied to the original pair of functions, followed by at most one
permissible transformation. It is then easy to see that the latter is an amelioration.
Thus, there is no need to understand the singularities of the new pair.

In the more difficult cases studied in parts iii, iv, this is no longer the case. One
must keep track of the singularities of a new pair, whenever it is necessary to create
one at a bad point. The finiteness of the procedure described above is proved by
introducing the indicedy, M1, M, at each bad point treated in case iii (i.e. with
local form (2.5)(ii)). These are defined in (3.5)(4). The analogues for case iv (local
form (2.2)) are defined after the statement of (3.10).

These numbers can be thought of as numerical ways of measuring how bad
the point is. As indicated above, at each such point, the first step in the procedure
defines a blowing up morphism whose center contains the point. The choice of
morphism will be (more or less) evident in the discussion. This is primarily due to
the simplicity of the local forms derived in Section 2. The assumptionRrat ¢
is evidently used here.

The main problem is to describe with sufficient precision how the strict trans-
form of the pair behaves under this morphism. The principal difficulty is to do this
for the function, denoted by, in (iii), (iv). One expects the generic point of the
exceptional divisor of the morphism to be good. For case iii, this is true. For case iv
this is true only after an additional permissible transformation, even at the generic
point of the exceptional divisor. At any exceptional point that is bad, one then needs
to measure how bad it is in terms of the. Thanks to théls;, it is possible to show
that it is not as bad as the original point was fjr This implies that an iterative
procedure exists to improve points because a similar analysis can then be carried
out at each new bad point. Since there is always some improvement, this implies the
termination of the ‘infinitesimal improvement’ procedure in finitely many steps.

In more general cases, it is tempting to believe that analogues #ftlsbould
exist at any bad point of a mapping. It also seems quite reasonable to expect that
such invariants can be found by extending the methods of Bierstone—Milman [Bi-
M] to each point of an exceptional divisor, not just a point on the strict transform
of some variety.

Parti. The local form (2.7)
LEMMA 3.1. Assumep € n~1(0) is a point at (2.7) occurs. Then there exists

a smoothp-adic varietyY and proper birational mapr”:Y — U (p) so that the
following properties hold

(i) 7’ is an isomorphism outside the singular locud pf ,, = 0};

(i) If 7’(y) is not a singular point op,(y», ..., y,), then local coordinatey =
(v1, ..., v,) exist on a compact ope¥i(y) so that
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Piomon'(v) = Pupni,

Promon'(v) = v2[Pa(p) + pa(' () + val;

(iii) If z'(p) is a singular point of p, .4 = 0}, then local coordinates = (vy, ..., v,)
exist on a compact ope¥i(p) so that

Piomon'(v) = Pi(p),

Poomon'(v) = vfz[ﬁz(p) + vé"z e u(vg, L, v,

whereu is a unit of constant norm oW (p).

Proof. This is just the embedded resolution theorem applieghto O
One concludes the following.

COROLLARY 3.2.

(i) Define the pair

(v1, v%2vp)  if (3.1) (ii) holds

(1, V2002 - 0™y (va, ..., v,) i (B.D) (i) holds
Then the magF, G) — P o x o ' is an amelioration ap.

(i) There exist finitely mang; so thatu;z’(V(p;)) = U(p);

(i) The V(p;) can be made pairwise disjoint, ane (V(p;)) N 7' (V(pe)) is a
subset of the singular locus ©p, ., = 0} inside D if p; # p..

(F, G) =def {

Proof. (iii) follows from (3.1)(i) and the total disconnectedness of ghadic
topology onY. (ii) follows from the fact thatz’ is proper. (1.2) implies (i). O

NOTATION 3.3. For purposes of Section 6 and [Li-1], it is useful to extend the
notation introduced in (1.1). LetX — Q’, be a morphism obtained by compos-
ing finitely many blowing ups along smooth subvarieties. y.&ke a point on the
exceptional divisor of;. Let f, ¢ be analytic functions defined in a neighborhood
of y for which there exist local coordinates = (w4, ..., w,) such that

n n n
N; L; —1
le_[wi’-ul, gzl_lwi’-uz, detd7=1_[wf" - u,
i=1 i=1

i=1

whereu, us, u are units. Then, one defines a3: matrix

Ny N, N,
Ay) = Ly Ly L,
mr—1 =1 e o, =1
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If, however, onlyR < n columns are nonzero, then one chooses the indexing
so that the firstR columns ofA(y) are the nonzero ones, and for simplicity in
presenting the data, the remainimg- R columns are not included as columns of
A(y). This notation will be used whepn = p or g (see the above Notation). To
coordinate with notation of [Li-1], if/ is bad for(f, g) = Pon — Pon(y) butan
amelioration exists af, then the matrix is writteiA*(y). No ‘#' is written if y is
good for(f, g).

For example, if (3.1)(ii) resp. (3.1)(iii) holds gt then, forn = = o 7/, and the
pair of maps(F, G), the matrixA*(p) is given by

1 0 1 0 0
dy 1 resp dy ny m,
n—1 0 n—1 wu-1 ... u,—1

Partii. The local form (2.5)(iii)

The difficulty of this case is considerably less because the degrd&s Bf are not
equal. Since the blow ups will be centered inside= 0, the multiplicities along

this divisor remain unchanged throughout. This tends to promote the presence of
good points after a blowing up of the affine spage= 0 along a smooth subvariety.

LEMMA 3.4. Suppose the local form {€.5)(iii), andp € D;N{P, = P, = O} is

a singular point of the mapping. Then there exist a smooghadic varietyZ and
proper birational mapy:Z — U (p), obtained by composing finitely many point
blow ups, so that each poipte n~1(p) is good forP o 7 o 1.

Proof. One first may assume that(p) is so small that the only singular value
of @, lu(p)niy1=y,=0; €QUals 0. Then, lefo:Zo — U(p) N {y1 = y» = 0} be a proper
birational map, an isomorphism outside the singular locygpf, = 0}NU(p) N
{yv1 = y2 = 0}, so thatg, o ng is locally the product of a monomial and unit in a
neighborhood of each point in the preimage of the singular locug by

SetZo = {|Iy1l < e} x {Iy2| < &} x Zo andijo = id x no:Zo — U(p).

It is clear that ifvg ¢ (¢, o 70)~*(0), thenvg is good for(Py o 7w o fjo, P o
m o 7p). So, it suffices to assume& € (¢, o 1n0)"1(0). Thus, one may assume
local coordinatesgy, v, z3, . . ., 2,) are defined on a compact open neighborhood
U (Vo) C Zo of v so that for somé ¢ [3, n] there exist; > 0,i = 3, ...,k and
a nonzero constartsuch that orlU (vg) one has:

Piomoipg= yflyz, Pyomoio= y‘fz[yz + czg’ - 21+ (unit).

Remark. Since this is obtained by absorbing a local unit into one of the local
defining equations for an irreducible componenipgfo no = 0 atvy, it follows,
a priori, that one may have to factor out sop@dic number that does not have a
root of any ordee; in Q,. This is the explanation for the factor O
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One now converts the bracketed expression into the product of a monomial and
analytic unit everywhere alonjg; = 0}. First blow up along the subvariefy, =

za3 = 0} in U(Vp). Let n1:Z(1) — U (vg) denote this morphism, and sgf" =

7 ofpon. ThenZ (1) = Z,(1) U Z3(1) such that

1 d
PronPlLa = yitza2,

d 1 :
vi2zoo(1+ cz5y 255 - zt) - (unit)

1
P,0nP| 2,0

1 d
Py o 77( )|23(1) = )’11223233,

1 d ea—1 e .
Pron Pz = ¥i’zas(zos+ cz5y 24t -+ 2 - (unit).

Thus,d; # d, implies that any poink on {y; = z2» = 0} is necessarily a good
point. Additionally, atx, if ez > 1, then

dy 1 0...
AX) = dy 1 0...
n—1 wu,—1 pus—1...

wherepu,, us, ... are certain positive integers witl, > 2. If e3 = 1, however,
then ifx is a zero of(1+czg5 - - - z;*), then by reindexing, if necessary, one replaces
the third column byO, 1, u — 1), whereu = u,, and£ is such thae, > 1. If x is
not a zero, then there is no changeifx).

In the other chart it is evident that ibs # O, then(zzs, 0) is good. Further, if
k = 3 andes = 1, then even0, 0) is good. So, one is not yet finished only if
k > 4 orif ez > 2. In either case, one again blows up along the subvajigty—
zz3 = 0} in a neighborhood of the origin, and repeats the preceding argument
e3 — 1 additional times before losing the factey; in the monomial. Doing so
produces the chain of blow ugs(i) - ZG@ — 1) — --- — Z(1), where each
Z(j) = Z2(j) U Z3(j), and exactly one point, the origin in the ch&i(i), i < es,
is bad. Lety'):Z(i) — U(p),i < es, denote the composition of these blow ups
with 7 o 7. Then it is simple to check that

(e3) _ . d1_e3 _e3—1
Pron | z,e5 = Y1 222232

e d -1 e .
P20 e = Y2255 (14 cz32- - - 205) - (unit)

d
P1on“? 2300 = V1 223755,
d> e .
P20 0?2505 = ¥17255(z23+ €24 - 25) - (unit).

If k = 3, then one is finished, since it is clear that each point of the exceptional
divisor is a good point for the pair, precisely becadset d,. If howeverk > 3,
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then one needs to repeat the above reasoning. But now, the number of distinct
factors of the monomial inys, . . . , zx3 has decreased by 1. So, an evident induction
onk then completes the proof of the Lemma.

Partiii. The local form (2.5)(ii)
Although the local forms (2.2), (2.5)(ii) are similar, the presence of the factor
in the latter leads to a somewhat different argument. So, these require separate
attention.
Using the notation of (2.5)(ii), writg/, (y2) = >~ ¥:y5, and define

Py=Pyom —y1){yo=Prom — yi(PLom).

The map(Piom, P;) — (Prom, Pyom) is an example of a permissible transform-
ation (see (1.2)) that is not necessarily an amelioration.

The following will be used in addition to (3.3). Throughout, notation from
(2.5)(ii) is used.

NOTATION 3.5. (1) One chooseB (p) to be a polycylindef|y1] < &} x -+ x
{Iy.] < €}, for somes > 0.

(2) Theith blowing up in the argument is denotgdand will always have the
form

ni = 1idy, x ni1 Z(i) =qet {Iy1] < €} x Z'(0)
— Z(i — 1) =qef{ly1l <&} x Z'(G - 1),

whereZ’'(0) = {|yo] < &} x --- x {|y.| < &}. Thus, the blowing up will always be
done inside a space of dimensier- 1.

If one blows up a point, then eadi(i) is the union of: — 1 open charts written
Zf,.(i),j = 2,...,n with coordinateg’(j) = (z2;, ..., 2,;) SO that

’7,{|z}(i)(Z,(j)) = (ZZijj, e Zj—1,j%js Zjjs Zj41,j T js e v anij)~

One setsZ; (i) = {ly1l < &} x Z(i) for eachj, i. The precise coordinates in the
range ofn; will be clear from the discussion to follow. Similarly, the indewill
not be included in the notation for the componentsg)ofsince context will make
clear which blowing up one is considering. A similar notation is used if one blows
up aline.

One writesn®” =niomnp0---on;.
(3) The rightmost column, with entries written & ¢, 0), of any of the matrices
A¥(p) (or A¥(g) in part iv), always equalg0, 1, 0) resp. (0, 0, 0) if the pointp
belongs resp. does not belong to the strict transform of the hypersurface, defined
by the second function in the pair with matrix of multiplicities equahi@p). The
use of # is needed since all points in this part and part iv will be bad for the original
pair P.
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(4) The form of P, is the subtle point and depends upon three integers. First, define

deg, (¥, —viy2) if ¥, # 0y

My = )
0 if ¥, = yiy2.

Second, writ€) ", , y5g¢ = p} + p, where

py= Z Y2 Z He., py = Z Y2 Hie,

(=2 ex2 =2

andH,, = H, ,(ys, ..., y») IS homogeneous of degredor each?. Then set

mult 4 if p/ £0
My — ©....0) P1 ' P17
0 if pj =0,

M mUlt(o ..... 0) Plz if p/2 #* 0
2= .
+o00 if p,=0.

These numbers are multiplicitiés D;. It is also useful to define in the following
L=l1<lo<--}=1{C 22:H1’g 750}

LEMMA 3.6. Let p be a point at which(2.5)(ii) holds, and letU (p) be the
neighborhood op in the statement af2.5)(ii). Then there exist a smoogiradic

manifold Z, and proper surjective birational map.Z — U(p), satisfying these
properties:

(i) nis anisomorphism outsidg*(p);
(i) For each pointp € n~(p) there exist local coordinateg, ..., z,), defined
on a compact opeW (p), so that

Promon(z) = 29257 g

Pyomon(z) = zizéz . ”Z’I;,, - (unit),
d N, --- N,

rank = 2.
d L, --- L,

Proof. The proof depends upon the three integers defined in (3.5.4). There are
four cases to consider.

(A) (Mo, M) = (0, +00).
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Setn;:Z'(1) — U(p) N {y1 = 0} to be the blowing up of the, axis. That
is, one blows up the lingys = y4s = ... = y, = 0} in D;, and restricts to the
preimage oU (p) N {y1 = 0}. Then in each chaiZ;(1), itis clear that

Promon=){ys  Poom=yiz5 i+ Y azli+z- ()|,
[y

where(x) is some analytic function. It follows that at any poxbn {y; = z;; =
0}, the bracketed term is either nonzero or, if it is zero, then it crosses transversally
this divisor. Using the notation in (3.3), it is then clear that

d 1 0 0
Af(x) = d 0 2 3
n—1 0 m-2 O

So, any suck is good.

(B) Mo > 1,M; > 1, M3 = +o00.

It follows that My > 2, M; > 4, but no termg, is linear inys, ..., y,. So,
one first blows up the origin i@';;l rather than they, axis in Q'I’;l. Denote the
intersection of the exceptional divisor of with the chartZ; (1) by D;. It follows
that in thejth chart one has:

(Prom ony, Pyon)

d d_2 k—2
(y]_ZZZ’ y1222|: Z YkZ22

k> Mo

=+ ZC,’Z[ZZ + lel/él—Z . (*)])’ if .] =2

i=3

= (3.7)
(yfzzf‘zn" yiizfj[ D st e

k> Mo

+ Zcizizj + Z%l_z . (*):|>, if j#2

i>3
i#]

One then observes that the factey satisfies the property that the degree of each
of its monomials in the variables;, i # 2, is always at least fbr each ;.

Assume first thatMy = 2. If p € D; does not belong to the strict transform
of {P;, = 0}, defined by the bracketed factor in (3.7), it is clear thas good. If
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it does belong to the strict transform, then, for= 2, it belongs to the surface
{y2+ X i=3¢iz% = 0}. So, itis clear thatD, and the strict transform must cross
transversally ap. It is also clear that a similar property holds whgest 2. Thus,

if pe Dyresp.p e Dj,j >3, then

1 0 r 1 0
Al(p) = d 2 e resp d 0 2
n—1 n—-2 0 n—1 n—2 0

wherer = 1if z3;(p) = 0,r = 0if not. This completes the proof of the Lemma in
Case B ifMy = 2.

If My > 3, then the only point at which the strict transform{& = 0} fails to
intersect transversally the exceptional divisor is the origil) =ger 0,_1 in the
chartZ)(1) since the geometry is determined by that of the c¢pig. 5 ¢;z2 = O}.

This is nonsingular except 8;_;. At any other poinp on the exceptional divisor,
the matrix A%(p) is the same as in the preceding paragraph, sophata good
point for (Py o w o 11, P5 o n1).

Thus, one only needs to deal further withl) when My > 3. To do so, one
must continue blowing it up. The preceding argument can then be repeated since
M, = 400 and the fact that the multiplicity at'(1) of the term denoted by (*) is
at least 2. Indeed, writingfy = 251 + 82, 6> € {0, 1}, §; > 1, then one shows that
at mosté; + 8§, + 1 additional blow ups of nonsingular subvarieties inman 1
dimensional affine space are needed to insure that the strict transfqiy ef 0}
intersects the exceptional locus transversally. To complete the proof in case (B), the
form of both functions along the exceptional locus needs to be made explicit. The
simplest way to do this is by induction on the number of blow ups. The preceding
paragraphs have given the first step of the induction.

One assumes that for some [1, §; + 8»), i blow ups

Zi)y->2Z'(i-)—---—>Z'Q) - U

have been constructed, so that for eackii — 1, exactly one poing’ (k) has been
blown up inZ'(k) to give n;,,:Z'(k + 1) — Z’(k). This point one assumes to

be the origin in the chaiZ; (k). Further, along the exceptional locusgf ,, one
assumes there is exactly one point of nonnormal crossing with the strict transform
of { P, = 0}. This point one assumes to be the origitk + 1) =ges Oe Zy(k+1).

At any pointp, other thanthis unique point, the rank of the matm{H(p) equals

2. Moreover, ifp # ¢'(k + 1) € Zy(k + 1) resp.p € Z);(k + 1) then one assumes

d 1 0
A 1(p) = d 2k + 1) P
n—-1 *«+1)r-2 O
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d r 1 0
resp d rk 2(k+ 1) e |,
n—1 kn—-2 *(+Dn—-20 O

wherer = 1if zp;(p) = 0, andr = 0 if not.
Finally, one assumes that in the coordinates z'(2)) for Z,(i):

(Promon®, Pyon®)

| wa d_2i k—2i 2 My—2i
= | Y1222, Y122 E Vs + 2 :Cka2+Zzz CONNE
k> Mo >3

where the term%l‘Zi(*) has multiplicity at leasd; atz’(i) = (0, ..., 0).

Assume now thadM, = 2§, and thatt = §; — 1. Then the blowing up of (i)
suffices to finish the proof of the Lemma in this case. This follows because the
strict transform ofP; in the chartZ,(i + 1) is given by

k—Mo 2 My—2i
YMq + Z YikZoo + Z CkZio + 290 (*)
k>Mg k>3

So, it is clear that any point of intersection of the strict transform with the excep-
tional divisor is transverse, and that the strict transform does not vanish at the origin
¢'(i +1). A simple exercise shows that the same holds in the other charts, and that
A?l(p) is obtained by setting + 1 = §; in the preceding matrix.

If, on the other hand)M, = 2§; + 1 andi = §;, then the strict transform a?,
in Z,(i) is given by

k—25 2 My—2i
YMoZ22 + Z Viigp '+ chZjZ +t25 " (%)

k>Mo j=3

When one now blows up the origin i, (i), it follows that the strict transform of
{P, = 0} in Zy(i 4+ 1) is disjoint from the component of the exceptional divisor
{z00 = 0} sincezy, is a factor of each monomia}'ziz. So, ifp € {z00 = 0}, thenp
is good and
d 1
Al =] d Mo
n—1 Mo(n — 2)

Onthe other hand, in every other chZft(s,+1), k #~ 2, all points in the subvariety
{zx = zi = 0} are not transverse to the strict transform{ 8f = 0} since in this
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chart

/ ’ d_Mo—1_Mop 2
Pyomsa = Y125 g |:VMoZZk + CrZkk + § :C./Zkkzjk +
23
%k

{—Mop+1_€—My 2
+ Z Vel Lk +Zkk(*)j|'
2= Mop+1

Now, blow up the subvarietyzox = zxx = 0} in eachZ, (61 + 1), k # 2, by
the mapn; ,,:Z'(61 +2) — Z'(61 + 1). At any point of its exceptional divisor,
the total transform of P, = 0} is a normally crossing divisor. Ib € Z; (61 + 2),

k # 2, respp € Z,(81 + 2) is any point on the exceptional divisor, then it is easily

seen that
d 1 2 0
YR (OE d Mo—1 2M, P
n—1 6mn—-—2 Myn—-—2+1 O
2 1 0
resp d 2M, Mg £

n—1 Myn-2)+1 G+1)n—-2) O
This completes the proof of the Lemma in case B.

(C) My =0, M, < +o00.

This case impliep5 # 0.

Let0,_; denote the origin i/ (p) N {y; = 0}. Letn; denote the blowing up of
0,_1in U(p)N{y; = 0}. One first notes that jf; # 0, thenM; > 4. So, in the chart
Z'(1) of ny, the termz;jzp’l oy vanishes everywhere along the exceptional divisor
D’ to order at least 2. It follows that only the strict transformgfdetermines
whether or not the strict transform P, = 0} is transverse t@’;.

On the other hand, the multiplicity of the strict transform jgf behaves in a
more complicated manner. Fgr > 3, the strict transform op; o n; in Z(1)
equals

-2 b 1+ yq1 A
57 Yy Hg G,
i=1

wherez;; denotes the absence gf in the expression. Thug; > 2 implies that
the multiplicity of the strict transform op] is at least 2, — 1 > 3 along the
subvariety{zz; = z;; = 0} of D’.

Now, if p € {z2; = z;; = 0}, eitherp belongs to the strict transform P, =
0}, or it does not. If it does not belong, then cleaplys good. If it does belong,
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then necessarily; + Z{ié cizij(p)? = 0 impliesz;(p) # O for somei # j,
i > 3. Thus, the strict transform is transverse to the exceptional divigor S0,
one concludes that € {zp; = z;; = 0} is always a good point and

d 1 1 0
Af(p): d 0 2 £
n—1 0 n—-2 O

It therefore suffices to consider the behavior along the open sufasetg: 0} of
D, j=3.
By means of the identifications
zj2 = 1/z2j, k2 = Zkj/22j,

each of these subsets can be viewed as lyin@jrc Z5(1). So, all the remaining
analysis in Case C can be doneZg(1). In this chart, it is clear that,, divides

22Py oy = Y s 255 “Huy, (222 sincely > 2. One now observes the following.

LEMMA 3.8. Suppos® € {z2> = 0}, p # 0,_1. Then
d 1 0
Alpy=| d 2 e
n—1 n-2 0
Proof. The quadratic forn}_,. 5 ¢;z2, has non zero gradient at any syrhkince

eachc; # 0. So, the strict transform dfP, = 0} must be transverse D, at any
suchp. It follows that A%(p) is as claimed. O

Thus, only the poinp = 0,_; € Z4(1) remains to be analyzed. At this point,
however, mulz,4 pj o ny > Ma, and this function has an expression

D 25,Gi(zs2. .. zn2), Ml oG, > 2for each,
22

which is entirely similar to that op;. This implies that if¢; > 3, then one can
repeat exactly the above reasoning until the lead exponeng,oh the strict
transform ofp;, equals 1. This require§; — 2 additional blow ups of the origin
in each of the chart&,(i),i = 1,2,...,¢; — 2. Each pointp # 0,1 € Z5(i)
resp.p € {z2; = z;; = 0} C Z)(i), j > 3 of the exceptional divisor is a good
point and a simple check shows that

d 1 0
Af(p) = d 2i €
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d 1 1 0
resp d 2i 204+1) ¢
n—1 (—-1Dn—-2 in—-—2 0

At the pointp =0 Z5(¢1 — 1), the local forms of the two functions are

(£1—

1 d
Piomon ) = vz

£1—-1 d_2(1—1 2
i3

+ Z Zé’;eﬁlHl,ej + Zz_zwl_l)l’/l ° ’7(611)}’
j=2
where the multiplicity ofz,7 ™ pt o n@=D atp is at leastM;, and Hy;, =
Ha 4, (Z22) for eachi > 1. The bracketed expression defines the strict transform of
P, atp under the morphism“—b.
Set for eacly > 1 andk > 3,

A Li—l1+1
Hy (220 = E ajiZi2, Zi = E kT .
k>3 i>1

Clearly, Z, is the factor ofz;, in the sum of the second and third terms in the strict
transform ofP;. The (‘Tchirnhausen’) transformation

1
Z2o = 222, Zio =22+ zzk, k > 3, (3.9)
k

determines a coordinate transformatiorpatind a simple check now shows that
the strict transform of; equals

0(Z22) + Z ciZ5+ Z Z5,Gi(Z3a, ... Zy2),

i=>3 =2
where the multiplicity at0, . .., 0) of eachGg is at least 2, and
Q(Zop) = | D —ab /e | Z5+ ) &Zhy & € Q.
k>3 i>l

So one sees that this transformation now reduces Case C to Cagh B,if) # 0
and to Case A ifQ = 0. Following the procedure used in these two cases, it is
simple to verify (left to the reader) that (3.6) also holds in Case C.
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(D) My > 1, M, < +o00.
Itis convenient to split the argument into two cases. Writlig= 261+55, 8> €
{0, 1}, these are

(i) Mz > é1+ 2, (i) Mz <81+ 6.

The argument shows that it is possible to reduce to previous cases if either (i) or
(i) holds.

Subcase (i): It is clear that the resolution procedure will be the same as Case B.
After 81 + 8, blow ups, first ofp, and then of the origin in each chatt(i), i =
1,...,81+82—1, the expressions @ o on®17%2) and Py on®1192) in Z,(81+82)

are as follows

(G1+82) _

d
Piomon Y1222

;o Gi+8) _ d Mo 2 k
Pjont? = ylzo% [Z CiZip+ VMo + Z YMo+kZ22 T
i>3 k>1

1+¢;—81—82 —Moy §1+8
+ Z i—61 Hl,e,- + 259 °py o 77( 1+ 2):|'
izl

In each of the chart€’.(i), j # 2, the strict transform of, = 0 is transverse

to the exceptional divisor at each pojntof the divisor, and the matrice&?(p)

are precisely those given in Case (B). So, it suffices to consider the points on the
exceptional divisor irZ;(81 + 62).

SinceM, > 8;+6,, it follows that the strict transform intersects the exceptional
divisor at any pointp such thaty,,, + Zi>3c,~zi22(p) = 0. At such a point, the
intersection is evidently transverse. On the other hand, the strict transform cannot
contain the origin ofzZ,(8; + 82). Thus, sinceM, > 1 actually impliesM, > 2,
one concludes that is good and

d 1 0

51+52(p) d MO &
n—1 Myn-2) O

This completes the proof in subcase (i).
Subcase (ii): One blows up the origim;:Z’'(1) — U(p), and then blows up the

origin in the chartsZ;(i), i < M, — 2 times in succession. It then follows that at
the point0 € Z/ 5(My — 1),

M d _2(Mz-1) Jj—2(M2-1) 2
Pyon™ ) = yizn"" Z Vizz2 +Zcizi2+
J>Mo i>3

https://doi.org/10.1023/A:1001743909924 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001743909924

54 BEN LICHTIN

ti—(Ma—1 —2(Mp—1 Mp—1
+ZZ22( " VHy g+ 255 2 D phon™ )}-
i>1

Now, (i) implies that
Mo—2(My —1) > 81+ My —2(Mp — 1) =61 — My + 2.

Sinced; > My—68, > M>—1, itfollows thats; — M,+2 > 1. Thus, the smallest ex-
ponent ofy" ., 7,23, ¢ Y is atleast 1. This implies that the coordinate change
(zj2) = (Zj2), j = 2, defined in (3.9), can be used. Then, in the coordinées,

it follows that

1 d 72(M2—1) 2 ppon™d

o - .

Pyon™Memt =yl Z50" § :CiZiZ + 0(Z22) + =
i>3 22

where the quotient witlz5">" has the formy_,. , Z4,G(Z2,), and multy__.

G > 2 for eachk. So, once again, one has reduced to Case(B# 0 and to Case

Aif Q0 = 0. The same verification, left to the reader at the end of case C, now shows
that only good points can be obtained at all points of each exceptional divisor,
created by any subsequent blowing up. This completes the proof of Lemma 3.6.

Partiv. The local form (2.2)
In the notation (2.2.1), define, for fixed

P = Py(Y) — Pi(q), Py = Po(Y) — Pa(q) — ¥y (Y1).

Although both functions depend upan this will not be emphasized in the nota-
tion. It is clear that the transformatiaq®;, P))|y ) — P — P(@)lu(q) is a permiss-
ible modification.

LEMMA 3.10. Given the pointy of (2.2), there exists a smooth-adic manifold
Z and proper surjective birational map,:Z — U (g) satisfying these properties

(a) n, is an isomorphism outsidg;l(q);
(b) At each pointq € nq‘l(q), there exist local coordinates = (zq, ..., z.),
defined on a compact open neighborhd®dq), such that either

Plon, =z3"... 2", Pyon, =zit...zk - (unit),
N1 Nor...
and rank A(q) = =2,
L, Ly...

or there exists an amelioratio(f’, G) — (P{ o ny, P; 0 ny)|lw atq.
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Remark. In the latter case, the composition of the transformati@nsG) —
(P{ong, Pyon,) — Pon, —P(q) is also an amelioration. 0

Proof. SinceP) = Y o, Y7 + Y2, Y1&(Ya. ..., ¥,), One essentially pro-
ceeds as in the proof of Lemma 3.6. The principal difference is that because there
is no common factor for the two functions, one cannot hope to obtain a good point
without additional terms being subtracted off fraPo n,. This explains why the
second possibility in (b) must be explicitly included in the statement of this Lemma
and not Lemma 3.6.

Defineps, p2 by settingd~,., Y{g¢(Ya. ..., Y,) = p1+ p2, where

1= _Y{> H. (Y ... Y,

=2 e=2
p2=Y Y{Hi (Y ....Y,),
=2

whereH, , is homogeneous of degredor eache > 1, ¢ > 2. Then set

_ | multe_op1 if pr#0
"o if p; =0,

mUlt(o ..... 0) P2 if D2 ;ﬁ 0
2= .
400 if P2 = 0.

As before, write£ = {£; < £, < ...}.
The proof depends upon the possible values 6y, M5).

(A): (M1, M>) = (0, +00).
Let n1:Z(1) — U(g) denote the blowing up of th&; axis in Q’), restricted to
U(g). ThenZ(1) = U;>»Z;(1). Each chartZ;(1) has coordinateszy;, . .., 2,;)
so that

'71|z]-(1) = (21, 22jZjjs - -+ Zjjr -+ - » TnjZjj)-

It is then clear that

2 2
P1/°771|ZJ-(1) = 21, P2/0771|ZJ-(1) =zjj| ¢+ E CiZ;j
i#j

So, anyqg on the exceptional divisor is a good point, and

1 0 0
Afg=1| 0 2 e
0O n—-1 O

https://doi.org/10.1023/A:1001743909924 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001743909924

56 BEN LICHTIN

This proves the Lemma in Case A.
(B) M, > 0, My, = +o00.
It follows that one can again blow up along theaxis vian,. Then for eacly > 2,

Plonlz,w = 215

Pyonilza = ij cj+ Z CiZ[Zj + Z;jz P20
i#]
SinceM; > 4, the argument in Case B of (3.6) applies to show thegtéf {z1; =

zj; = 0}, then the strict transform ¢fP, = O} is transverse t¢z;; = 0} atq. Thus,
A%(q) is exactly the same as in case (A). This shows Case B.

(C) M, =0, M, < +o0.
Letn::Z(1) — U (g) denote the blowing up af in U (¢), with exceptional divisor
D,. Inthe chartZ;(1), j > 2, one has:

/
Promlz;a) = z152jj
/ 2 2 =11y
Pyomlz; = zj; Cj+ZciZij+Zij Hy |
i£) tet

where H; , denotes the strict transform @, ,. Sincel € £ implies¢ > 2, it
follows that ifq € {z1; = zj; = 0}, andz; () # 0, for somek > 2, then

1 1 0
0O n—-1 O

Such a point is then good. On the other hand; jfq) # 0, thenq is identified to
a point inZ4(1) via the identification

z;1(Q) = 1/z1;(Q), zi1(q) = z;;(q)/z2;(Q).
So any such point can be analyzed within the ciart), in which

Pl/ onilz;v = 211,

/ 2 2 —1yy /n
Pyomlzy = 211 ZCiZil + ZZH H1(Z11)
i>2 tes
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Now, if q # 0, € D, also lies on the strict transform ¢oP, = 0}, then it is clear
that the strict transform is transversef atq, and

1 0
AlQ) = 2 1]. (3.10.1)
n—1 0

If, however,q # 0, and)_,-, c;z(q) # 0, then an amelioration af can be
found. Indeed, let/ (q) be a compact open neighborhoodjasn which} .- , iz}
# 0.0nU(q), define

G=Pjon —z3, ZCiZ,zl(Q) + Z 211 Hae(z21(Q), - . ., 2,1(Q))

i=2 teL

Since there exists > 2 such that;,(q) # 0, this implies thafG = 0} is a normal
crossing divisor ay. Defining F = z11|y(q), the permissible transformation on
U

(F,G) = (P{omn, Pyon)lu

determines an amelioration @t and the matrix of multiplicities fo(F, G) atq is
evidently the same as in (3.10.1).

Thus, only the origin inZ,(1) poses a difficulty. This remains true fér — 2
additional blow ups

Z -1 Z(e -2 e 2 e Ug).
Setn”) =nyo---omn;, j <€ — 1. Foreachy € [2, ¢, — 2], there are two types
of points of interest. The first type consists of poigten the exceptional divisor
of nin Z1(j) except the originAt these points, eithed ; (q) has rank 2, or there
exists, as in the preceding paragraph, a simple ameliorafiots) — (P o n'/’,
P, o n')). The second type consists of poifse Z,(j), k # 1, such thag €
{zx; = zj; = 0}. Then one checks easily that for points of the first resp. second

type:
1 0 1 1 0
A%(q) = 2j 1| resp 2(j -1 2j
jm—=1 0 (J-Dr-1 jm-1 O

At 0, € Z1(¢1 — 1), one has

Pjo ™ = 74,

, -1 2(¢1—1) 2 lp—€1+1 A~
Pyon™ = 2 E CiZjp + E :111 Hy.¢, (211)
i>2 1
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Now, define the coordinate transformatiny, ..., z,1) — (Z11, ..., Z,1) in the
same manner as done in (3.9) (hefe; = z11). One then shows in the same way
that

— 2(01-1 ~
PZ/ o n(el 1) — Zlg_el ) Zci lel 4 Q(le)
i=2

where 0 is a p-adically convergent power series. However, here, unlike the use
made of the transformation in the proof of Lemma 3.6, one can define a new
permissible modification by setting:

F =7, G = Pjon™ — 27V (Zyy).

Evidently, 0, is still a singularity for(F, G), but it is easy to deal with. It suffices
to blow up theZj; axis in Z1(¢1 — 1) via the mapn,,:Z(¢1) — Z({1 — 1). Itis
then clear that for each= 2, ..., n,

2(01-1) _2 2
Fonglzey = Z, Gonylziup =21n" 25 |+ Zcizij

i#j

Thus, for anyj > 2 andq € {z;; = 0}, the matrix of multiplicities of(F o n,,,
G o ng,) equals:

1 0 0
A (@) = 2061 — 1) 2 €
“1-1Hn-1) n-—-2 O

Thus, (F o ¢y, G o ) — (P o n'Y, Py o n™) is an amelioration ag). This
completes the proof of the Lemma in Case C.

(D): M1 > 2, M5 < +o00.
As in the proof of Case C, one blows up a pdipt 1 times by composing the maps
ni:Z(i) — Z(Gi —1),i < £, — 1. Eachy;,i > 2, blows up the origin in the chart
Z,(i — 1), andn; is the blowing up of. At all points of the exceptional divisor
of n“=b exceptthe origin inZ,(¢, — 1) the assertion in (3.10) holds. Indeed, any
such poing is either a good point fofP; o n“*=Y, P; o n“1=1), or, as in the proof
of Case C, there is a simple amelioratioh, G) — (P] o n'*=, Pj o n©1=b) at
g.

At 0, € Zo(t1 — 1),

Plon® =z,
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01—1
Pz/on(i )

2(t1-1) 2 —t1+1 . —2(61-1) -1
=217 ! Z CiZip + Zzll ! Hy¢(z11) + <11 ! p2o 77( b
i>2 tes

As in preceding cases whai, < +oc, one notes that;2““ ™ p, 0 n“2~D has the

same form ag»,. That is, the factor of each ; only has terms of degree at least 2,
and each power afy; is at least 2. Then, defining the change of coordinates as in
(C) (the one first introduced in (3.9)), it follows that

- 20631 A —2(61-1 _
P2/ o n(fl H_ Zlg_ 11 Zcizizl 4 Q(le) 4+ le( 1 )pZ o 77(61 1) ’
i=2

where 0 is a p-adically convergent power series #y,. Thus, definingP; =
P/ on“~b and

— 2(01-1) A
PZ// = Pz’on(el D_ Zlg_el )Q(le)

2(61-1) 2 —2(¢1-1) -1
= Zn’ ZciZi1+le T paony
i>2

one sees that the transformati@?y’, ;) — (Pjon'“t=Y, P,ona7Y) is a permiss-

ible modification in some compact open neighorhood_),proreover,(Pl”, Py)

now satisfies the property thd, = +o00. So, one has reduced to the situation

in Case B. The argument used there now completes the proof of the Lemma, as a
simple check, left to the reader, will verify. O

Remark3.11. An important point for applications is the lack of precision impli-
cit in the entries of the matrice&”(p) resp.A(p) whenp is a point treated by
Corollary 3.2 (i) resp. Lemma 3.4. For example, thg u; from (3.2)(i) are not

easy to make more precise unless one has more information &pobt. This

is a problem that is concentrated on the set of singular poinfg ,aP, restricted

to then hyperplanegx; = 1}. Except for these points, the entries of all other
matricesA*(y) have been explicitly calculated in the Lemmas of this Section.
There is one case, however, in which everything can be made explicit, that is, when
Pi(x) = B - x, P is arbitrary, and Py, P,) € C¥¢,, see Section 6 part ii.

4. Statement and Proof of Main Result

To formulate the main result, it is first necessary to define the following notions
of ‘good wedge’ and ‘good asymptotic wedge’ fere C£¢; U C¥,.
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DEFINITION 4.1. Letd: X — U C Q/, denote a proper birational mapping onto
a compact open neighborho@d Let x denote a point on the exceptional divisor
of #, andU (x) a compact open neighborhoodxofThen the imagéU (x) is called
ananalytic wedge O

If P e e, letg € Sing, and( f, g) denoteP — P(g). SetU (¢) to be a neighbor-
hood ofg satisfying the property in (1.6)(a) or (b). € C¢;;, 7 is the blowing
up of 0 € @), andq € Sings, set

P—P(), if q#0,

(f.8) = . .
Pom, if g=0.
Further, ifg # 0, thenU (¢) denotes a neighborhood on which (2.2) holds.
One now specifies the morphiséhas follows. If P € €¢;, and g satisfies
(1.6)(b), thend denotes a morphism constructed in Theorem 1.8 IE€ C¢,
andg # 0, thend denotes a morphism constructed in Lemma 3.1G. ¥ O,
one first chooses a poipt € 7~1(0) and neighborhood (p) in which one of the
Lemmas 2.4-2.7 holds. Thehdenotes the composition with of the appropriate
morphism constructed in Lemma 3.1, 3.4, or 3.6 (the choice of which depends upon
the particular Lemma in Section 2 that appliepio
For either possibility, given a pointin the exceptional divisor of, it follows
thatx is a good point either fo¢f o 6, g o 0), or for a pair(F, G), obtained by a
permissible modificatioiF’, G) — (f o6, g 0 0)|yx), WhereU(X) is a compact
open neighborhood of in some affine chart isomorphic @;.

DEFINITION 4.2. Using the notation from the preceding paragraph, the wedge
OU (x) is called agoodP wedge Settingx = 6(X), the pair

OUX), (PoO)U (X)) = (U (X), P(x) + (f 06, g 0 U (X)),
is called a good asymptotic wedge fer O

The principal finiteness result of this paper now follows easily from the work in
the preceding three sections.

THEOREM 4.3. Let U be a compact neighborhood of a subsetSifig> for
P € C¢ uUCY,. Then there exist finitely many good asymptotic wedges=
(W1, Wp,;) for P satisfying the two properties:

(i) UiWwy; = U,
(i) Fori #i’, the Haar measure oV;; N Wy ;» equals zero.

Proof. It suffices to give the proof foP € C¢,. The proof forC¢, is similar,
and the simple modifications are left to the reader.
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Corollary 3.2 and Lemmas 3.4, 3.6, 3.10 have shown that foryaayU, there
exists an open compact neighborhody) and a finite set of good asymptotic
wedgesW (y) = (Wy;(y), Wy (v)) satisfying the properties:

U(y) = UiWy(y),
the Haar measure &y (y) N Wy (y) =0 ifi #1i'.

To see why this is so, consider first the case analyzed by Lemma 3.10. Given the
data in the statement of (3.10), the total disconnectedness gif-#ukic topology
implies that one can cover the compact @;}(q) by finitely many pairwise dis-

joint compact open neighborhoods(q; ), so that for eacl, n,(q;) = ¢, and part

(b) of (3.10) holds in eacl (q;). Settingé = n, in (4.2), eachn, W(q;) is a
goodP wedge and the pait, W (q;), P(¢) + (P on,) W(q;)) is a good asymptotic
wedge forP. Moreover, sincey, is an isomorphism outside Sigagt follows that
ngW(a:) Nny, W(d;r) C Sings, from which one concludes that the Haar measure of
the intersection is zero.

Now define the se, = nq_lU(q) —U; W(q;). It follows thatA, is a closed and
compact set disjoint from;l(q). Thus,q ¢ n,(A,). Sincen,(A,) is closed and
compact, there exists an open compact neighborliéag c U (g) of ¢ such that
U(g) N 1y(Ay) = #. Thus,n, 2 U(q) C UiW(q). Now setW, (a;) = n, W (g;) N
U(q). The good asymptotic wedges in question #&qg) =qer (W,(0;), P(q) +
(P o ny)W,(0;)). In this way, one has ‘uniformizedi/(¢) by the goodP wedges
Wq (qt)

An entirely similar argument applies fr To each poinp onz ~1(0), there is a
neighborhood’ (p) that satisfies the properties stated in (3.2), (3.4), or (3.6). This
uniformizes some neighborhodd(p) C U(p) by good wedges, using the same
argument as above. Then, by composing withnd using compactnessof1(0),
one argues, again as above, that some neighborho@dsd finite union of good
P wedges.

SinceU is compact, one can extract a finite subcover of open neighborhoods
U(g;) of the covering{U(g)},cv, €ach of which satisfies the properties of being
uniformized by good® wedges. Moreover, total disconnectedness of pkedic
topology insures that one can always arrange the finite cover sautbgt N
U(gj) =0if j # j'. Itthen follows that the collection of good asymptotic wedges
{W:(¢g;)}, is afinite set and satisfies properties (i), (ii), completing the proof.

5. Analysis Restricted to a Good Asymptotic Wedge

The same data and notations from the beginning of Section 4 are used in the
following.

Since Theorem 4.3 decomposes a compact neigborhood of Bitaga union
of finitely many goodP wedges, the next step is to extend Igusa’s finiteness the-
orem to such wedges. This is not difficult since the wedge comes equipped with a
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convenient parametrization (via the m@am (4.2)). Thus, one can always work in

a compact open neighborhood of a fixed good pwifar a pair(F, G), in which it

is straightforward to iterate Igusa’s one variable theory. The first part of Section 5
does this by verifying two needed analytical properties of a zeta function associated
to a goodP wedge. These properties are the natural two variable analogues of
results proved by Igusa in [l, ch. 3] ové&r,. Part ii introduces the fiber integral
associated to a good asymptotic wedgeafoh general expression is then given for
this fiber integral, using an iterated form of the inverse Mellin transform formula.
Both these notions apply only to the pait, G), not necessarilyo Pof —Po6(x).

Part iii relates the results to the fiber integralRof

Parti. Properties of a zeta function associated to a gdodedged U (x)
One assumes that local coordinates: (z1, ..., z,) are defined on a compact
openU (x) such that

n

F= l_IZlNi ’ ul(Z), G = l_IZ,Mi . MZ(Z)y detdd = l_[zfl'iil . M(Z).
i=1

i=1 i=1

Moreover, the rank of the matriA (x) (see (1.2)) equals 2. By permuting coordin-
ates, define the integdt by the condition that < R iff (N;, M;) # (0, 0). Since
the exceptional divisor fof is a subset of F = G = 0}, it follows thatu; = 1 for
i > R.

Let x = (x1. x2::U5 — (§1)? denote a pair of characters on the units and
S = (s1, 52) € C2. Let g denote a compactly supported locally constant function
onU (x) (i.e. ‘test function’). Define

Zy(x,S ¢) = / pxi(acF)xz(acG) - |[FI™*|G[2|6" dul,
U(X)—{F-G=0}

whereacy = y/|y| is the ‘angular component’ of, and the measure in the integral
is the pullback by of normalized Haar measuféw| on Q). This function ofsis
called a local zeta function on the wed@®& (x). Wheny = (xo, xo), Whereyg =
1, the zeta function is called the principal zeta function on the wedge. Otherwise it
is a ‘twist’ of this function.

The first of two needed properties is the following.

PROPOSITION 5.2.EachZ(x, s, ¢) is analytic if eachRes; > 0, and admits
an analytic continuation teC? as a meromorphic function. Defining; = p—*,

i = 1,2, it is a rational function, which modul@[ws, w,, wi®, w,'], has the
form

ul(w’ X)

521
vy (w) ( )

Zxx.s9)= Y

Ic{1,..,R}
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where
vy (w) = l_[(l— p‘“"wiv’wéw").
iel

Proof. Define

Jox) =13{i < j}C{d, ..., R}rank =2. (5.2.2)
M; M,
Givent = {i < j} € 4p(x), set
N; N;
AX) ="} J, LX) =ordA,(X), =m L(X).
(X) ’ M, M, m. () ). mo(x) = maxm,(x)

By shrinkingU (x), if needed, one may assume that the coordingtes. ., z,,)
identify U (x) with a subset of(p"°®+1)" One then chooses an integgy >
mo(X) + 1 so thatU (x) = |_|[b + (p*)"] is a disjoint union of cosets, on each
of which the following hold:

Fori =1, 2, [u; (2)p+(proy = |ui (b)], andu(2)|jp+(pe0yry = lu(d)].  (5.2.3)

1; (2) |[p4(peoyn

—u;b)- |1+ Z a;()z' |, andeach; (i) € Z,, (5.2.4)

I:1>1
Plip+proy = ¢ (D). (5.2.5)

Given a charactey on U, define its conductar, = inf{e:x |14, = 1}. With
eo chosen as above, and for a fixed pair of characterdefinee = maxe, e,
ey,}. Now decomposé/ (x) modulo p¢. Thus,U(x) = [|[b + b" + (p°)"]. For
a fixed choice ob, b, setc = b+ b' = (cq, ¢, ..., ¢,). It follows that for Re
s; > 0,i = 1, 2, the integral defining, converges absolutely, and by working
mod p¢, the value ofy; (u;) is constant (see [, pg. 95]). Thus,

2
Zy(X.59) = Y_9©) (]‘[m,-(c)w : |u(c>|> x
c i=1

2

X HX" (ac(l—i— Za,(i)cl)> X
I

i=1
R

Ni, M; i is2H i —
X]_[/ X1 xg (acz;) - |z MR 4z, (5.2.6)
i=1 ¢i+(p°)
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One evaluates (5.2.6) by iterating the calculation in [I, p. 89]. It follows that the
integral overc + (p¢)" equals 0 if for some:

X1 xa" # lande; € (p°),
OF 31 X3 ety #1 @nd ¢ & (p). (5.2.7)

On the other hand, if (5.2.7) does not hold, then one evaluates the integral over the
cosetic + (p°)"]in (5.2.6) as follows. Defindty(c) = {i € [1, R].c; &€ (p°)}, and

M1(c) = {1, ..., R} — Mg(c). SetM;(c) = #M;(c),w; = p~,i = 1,2. Then

the third line in (5.2.6) equals:

—(ui=1)yorde; ., Ni ., M; N; ordc;  M; ordc;
s | [T p® %" x5 (aceywy ™ w;
ieMo(c)

p eu,wi Iwé i

— . Ni M ’
ieMa(c) 1—p=Hiw'w,y
wheres(c) = p~eMo@+n=R)(1 — p=1)Mie),

It is then clear that this term has the form of a summand, indexed by the subset
I = Mq(c) of {1, ..., R}, as asserted by the Proposition, completing the proof of
(5.2).

The formulae in the proof of (5.2) are now used to prove the following extension
of Igusa’s finiteness theorem (see Introduction).

PROPOSITION 5.3 .For all but a finite number of, Zx(x, s, ¢) = O0for all ¢.
Proof. Using the notations from (5.2), it follows that the integral over the coset
[c + (p®)"]is non zero iff

N M; .
X1 X2 |1+Cf_1(l’e) =1 ifie Mp(c), and

X1 xa =1 ifi € Mi(c). (5.3.1)

For eacht = {i < j} € Jo(x), there exist pairs of integer@1 (1), 1(1)),
(a2(1), B2(1)) such that

Nioaa()+N;p1(1)  Mia1(O+M;B1() _  A(X)
X1 X2 = X1 s

Niaa()+N;jB2()  Miaz()+MjBa(1) A(X
X1 J X5 j =X ( ).

The elements j of t are inMo(c) or M4(c), independently of one another. Sup-
pose first that € Mo(c) and;j € My(c). Then (5.3.1) implieg;*™ = x2'® =1
on[l+ ci_l(pe)]. If i € M1(c), j € Mg(c), then the same equation holds [dn+
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¢ H(p1.If i, j € Mo(c), then the equation holds ¢+ c; *(p)]U[1+c;  (p)].
If i, j € Mi(c), theny ™ = ,"® = 1onU,.

Since for eachk € [1, R], ¢; € p™™*1, this implies(p¢"0®~1) < ¢, (p)
for eachk. Hence, 1+ (p¢~"o®~1) ¢ 14 ¢ 1(p®), for k € Mo(c). By (5.3.1), it
follows that for eaclt = 1, 2,

x> =1 onthe coset [1+ (p¢ oMY,
Using [I, Lemma 2.5, ch. 3], this implies thatdf— mq(x) — 1 > mq(X), then for
each?, xy =1 on 1+ A,(X)(pemo®~1),

Suppose now that there exigtsuch thate,, > ey + mo(X). To fix notation,
assume = 1. Further, one may assurag > e,,, so thate = ¢,,. This implies

e—mo(X) —1l=e, —mo(X) =12 eg = mo(X) + 1,

by the choice ot in the proof of (5.2). Hence; — mg(X) — 1 > mg(X).

By the definition ofmo(x), there exists: > 1 such thatA,(x)(p¢"0™-1) =
(p¢~"). One concludes thgt; = 1 onl1+ (pa~"). This, however, violates the
definition ofe,,. Thus, if x is some pair for which the integral, over some coset, in
the second line of (5.2.6) is non zero, then necessayilye,, < eg+mo(X) < 2ep.
This implies the set of¢ for which Z,(x,-) # 0 can only be a finite set, and
completes the proof.

Partii. The fiber integral for a good asymptotic wedge
Given the good asymptotic wedgé(x) = (60U (X), (Po#) U (X)), the pair(F, G),
satisfying (5.1), and the test functign one starts with the following.

DEFINITION 5.4. The fiber integral forw(x) is the fiber integral along the
nonsingular fibers of F, G) with respect to the measur&*(dx; - - - dx,,)| on U (X).

In other words, letting = (t1, 1) denote a regular value f@F, G), the fiber
integral is the function:

T — Flp, 1) :def/ pldet Do g, (5.4.1)
{(F.G)=T}

Wherew(F,G) |(F,G)=T =dz;dzo--- dZn/dF/\dG|(F’G):T isa gIobaIIy defined —2
differential form on the indicated fiber whose corresponding measure is denoted by
loF.6)l- O

The following Proposition shows that the Mellin transform#fyields theZ,. Its
proof is an iteration of that in [, ch. 3], and left to the reader.

PROPOSITION 5.5.If Re(s;) > 0 for eachi, then

2
|dty dr
Zu(x.5.9) = 1—p Ly / (el o, o) [ o tacrlal S0 |T1T2|2|
i=1

’
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where the integral is taken over the set of regular valuegoiG) in {z; - 7> # 0}.

Sincex is a good point for(F, G), this formula can be inverted to express
|t172| Fx In terms of theZ,. This is possible, ifr;, 7 # 0. Propositions 5.1, 5.3
imply by a straightforward iteration of the argument in [l, ch. 1], left to the reader,
the following.

PROPOSITION 5.6.For any regular valuer of (F, G) such thatry7, # 0, one

has that
|'L'1 r2|?X(§0v T) = Z(ReS”:O RESUZZOZX(X, S, (p)wiordtlflwzford'&*l) %
X
x x1 Hacty) x; Hacty). (5.6.1)

Extensions acros$r; = 0} U {t, = 0} are sometimes possible. This can
be inferred by means of the formula in (6.11). However, to estimate the Fourier
transform of the fiber integral, precise information about the behavior of the fiber
integral in the open sdt; 7, # 0} suffices.

Part iii. Local to global

Evidently, one needs to connect thg to the ‘global’ fiber integral determined by
P. Given a locally constant and compactly supported functoon Q' recall that
the fiber integral foP is defined at a nonsingular valt®f P to equalF(®, t) =
f{P:t} ® |wp|, Wherewp|p—t = dx;---dx,/dP; A dPs|p—. This globally defined
n — 2 differential form determines the measure, denote@py—|. In particular,
when @ is the characteristic function @, the fiber integral equals the function
described in the Introduction.

Suppose that supp c U, whereU is compact and open. Applying (4.3) to
U, there exist finitely many good asymptotic wedgés= (W1 ;, W), satisfying
(4.3)(i), (ii). This gives an expression féi(p, t) as a sum of finitely many ‘local’
contributions to the fiber integral. Given one suh, for which Wy; = 6,U(X;),
the local contribution equals

FX,‘(d)’ t) —def / ®|wp|
{P=t}n6; U (x)

-/ (® o 6;)[det | |. (5.7)
{PO@,‘:t}ﬂU(Xl‘)

The second equation follows sintés a regular value oP o 6;|y ), and the fact
that as measurefgjet ;| - |wpog, |pog;=t| = [(0;)*wplp=|. Thus, (4.3)(i), (i) imply
Flp,) =), Fx (®,1).

There are now two possibilities to consider. Eitkeis a good point foP o 6; —
P o 6;(x;), oritis a bad point. In either case, first define= 6;(x;). If x; is good,
then one sets in the preceding discussion

T=1t—-Px), ¢ =(Pob)lux) (F,G) =Pob; —P(x;),
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FX,‘((D’ T + P(xl)) = $Xi(¢’ T)‘

If x; is a bad point, one uses a transformation in the range of the two mappings.
According to (1.2), this is the mapping (up to a permutation of the coordinates in
the image) of the form:

é‘Xl':T —>1= P(-xi) + (ul(xi)rfa 2+ 110(-’:1)) (58)
It is clear that the following holds.

LEMMA5.9. Let, (t) =t. Then

D) g“le(t) is a finite set of at most points
(2) w € U(x;) satisfies F(w), G(w)) = T iff Po 6;(w) =t + P(x;).

One next connects the differential forii Py o 6;) A d(P> 0 6;) to dF A dG.
Simple verifications show:

LEMMA 5.10.

(A) d(PLo6)Ad(Py06;) =8 ui(X) - F*~t. dF A dG.

(B) Assume that is a regular value forP o 6;|y(x,). Then, anyr € ;le(t) is a
regular value for(F, G).

(C) If pdz = ¢ dzy - - - dz,, is any analytice-form defined o/ (x;), then, as meas-
ures on the fibers, one has the following relation:

| dz/d (P10 6;) A d(P206;)|ux)n(Poti=P(x)+t}]

1

= W|¢ dz/dF A dGlyx)nir,6)=T}!-

Putting together these results, one now can relate the local contribution to the
fiber integral ind; U (x;), and the fiber integral in the asymptotic wedge Given
the function® as above, set = ® o 6;|y(x,)-

PROPOSITION 5.11If t is a regular value oP o 6, — P(x;), then

?X,' ((P, T)

Slu(X; g8
luea (%) (T, )=t |71l

Fx, (@, 1+ P(x))) = (5.11.2)

6. Some Useful Refinements

The expression (5.6.1) is understood geometrically in part i of this section, using
a method of partial fraction decomposition appropriate for the denominatars
(5.2.1). The main result is given in Theorem 6.11. The analogues®\vErare
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sketched in (6.13). Part ii specializes the discussion to the casehen= b x,
whereb is a fixed vector ofZ},. Here everything becomes very explicit.

Parti. A simple geometric interpretation @.6.1)
Substituting the expression (5.2.1) ¥ into (5.6.1), and then summing over the
index sets/, an explicit determination of the iterated residue of the summand
indexed by/ is not yet possible whenever three or more factors appear in the
factorization ofv;. By the form ofv,, this can only occur if/| > 3. To get around
this difficulty, one needs a constructive method of partial fraction decomposition
of rational functions onk”, K any local field. A useful reference is [Lei]. The
discussion is adapted to the particular form of the factors ofignyvhich turns
out to be useful in interpreting the procedure in geometric terms. In the following,
onel # @with |I| > 3, is fixed. One then shows how to reduce the calculation of
the iterated residue to fractions with] = 2.

Using (5.1) and (5.2.1), define

1 e rank( N 1
X)={1= ,..., Ryran =1}
X ={={i <j}C{ jira i j }

For ¢ e J1(x), there exist relatively prime positive integens, n; such that
n;(N;, M;) =n;(N;, M;). Now set

T ={e 1a(0mniu; = njuj,n; #nj}
and 47 = 41X — 47 —{t € L1 = u;j}

DefineS; = 1— p~*“w)w,",i =1,..., R. For each define the multiplicity
v; by the equation

v (w) = []s".

The proofs of the following three lemmas are all simple and left to the reader.

LEMMA 6.1.

1) {i <jedfiff {S;=01N{S; =0} =4.
(2) If (i < j} e df, then{S; =0} ={S, =0}.
(3) {i < j} € do(x) (see (5.2.2)) iffS; = 0} N {S; = O} is a finite set of points.

LEMMA 6.2. Supposdi < j} € {;. Then there exist polynomial(w), f;(w),
such thatf;S; + f;S; = L.

LEMMA 6.3. Supposdi < j} € 4;. Then there exist§ # 0 € Z[vs, vz] such
that F (S;, S;) = 0.
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Remark. Indeed, using:;, n; from the definition oflf, one can use&F =
1—vp)" = (1 —v2)". O

The last preliminary needed is the following:

LEMMA 6.4. Let{i < j} € do(xX) andk ¢ {i, j}. Suppose that;/N; <
My /N, < M;/N; (at most one equality can then hold). Then, either:

(1) there exist polynomialg; (w) such thatf;S; + f;S; + fiSk = 1, or
(2) there exist polynomialg; (w), f;(w), and finitely manw, € Q,£ =2,..., N,
such thatS, = f;S; + fisS;+ Zé\]:z OlgS]f.

Proof. There exist;, n;, ny € Z, such that gcdn;, n;, ny) = 1 and
ni(Nij, M;) +n;(N;, M;) = ni (N, My).

Thus,(1-8;)"-(1-8))" = c(i, j, k) (1=S)"™, wherec(i, j, k) = p"Hmiki=nikj,
ThisimpliesF (S;, S;, Sx) = 0whenF = (1—vy)"-(1—v2)" —c(i, j, k) (1—v3)"™.

If c(i, j, k) # 1, then one obtains a low order term in the algebraic relation between
the threeS, that is a nonzero constant. Dividing out by the constant one obtains the
identity in (1). On the other hand, if(i, j, k) = 1, thenv; appears with a nonzero
coefficient inF. Dividing out by this coefficient and rearranging terms, one obtains
the identity in (2) withN = n. O

An immediate consequence follows.

COROLLARY 6.5.
(1) Suppose possibilityl) occurs in(6.4). Then there exist polynomiags, g;, g«
such that
1 8 gj 8k

555 S5 Ss Ss,
(2) Suppose possibility2) occurs in(6.4). Then there exist polynomiais, g;
such that

nk

1 S ; : oS¢
— k 5 — 8 5 + gjz Z )4 k‘
S;SiSk  S:S;S2  S§;82 S8 SiS;

=2

Using Corollary 6.5, a simple induction argument shows the following.

COROLLARY 6.6. For each summand i(5.2.1),

ur hij hie
—= ) > (6.6.1)
v {i,jtelg() Si’Sj' it Si

{i.jict iel
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where each numerator in (6.6.1) is a polynomial, @dins over a bounded set of
positive integers.

Remark6.7. To use (6.6) in order to estimate the Gaussian sums defined in the
Introduction, it will be necessary to have some additional information about the
exponents;, k;. In particular, this will be needed to eliminate the contribution of
the strict transform of eitheP;, whose effect is to give an exponent of decrease
equal to—1. One hopes to have exponents of decrease considerably smaller than
—1, if favorable geometric conditions hold (see [l, pg. 69, pg. 155ff]). Now, the
expression of afy;, corresponding to the strict transform Bf or P,, is 1— p~lw,
with w = wy or w,. One then would need to insure that such a polynomial only
appears to order at most 1 in any denominator of the fractions in (6.6.1). However,
(6.6.1) indicates that the order of sorfiecan actually be larger than their multi-
plicity v; in ¢;. So, it is important to find a simple condition that insures that the
exponents of certaii; never increase beyong. This is the point of the following
discussion. O

Setr = #{M;/N;:i € [1, R]}, and denote the distinct ratios in this set by

a(X) =p1<p2<---<BX =p.

If someN; = 0, thenB(x) = +oo. For eactk, setd (k) = {i:M;/N; = pi}.
For anya € 4(1), b € §(r), define the lattice (i.e. a set closed under addition
and scalar multiplication by nonnegative integers)

C(X) =< (Ng, My), (Np, My) >7, .

One says that a vectoN;, M;) is extremalresp.interior if it belongs to the bound-
ary resp. interior ofC(x). The following is an easy consequence of (6.5) and
suffices for the purposes discussed in (6.7).

PROPOSITION 6.8.The following two properties hold fdre {1, r}.

(A) Suppose thag(¢) = {i}. Then the exponent ¢f in the denominator of any
term appearing in(6.6.1) is at mostl.

(B) Supposef(€) = {i1, ..., ix}, k = 2, is such that any doubletofe, d} C 4(¢)
satisfies the property that eithéy = S, or {c,d} € 4. Then for eacly e
{1, ..., k}, the exponent of; , appearing in the denominator on the right side
of (6.6.1), is at most the multiplicity;, of S;, in the factorization ob;.

Remark6.9. Since the vectarl, 0) (or (0, 1)) must be an extremal vector if it
belongs to the set(N;, M;)}X ;, one will apply (6.8) in particular to any poit
contained in the strict transform of son®e — P;(x). The factor corresponding to
the strict transform$ = 1 — p~tw1, has multiplicity 1. So, (6.8) implies that if no
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other vecton(N;, M;) # (1, 0) € C(X) lies in the same direction as (1, 0), th&n

can only appear to order at most 1 in any summand of (6.6.1). On the other hand,
in looking at the matrices computed in Section 3, one notes that the hypothesis in
(A) need not always hold. However, it is then simple to verify that the hypothesis
in (B) must be satisfied. This leads to rates of decay fot@e:/p", ax/p")| that

are considerably better tham, (p”—1+9)), see [Li-1]. 0

Givent = (11, 12), Set ordr = (ordtq, ordty), act = (acty, acty).

Each nonzero summand of (6.6.1) can contribute to the asymptafic(6£4.1)
when ordr is confined to a certain affine translate of a lattice, in the sense of the
above definition. Different summands will determine, in general, different trans-
lated lattices. The contribution of exactly one summand is simple to make expli-
cit since at most two terms appear in each denominator. To state the following
Proposition, one first introduces for each {1, ..., R}, the line

Li(X) = {se€ C%Njs1 + Miso = — ;).

This is a component of the polar divisor 8§(x, s, ¢). Further, for each =
{i, j} € Jo(X) set

{v.(X) =def (v1.,(X), v2, (X))} = L;(X) N L;(X),
se(L; (X)) = s¢ axis intercept of€; (x), £ =1, 2
C/(X) = ((Ni, M), (Nj, M;))z. .

PROPOSITION 6.10.For any: = {i, j} € {o(X), positive integers;, k;, and
my ., mp

monomialwy w32, there exists a polynomia, (11, u,) of degreek; — 1in u; and
k;j — 1in u; such that for anyrdz € (m1, my) + C,(X),

sk s

L)

witwi?
1 2 —ordr;—1  —ordrp—1
Re%}lzo Re%zzo k; wy W,

= H,(log |71, log |z2]) | za| " ® |z 2.
Further, the iterated residue equals Qoifd T & (m1, m») + C,(X).
Remark. Exactly the same conclusion holds if the denominator egsfal$n
this case, one needs to restrict artb (m, mo)+ < (N;, M;) >y, . Itis clear that

the exponent iz, |, | 72| then equalsgry | 1L = |1,|=52(£iX) provided the axis
intercepts exist. O
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Proof. Write

my . mp
wyp Wyt 1

sk s BRCE e

—pik—pily,, e1tmy . ex+my
X E E (F(k, £) - p~H D) w T w T
e1,e2=>0 k.l
kN;i+{Nj=e1
kM;+tMj=ep

where#t (k, ) = [T} Hsg;i(m—i-k)(qz—i—e). Then, the coefficient af 0™ 3™

can only be nonzero ifn,, m,)+ordt € C,(X). If this occurs, then it is determined
by (k, £) so that

kN,-i—EN, =ordr; — my, kM,'-l-gMj = ordty — my,
which, by assumption, consists of exactly one pair ¢’). One then expresses

(k', £) in terms ofv,(X). A straightforward calculation then shows

p—u,-k’fu_,'é’ = pUu () (ordry—m1)+vp, (X)(Ordro—my)

— C|‘L’1|_v1"(x)|‘E2|_v2"(x),

whereC = C(mq, m, i, j) is a constant independent of ord

Moreover, sincek’, £’) = (aqq 0rd T4 + aq0 Ord 7o, apq Ord 1 + oo 0rd 1), for
certain constants,, ,, it is clear that# (k, ¢) is a polynomialH, of degreek; — 1
in ord 71, and of degreé&; — 1 in ord 7. Since ordr = — log |z|, this completes
the proof. O

Using the notations introduced above, one summarizes the preceding discussion as
follows. In the statement below, the notatiayi(x) will be used to denote either

the latticeC,(x) or any of the two sublattice§Vy, My)z. , k = i, j. The following

also suffices for purposes of [Li-1].

THEOREM 6.11. There exist

(i) finitely many monomialgM,},
(i) finitely many polyomial$H, (11, u2)},c1,(x), and finitely many locally constant
functions{A y} on U3,

such that for all sufficiently small and nonzerg t»,
|TallT2| Fx (@, T) = Z Z%‘MH@[*(X)(OFdT)AX (act) | x
tedo(X) \ k. X

x H,(10g |71, 10g |t2]) | 71| 72X | 7| 724X,

https://doi.org/10.1023/A:1001743909924 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001743909924

TOWARDS A THEORY OF SEVERAL VARIABLE ASYMPTOTIC EXPANSIONS | 73

whereéy, +cx(x is the characteristic function dfl; + C; ;1 (%).

The polygons, referred to in the Introduction, are defined as follows.

DEFINITION 6.12. Giverx, at which Equations (5.1) hold, ane= {i, j} € {o(X),
denote by, (x) the polygon whose sides are contained in the lig) N R? and
£Lj(x) N R2. For¢ = 1, 2, s, (x) denotes the, axis intercept of",(x). a

It is then clear from (4.3), and (6.11) that finitely many polygons suffice to de-
scribe two main features of the singularities of the local singular series of any
P e ¢¢, U C¢,. Each polygon evidently encodes both the ‘dominant monomial’
|7q| 7170100 | g, |71V for F;, and the slopes of the boundary of the cahéx).

The significance of the latter is that for org ord r, both large, the fiber integral

Fx is defined at ordr if ord p/0rdt; is at least the smaller slope and at most the
larger slope of this cone. It follows that tH&(x) determine both the dominant
monomial and the region in which a given monomial is dominantfor

Remark.Whenx is a bad point foPo 6 — P(x), Theorem 6.11 gives an explicit
development for the right side of (5.11.1). Thus, the local contribution of the fiber
integral forP att + P(x) is a sum of monomials iifiry], |z2| and log|z1| log |15|,
evaluated at the finitely many distinct points in the fijgr = t}. As a result,
cancellation can occur and a precise ‘dominant term’ is not obviously identifiable
from the sum over the points in the fiber. The question of obtaining a more explicit
description irt for the local contributior is a problem that can be analyzed using
some other ideas from plane curve singularities, see [Li-2]. O

Remark6.13. It is useful to describe the analogues of (5.2), (5.3), (6.11) over
R, C. A sketch will suffice overR since the details for both fields involve itera-
tions of standard one variable arguments. It is clear that the notions of permissible
transformation, amelioration, and goBdvedge apply equally well to polynomial
or analytic maps oveR, C. The notation convention, introduced in the beginning
of Section 4, is also used here.

LetP: R" — R? satisfy the properties for membershipad, (if n = 2) or C¢,.
LetoU (x) be a good® wedge, where Equations (5.1) may be assumed to hold on
U((X) = x!_;{lz;| < 1}. The local zeta functioZ, can be defined for any paj
of characters offi£1}, and any smooth, compactly supported funcioan U (x).

Write s= o + iw, o, W € R?.

Foroy, 0o > 1, Z, is analytic and absolutely convergent. A standard argument,
using the iteration of the regularization procedure in one variable of [G-S], shows
the existence of an analytic continuationzf to C?> as a meromorphic function.

For each integes > 0, set

Li(e) ={se C%L;(e,S) =def Nisy + Misz + p1; + e = 0},
L) =1{0 eR% Li(e,a) =0},  T'x(e) = d(NE L (e)).
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EachI'y(e) is a polygon that separat®? into the parts above, below, or on it.
The analogue of (5.2) is:

R o
Pol, =gt polar divisor oz, c | J ] £i(e). (6.13.1)

i=1 e=0

The analogue of (5.3) is a strong decay conditiofiRA as|w|, |[wy| — oo. In
the following discussionk denotes a compact subsefffsuch thatk N\Pol, = @.

CLAIM 6.13.2. For any monomialM = M(s) there exist®C = C(M) such that
forany K,

IM(S)Z«(S, x,¢)| < C foranyssuch that € K.

Sketch of ProofBy reindexing, one may assume that for each 3, (N;, M;) e<
(N1, My), (N2, M3) >r, andM;/N1 < M>/N> < +oo. It is convenient to set
S; = N;s1 + M;s,, for i = 1,2. Combining a repeated use of integration by
parts with the regularization procedure in each coordinate, the asserted estimate
is straightforward to verify in theS,, S, variables, and so, in thg, s, variables.
In particular, this uses the fact thatand all its derivatives vanish ail/ (x). The
estimate one shows is that for ahy k, € N, there exists" = C(kq, k»), such that
forany K, one has:

k1 ko

l_[ H(Sl +pr+1) - (So+ po+ J)Zx(S1, S2, X, @)
i=0 j=0

< C forany ReS;, ReS; € K. O

The analogue of (6.11) is obtained by first applying a partial fraction decompos-
ition to Z, inside any tubek + iR2. Using (6.13.1), for any suck, there exists a
smallest vectoe = (e, ..., e) € NR, such that

R e
Nie(S X, 9) =det [ [ [[Li(U>9) - Zx(s x. 0)

i=1 j=0

is analytic inK + iR?. By (6.13.2), it follows thatw, , is also bounded in the tube
overk.

Noting that in this discussion there is no need to introduce the indek theit
appears in (5.2.1), one adapts the expression (6.6.1) to the following fraction, using
the same partial fraction method from (6.1)ff:
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1
[T 1o Li(G. )
Z Z Z t/m1m2 Z Z th(S)
Li(my, 9% L;(mp, 9k Li(j, 9

{i.jledo () m1=0 mp=0
i,j€[1L,R] 1<1<R

Here, thek;, ¢ are certain positive integers, finite in number, that need not be
specified further. Also, the numerator of each fraction is a polynomial. Thus, in
K +iR?,

l mlmg(s) z (S)
Z Z Z L;(my, Sj)kzLj(mz’ Sk Z Z L 90 (6.13.3)

{i,j}edo(® m1=0 m»=0 =
1<ij<R 1<1<R

where each numerator is analytic and satisfies the decay condition (6.1X 2} in
iR2.

The definition (5.5.1) for the fiber integray (¢, T) extends to the real case
without difficulty. Iterating Mellin inversion oriR? (see [I, pg. 21] for the one
variable case) now shows that fors> 1,

1
nnF(e, 1) = (niy? ;Xl(ac'fl)XZ(aCfZ) X

< / f Z4(s x> Ot ol Pdsidsy.  (6.13.4)
o1=c Joor=c

One then applies the discussion in [Li-7]. Startingatc) and choosing > 0
one forms a rectangl® (e) with upper right corner ak, ¢) such that the three other
corners lie below 'y (¢) and abovd (e + 1). So, each corner is disjoint from Rol
By making small modifications along its boundary, one can also assuneRiiat
contains no point of intersection of any two components of.Rolthe interior of
R(e), one fixes a simple pathiu — &£(u) = o, intersecting Pqltransversally
at simple points only, along whichy, o, are both monotonically decreasing, and
ending at(c’, ¢’) = lower left corner ofR(e). Deleting fromR(e) the union of
small open discs centered at each of the finitely many points inPbh &, one
obtains a compact s&f such that; , - Zy is bounded and analytic ik + iR2.
ReplacingZ, in (6.13.4) by the expression (6.13.3), one then transports the chain
of integration from(c, ¢) to (¢, ¢’) alongé&, and uses the Leray residue formula as
in [ibid] to rewrite the right side of (6.13.4) as a sum of iterated residues plus an
error term.

Each iterated residue has the following form:

H(log ||, log|ta|)|t1] ™" |t2| "2, for some H € R[uj, us],
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where(vy, v,) is a point of intersection of a unique pair of (transversal) components
of Pol, that lies in the interior ofR (e).

(6.13.2) now allows to grow without bound. When this occurs, two properties
can be shown to hold. The first is that the error term goes to 0. The second is
that the coefficient of the iterated residue at the p6int v,) is multiplied by a
characteristic function for a ‘wedge’ i, c0)? that can be described as follows.
There are exactly two components of the wedge’s boundary that contain (0,0).
Each component is a monomial curve. Moreover, each curve is determined by the
direction vector of one of the two lines in Rahat intersect atvy, v,).

Dividing (6.13.4) by|z; - 12|, the resulting infinite sum, obtained by lettiag—
+00, is the analogue to (6.11) ovR: An analogue ove€ is obtained by iterating
the discussion in [l, pgs. 24-32]. For additional discussion (and all details), see
[Li-3, 4].

Partii. The case whe®, is linear

For fixedB € 7", setP;(x) = B - x and P, a homogeneous polynomial of degree
d>, > 2, so thatP = (P, P,) € C¢,. This part calculates the matricég'(p)
resp.A(p) whenp is a point satisfying the properties in (3.2) resp. (3.4). Notations
introduced in Sections 2 and 3 are used here. The first ingredient is the following.

LEMMA 6.14. Letp € 7~1(0) at whichP; - P,(p) # 0. ThenP, — P,(p) has at
most a nondegenerate singularity at

Proof. A simple argument uses a preliminary linear coordinate changg/in
prior to any blowing up. By reindexing one may assugie# 0. Then define the
coordinates

=B-x,y,=x;, foranyi>2 (6.14.1)

In the (y) coordinates, it is clear that Sipds defined by the: — 1 equations
aP,/dy; = 0,i > 2. Now apply the blowing up of 0. CIearIy in the charZ, (1),
Piom(x1q, ..., X1) = X11, and P, o T(X11, .., Xp1) = xlle SlnceP]_ =1,it
suffices to show thaP, — P,(p) has at most a nondegenerate critical point at any
p € Dy for which Px(p) # 0.

To show this, one first notes that for eack 2, P,/dxi1 (p) = 8 P2/3y:i(pD).
Thus, if p is a singular point off,, then p® e Sings. Given thatp® € Sings,
the homogeneity of eachP,/dy; and the fact thap;(pP) = 1, one concludes by
Euler’s relation that

2P,

(1) _ (5] 1
v P = Zy,(p) y(p ).

j=2

So, the first column of the matriQGZPz/ayiayj)glJ)z is a linear combination of
the remaining: — 1 columns. Sinc® € C¢,, it follows that this matrix has rank
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n — 1. This implies the Hessian @ (with respect to the coordinates, .. ., x,1)
has ranks — 1 atp.

In any ChartZk(l), k # 1, Prom(Xy, ..., Xnk) = XuXik- Thus, pr e Dy
satisfies the hypothesis of the Lemma, it follows that(p) # 0. Then, via the
identificationx;; = xikl’ andx;y = xi/xu, i # 1, k, one can identifyp with
a point in 4, and the preceding discussion applies, completing the proof of the
Lemma. O

One now evaluates the;, 1, — 1 in (3.2).

COROLLARY 6.15. Assumep = (0, p') € D, is a singular point of?,. Set
7’ =id x 1Y — U(p) to be the blowing up gf’ in Z,(1) N D;. Then for anyp
in the exceptional divisor of’,

Ay =| & 2

Thus,(mo,...,m,) =(2,60,...,0and(u—1, ..., u,—1) = ®-2,0,...,0).
Next, consider a poinp € {P, = P, = 0} N D that is a singular point of the

map(Py, P,) in n— 1 variables (that is, local form (2.5)(iii)). Using the coordinates

from (6.14.1), it is clear thap € Z,(1) for somek > 2. Indeed, the hypothesis

implies
xu(p) = dPy/dx;(p) =0 foreach # 1,k. (6.16)
LEMMAG6.17.
(i) If p € D, satisfies (6.16), thep® ¢ Sings.
(iiy If (i) holds, then there exist local coordinates = (z1,...,z,), defined

in a neighborhoodU (p) = x;{|z;| < &} C Zx(1), satistyingU (p) N Dy =
{z1 = 0}, such that

Py o m(z) = 7122 - (Unit),

Prom(z) = 222+ 023, - ... 20)], (6.17.1)
whereQ = >~ ;5 ¢z, andc; # Ofor eachi > 3.

Proof of (i). Combining the hypothesis with Euler’s relation applied Rg
and the fact thatP,(p®¥) = 0, one sees immediately that for each# 1, k,
dP2/3y;(pP) = aP2/d y(p®) = 0. Thus,p® € Sing.

Proof of (ii). By (i), the rank of the matrix92P,/3y;0y;(p®))i>1 ;=2 equals
n — 1. By (6.16), it follows that théth column is a linear combination of the— 1
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other columns. Thus, the rank of the submatrix, formed by deletingttheolumn
and the first column, must equal— 2. This however is equivalent to saying that

32P
rank 2 (p) =n-—2
8x,»k8xjk Q=2

i,j#k

Applying now Lemmas 2.2, 2.3 téz(xlk, ey Xk—1 ks Xkt ks - - - » Xn), (1) iImplies
the existence of local coordinatés,, ..., w,) (centered ap) such that
Piomr = wiwy,

Prom = wilp(ws) + Qws. ..., w,) + Y whHy(ws, ..., w,)],
(=2

where deg = 1, 0 = ), ;¢;w?, and eaclH, vanishes ap. It follows that local
coordinates exist (6.17.1) holds, finishing the proof of (ii). O

Define p’ to be the point inD, whose coordinates equal those pfexcept for
xi(p) = 0. Letny:Z'(2) — U(p) N D, denote the blowing up g¥’ in the ambient
spacedy, using the coordinates in (6.17.1). S&2) =qef {|z1] < €} X Z/(2) =
U_,Z;(2), andng = id x ng. From (6.17), the following is now a simple exercise,
left to the reader.

COROLLARY 6.18. The matricesA(p) in the proof of(3.4) are obtained as
follows (see(3.3) for the notation convention

(i) Every pointp € Z;(2) is a good point folP o 7 o 9 except for the origird; in
each chartZ;(2),i > 3. Further,

1 1
Ai(p) = dp 1
n—1 n-2

For eachi > 3, setZ/(2) = Z:(2) N{z1 = 0}, andU’(Q;) = U(0;) N {z1 = 0},
whereU (0;) denotes a compact open neighborhood,dh Z; (2).

(i) There exists a smooth subvarigty of codimension 2 irU’(0;), so that the
following holds. Lety'(i):Z;(3) — U’(0;) denote the blowing up df’(0;)
alongY;, Z;(3) = {|zal < ¢} x Z!(3), andn41(i) = id x n’(i). Then each point
p of the exceptional divisor afi(i) is a good point forP o 7 o 59 o n1(7).
Further, for each suclp,
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or do 2 0 €],

wherer € {0, 1}.

Using (3.10) for the singular points other thanand the preceding results for
any point onr~%(0), one arrives at the following estimate of the position of any
polygonT, (x) (see (6.12)), as a function of d», providedP; is a linear function.

THEOREM 6.19.

(i) For any goodP wedge of the formU (x), and any: € o(X), eithers, ,(X) =
—lors,,(X) < —n/dyfore =1, 2.

(i) The multiplicity of{s, + 1 = 0}, as a component of the polar divisor of
Zy«(x, S @), is at most equal to 1, for any, ¢.

Thus, the only possible obstruction to any axis intercept of a polygox)
being at most-n/d; is that at least one of its sides lies on a lipe= —1. O

7. An Extension of Theorem 4.3 to Some Pairs not i®€; U C¥{;,

This section is needed to estimalezﬂe(z/p,)n S.(p", B)| for large r
(see [Li-1]). UsingB, x to denote distinct variables @@, define the class

err = {P:Q% — Q%Pi(B.x) =B - x,
P, = P,(x) is homogeneous of degrée> 2 and nonsingular outsid?.
An elementary verification, left to the reader shows

LEMMA7.1. If P € C¢*, thenSing, = {(B,0):8 € Q' }.

Next, setz:% — Q% the blowing up of{(8,0)}. Thus,¥% = Ui_,Y; and
nly_/(ﬂ, w) = (B, wiwj, ..., wWj_1w;, Wj, WjyWj, ..., w,w;). Moreover,

Piomly, = w;[B; + Zﬂiwi] =def W; P1, Pyom|y, = w;le
i#]

One now observes the following.
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LEMMA 7.2. If p = (B, w) satisfiesP(p) = 0, Po(p) # O resp.Py(p) # O,
P>(p) = O resp.Pi(p) = P2(p) = 0, then

A = d 0 | resp
n—1
0 1 1 0
A = d 1]resp A(p) = d 0 1 (7.2.1)
n—1 0 n—1 0 O

Proof. AssumePy(p) = 0, P»(p) # 0. SincedP1/dp,;(p) = 1, it follows,
by settingB; = P, B = B;,i # j,that(By,...,B,,w) form a system of
coordinates ap so thatP, om = w1B; andP,om = wj.’- (unit). So,A(p) equals
the first matrix. If P (p) # 0, Pz(p) 0, then Lemma 2.3 implie&(p) equals the
second matrix. Finally, i, (p) = Pz(p) = 0, then itis clear, by combining the two
previous cases, that; and bothPy, P, can be used as part of local coordinates at
p. Using these coordlnates it follows immediately thA&p) equals the third matrix
in (7.2.1). a

The next Lemma treats the remaining possibility.

LEMMA 7.3. AssumeP;(p), P>(p) # 0. Then there exist local coordinates, W)
centered ap so that

Piom =Py(p)W;.  Poom = W{PyB, W)

whereaﬁz/aBj(p) # 0. Thus, there exists an amelioratigf, G) — P o 7, and
the matrix of multiplicities fo F, G) is given by:

1 0
A*(p) = d 1]. (7.3.1)
n—1 0

Proof. Fori = 1,2, setP; = (P, — P,(p))/ P;(p), so thatP; o = P;(p)w;[1+
P]. Sinced P1/3p ;(p) = 1, there exists a neighborhodé(p) so thatB; = Py,
B, = B;,i # j,andW; = w;[1+ Pi], Wi = w; — w;(p), i # j, has nonzero
jacobian onU (p). Thus,

Pron(W) = PAp)W{[L+ Pi1 “[1+ Po] = P.(W{[L+ P+ Py,
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By shrinkingU (p) if needed, one can insure thaly p, # 0, andd (P1u)/d B (B,
W) # 0 for all (B, W) € U(p). Sinced P,/0B; = 0, one concludes that is a
good point for the pai(F, G) =get (W}, ﬁz(p)W;’[ﬁlu—i- P;]). Itis then immediate
that the matrixA*(p), computed for F, G), is the matrix in (7.3.1). O

Combining (7.2), (7.3), it follows that Theorem 4.3 applies to the pairzdh
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