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The asymmetries that arise when a mixing layer involves two miscible fluids of
differing densities are investigated using incompressible (low-speed) direct numerical
simulations. The simulations are performed in the temporal configuration with very
large domain sizes, to allow the mixing layers to reach prolonged states of fully
turbulent self-similar growth. Imposing a mean density variation breaks the mean
symmetry relative to the classical single-fluid temporal mixing layer problem. Unlike
prior variable-density mixing layer simulations in which the streams are composed of the
same fluids with dissimilar thermodynamic properties, the density variations are presently
due to compositional differences between the fluid streams, leading to different mixing
dynamics. Variable-density (non-Boussinesq) effects introduce strong asymmetries in the
flow statistics that can be explained by the strongest turbulence increasingly migrating
to the lighter fluid side as free-stream density difference increases. Interface thickness
growth rates also reduce, with some thickness definitions particularly sensitive to the
corresponding changes in alignment between density and streamwise velocity profiles.
Additional asymmetries in the sense of statistical distributions of densities at a given
position within the mixing layer reveal that fine scales of turbulence are preferentially
sustained in lighter fluid, which also is where fastest mixing occurs. These effects
influence statistics involving density fluctuations, which have important implications for
mixing and more complicated phenomena that are sensitive to the mixing dynamics, such
as combustion.
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1. Introduction

A wide range of applications include the fundamental phenomenon of turbulence
sustained by shear between streams of fluids. Frequently, the streams may have different
densities because they consist of different fluids. Such flows can involve miscible
or immiscible fluids; we are here concerned only with the miscible case. Miscible
applications exist in combustion, industrial chemical mixing and geophysical flows. The
relevance of mixing layer simulations to combustion is reviewed in Givi (1989), and other
complex applications of sheared variable-density flows are summarized in Akula, Andrews
& Ranjan (2013).

† Email address for correspondence: jbaltzer@lanl.gov
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900 A16-2 J. R. Baltzer and D. Livescu

In many cases, the density differences can be large, producing significant changes to the
flow evolution. Dimotakis (2005), in a review of turbulent mixing, classified mixing into
three categories based on the complexity (physics coupling) of the mixing phenomena and
the importance of correctly capturing the mixing dynamics to the overall predictions. In
the simplest (Level 1) cases, capturing the turbulence but not the mixing itself is sufficient
to predict the flow dynamics. Level 2 indicates that mixing alters the flow dynamics.
Inertial effects of the large density variations of the mixing layers investigated herein
place the flow in Level 2 with increased complexity that cannot be captured by extending
single-density mixing layer results with passive mixing.

In combustion, very large density variations can exist due to differing fluid compositions
and thermodynamic variations. Combustion is among the most complex mixing flows
(classified as Level 3) because the mixing strongly affects reactions that produce
changes in the fluids (including heat release) which then couple back to the mixing
dynamics. Capturing the inertial effects associated with compositional variations during
the mixing of reactants and reaction products can be a significant component of predicting
combustion. Bilger (1976) noted the importance of density differences in turbulent jet
diffusion flames. In configurations such as a jet of hydrogen fuel released into air, the
density differences can be very large simply due to the different molar masses of the fluids.

Several recent incompressible studies have revealed interesting effects on turbulent
mixing when density differences are large solely due to differing compositions. The
Atwood number A characterizes the difference in densities between streams of fluids

A = ρ2 − ρ1

ρ2 + ρ1
=⇒ ρ2

ρ1
= 1 + A

1 − A
, (1.1)

where ρ1 and ρ2 are the densities of each pure fluid. Pure helium mixing with air
(or nitrogen) corresponds to an Atwood number of 0.75, while pure hydrogen mixing
with air corresponds to A = 0.85. Studying Rayleigh–Taylor (RT) instability in the
classical configuration and a triply periodic version (i.e. homogeneous buoyancy-driven
turbulence), Livescu & Ristorcelli (2008, 2009) found significant changes in behaviour
when the Atwood number was increased to high values. Atwood numbers of A � 0.05
are typically considered to be the limit of the Boussinesq approximation (Livescu et al.
2010). Flows of sufficiently high Atwood number to vary significantly from the Boussinesq
approximation have been termed variable density. Livescu et al. (2010) showed that
changes in alignment between density gradient and local strain is a variable-density effect
associated with reduced mixing in the heavy fluid regions. Much of the simulation studies
of density effects on mixing have occurred in buoyancy-driven turbulence, such as the
small density variation study of Batchelor, Canuto & Chasnov (1992) that was later
extended to non-Boussinesq flow by Sandoval (1995). Sandoval (1995) also considered
decaying isotropic turbulence without buoyancy, which was further studied by Jang & de
Bruyn Kops (2007). Movahed & Johnsen (2015) studied variable-density mixing in two
fluids with decaying isotropic turbulence initially separated by a planar interface. Notable
classical RT studies include Cabot & Cook (2006) and Livescu et al. (2009).

Shear-driven mixing layers have historically received a great deal of attention,
but mainly for single-fluid configurations. Rogers & Moser (1994) simulated an
incompressible mixing layer in the temporal (streamwise-periodic) configuration
to self-similar fully turbulent growth. A similar configuration was simulated by
Balaras, Piomelli & Wallace (2001) to study the effects of initial conditions. More
powerful computational resources have recently enabled performing spatially developing
simulations, which more closely approximate mixing layer experiments. These require
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Variable-density incompressible turbulent mixing layers 900 A16-3

much longer streamwise domains to attain a desired mixing layer thickness since they
thicken with downstream distance rather than in time as is the case for temporal
simulations. (However, meaningful temporal simulations implicitly require sufficiently
large domains to not interfere with the growth of turbulent structures.) Wang, Tanahashi &
Miyauchi (2007) designed a spatially developing mixing layer simulation to be comparable
to the temporal mixing layer of Tanahashi, Iwase & Miyauchi (2001) and observed similar
energy dissipation rates but increased turbulent kinetic energy. The direct numerical
simulations (DNS) of Attili & Bisetti (2012) advanced spatially developing mixing layer
simulations to a very long domain that enabled attaining a relatively large Reynolds
number. During self-similar growth, they found remarkable agreement between their
self-similar dissipation values and that of the Rogers & Moser (1994) temporal simulation,
as well as close agreement for most other statistics. Relevant low-speed experimental
studies include those of Spencer & Jones (1971), Bell & Mehta (1990) and Loucks
& Wallace (2012). Experiments addressing detailed turbulent structure include those
of Olsen & Dutton (2003) (which also contained a weak density difference) and Li,
Chang & Wang (2010). In several studies, mixing properties have been investigated
with shear-driven mixing layers, but in the absence of density differences between the
participating fluids (e.g. Sharan, Matheou & Dimotakis 2019).

High-speed compressible mixing layers have also received a great deal of attention,
particularly due to the strong reduction in mixing layer growth rate that occurs with
increasing Mach number. Although density effects associated with compressibility were
once thought to affect growth rate (as discussed in Brown & Roshko 1974), DNS
simulations have clarified how compressibility effects reduce the growth due to decreased
turbulent kinetic energy production as compressibility decorrelates the strain and pressure
fluctuations (Sarkar 1996; Vreman, Sandham & Luo 1996; Freund, Lele & Moin 2000;
Pantano & Sarkar 2002; Livescu & Madnia 2004). Research has continued on this
mechanism in compressible mixing layer experiments (e.g. Barre & Bonnet 2015). Recent
simulations have further investigated the mixing characteristics of compressible mixing
layers (e.g. Jahanbakhshi, Vaghefi & Madnia 2015).

Non-buoyant mixing layers with significant density variations (i.e. density ratios larger
than 2) have begun to receive attention. Two-dimensional (2-D) and three-dimensional
(3-D) simulations demonstrated that differing free-stream densities significantly changed
the early-time growth and Kelvin–Helmholtz (KH) flow structures (Joly, Reinaud &
Chassaing 2001; Joly 2002). The pioneering 3-D temporal simulations of Pantano &
Sarkar (2002) included an investigation of different free-stream densities within a broader
study of compressible mixing layers. The differing densities were established by varying
the temperature for a single fluid. They found that increasing Atwood number decreased
the temporal thickness growth rate, although the extent depended on how thickness was
defined. During self-similar growth, the Reynolds shear stress changed little in magnitude
but shifted to the light fluid side with increasing Atwood number. They also developed
a model characterizing the shift of the mean velocity profile to the light fluid side
and the associated decrease in momentum thickness growth rate. Mild compressibility
effects were likely present because the convective Mach number was Mc = 0.7. More
recently, Almagro, García-Villalba & Flores (2017) performed DNS using a low-speed
approximation for the flow of Pantano & Sarkar (2002). Two streams of a single fluid with
different temperatures again create the density difference, but compressibility effects are
considered negligible at low speeds. They also developed a semi-empirical model for the
reduction in momentum thickness growth rate with density ratio.

Details of mixing layers with variable density due to differing fluid compositions are
much less understood. Detailed studies of mixing layers involving two different miscible
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900 A16-4 J. R. Baltzer and D. Livescu

fluids have been rare, particularly when not complicated by other effects such as buoyancy
or compressibility, despite earlier attention. The historic low-speed experiments of Brown
& Roshko (1974) using two gases with different densities found reductions in the growth
rates as large as 50 % for density ratios up to 7. These measurements were limited to mean
density and streamwise velocity profiles and no details of the changes to turbulence and
mixing properties are available. Our present investigation focuses on this flow but in a
temporal configuration. The governing equations for this incompressible flow differ from
those for a single fluid with thermal-induced density variations, as used by Pantano &
Sarkar (2002) and, in a low-speed limit, by Almagro et al. (2017). The relationship between
the equations governing these flows has been reviewed in detail by Livescu (2020). Baltzer
& Livescu (2020) focused this analysis on applications to mixing layer simulations and
found that mean statistical profiles showed little difference when the density difference
between free streams was compositionally induced or thermally induced. However, these
cases had significant differences in their mixing and density probability density function
behaviours.

The present temporal simulations are relevant to understanding variable-density effects
on growth in the spatially developing configuration. Two-dimensional simulations of
early-time spatially developing mixing layers show strong differences in entrainment
depending on whether the low- or high-speed stream has lower or higher density (Reinaud
2000; Joly 2002); we are unaware of any spatial simulations of fully turbulent growth.
Based on experiments, Brown (1974) studied the thickness growth rate of variable-density
spatially developing fully turbulent mixing layers. He assumed that the temporal growth
rate (i.e. from a frame of reference moving with the mixing layer convection velocity)
is independent of the density difference between the streams, which is contrary to the
reductions observed by Pantano & Sarkar (2002) and Almagro et al. (2017). As discussed
in Pantano & Sarkar (2002), Brown (1974) combined this with the observation that the
convection velocity is closer to the velocity of the high-density stream to propose a formula
for growth rate reduction with Atwood number. Dimotakis (1984) refined the formula to
account for asymmetric entrainment that is present only in spatially developing mixing
layers. Ashurst & Kerstein (2005) studied variable density effects in temporal and spatial
mixing layers using the one-dimensional turbulence stochastic simulation method; they
captured many of the effects observed in Pantano & Sarkar (2002).

Other studies have addressed variable-density shear-driven mixing layers with buoyancy
or other complicating physics playing a significant role. Olson et al. (2011) simulated
mixing layers with mixed RT (buoyant) and KH (shear) instability and Atwood numbers
ranging up to 0.71 using the same governing equations as for our present study. They
focused on early times when complicated interactions between the instabilities produce
complex effects on the growth rate. The linear stability study of Zhang, Wu & Li
(2005) also considered a similar configuration. Barros & Choi (2011) performed linear
stability analysis in a similar configuration representative of some environmental flows
and highlighted the importance of the variable-density inertial terms beyond a Boussinesq
approximation. Experimentally, Akula et al. (2013) studied mixed RT and KH instability
with air and air/helium mixture streams shearing past each other, following a number
of water-based experiments (also reviewed therein); buoyancy was the principal density
effect and the Atwood numbers were low (<0.04). Gat et al. (2017) simulated the
mixing of vertical columns of fluid with different densities and perturbed interfaces.
Gravity accelerates the perturbed heavy column downward within the triply periodic
domain to induce KH instability. Their configuration contains some of the same physics
(shear aligned with buoyancy) as the more complex configuration of a buoyant jet,
which was recently studied experimentally by Charonko & Prestridge (2017) and received
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more detailed analysis of the cascade of energy between scales by Lai, Charonko &
Prestridge (2018). Additional multi-composition variable-density shear studies in the
presence of other complicating physics include simulations of hydrogen and air streams
to address supersonic turbulent combustion by O’Brien et al. (2014), reacting mixing
layer simulations by Miller, Harstad & Bellan (2001) and hybrid motor simulations with
oxidizer and gasified fuel by Haapanen (2008).

Our present investigation seeks to elucidate the fundamental changes to the self-similar
growth in a free shear flow produced by differences in the density of each stream
with differing compositions. We perform direct numerical simulations in the simple
incompressible temporally developing configuration with two miscible fluids. In
particular, we seek to quantify the asymmetries that appear in the flow statistics due to
variable-density effects (whereas the analogous single-density incompressible temporal
mixing layer configuration is statistically symmetrical) and explain their effect on growth
characteristics. The paper is structured as follows: § 2 describes the simulation approach
and governing equations, followed by a description of the initial conditions in § 3.
Section 4 discusses flow properties that can be adduced from the governing equations
and introduces definitions of flow measurements. Section 5 presents an overview of mean
and fluctuation statistics from the simulations and relates growth rates to statistical profiles.
Section 6 briefly addresses the local effects of density on velocity-related statistics, leading
to the conclusions of § 7. This is followed by appendices addressing (a) the relationship
between density profiles and mean cross-stream velocity and (b) contrasts between the
present variable-composition flow and variable-thermodynamic-property flow.

2. Simulation approach

The simulations are performed in the canonical temporal configuration, with two
velocity streams of equal magnitudes flowing in opposite directions. The temporal
configuration can be regarded as the limit of mean convection velocity of a spatial mixing
layer approaching zero. In this case, the mixing layer develops with time instead of with
spatial position as the flow convects downstream for the latter configuration. By using
periodic boundary conditions in the streamwise (and spanwise) directions, the temporal
configuration avoids the need for choosing inflow and outflow conditions and focuses
on the variable-density effects on mixing in the simplest configuration possible. To our
knowledge, this is the first study focusing on variable-density effects due to composition
variation without additional effects such as compressibility, reactions, etc. Following the
typical set-up (e.g. Rogers & Moser 1994), the coordinates are oriented such that 1 (x)
denotes the streamwise direction aligned with the mean velocities, 2 (y) denotes the
cross-stream (transverse) direction normal to the fluid interface and 3 (z) denotes the
spanwise direction (figure 1).

2.1. Governing equations
To study incompressible mixing layers involving two fluid streams with strongly differing
densities, the governing equations are formed by considering the full compressible flow
equations for a miscible binary fluid mixture and then obtaining the infinite speed of
sound incompressible limit (Livescu 2013). Gravity is not included here, but otherwise the
governing equations are identical to those describing variable-density (non-Boussinesq)
RT flow, as simulated by Cook & Dimotakis (2001), Livescu & Ristorcelli (2007) and Wei
& Livescu (2012). To our knowledge, the present study is the first application of these
equations to purely shear-driven variable-density fully turbulent mixing layers.
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z
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ρ− = ρ1 = ρ0 (1 − A)

ρ− = ρ2 = ρ0 (1 + A)

U = −�U/2

U = �U/2

FIGURE 1. Variable-density mixing layer simulation set-up and coordinate system.

The equations for the instantaneous variables (with partial derivatives denoted following
the comma in the subscript, namely t representing the time variable t and an index i
representing the relevant spatial direction xi) are

ρ,t + (
ρuj
)
,j = 0, (2.1)

(ρui),t + (
ρuiuj

)
,j = −p,i + τij,j, (2.2)

uj,j = −D (ln ρ),jj , (2.3)

where the viscous stress, assumed to be Newtonian, is

τij = μ
[
ui,j + uj,i − 2

3 uk,kδij
]
. (2.4)

The governing equations are supplemented by slip boundary conditions in the y direction
and periodic boundary conditions in x and z directions.

Equation (2.3) represents the non-zero divergence of velocity that occurs due to the
change in volume during mixing (while the flow is incompressible). The Fickian form with
diffusion coefficient D represents the infinite sound speed limit of the full multicomponent
diffusion operator (Livescu 2013). Equation (2.3) can be derived from the mixture rule
ρ = 1/(Y1/ρ1 + Y2/ρ2) (where Y1 and Y2 are species mass fractions of pure fluids with
constant densities ρ1 and ρ2, respectively) and species mass fraction transport equations for
each species (ρYm),t + (ρYmuj),j = D(ρYm,j),j (Sandoval 1995; Cook & Dimotakis 2001;
Livescu & Ristorcelli 2007). The mixture rule can also be connected to the infinite speed
of sound limit of the ideal gas mixture equation of state. Alternately, the same divergence
relation can be derived as the infinite sound speed limit of the energy transport equation,
which demonstrates the consistency of the variable-density governing equations (Livescu
2013). The dynamic viscosity of mixed fluid obeys a relation analogous to the density:
μ = 1/(Y1/μ1 + Y2/μ2), where μ1 is the viscosity of the pure fluid with density ρ1 and
μ2 is the viscosity of the pure fluid with density ρ2, which ensures a uniform Schmidt
number, Sc = μ/(ρD), throughout the mixture.
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2.2. Notations
Many of the statistics are based on averages, which are indicated by the symbol 〈〉.
Generically, the Reynolds mean of a quantity q is denoted by 〈q〉 and Reynolds fluctuation
is q′ = q − 〈q〉. For simple expressions, the Reynolds mean will also be indicated by an
overbar, i.e. q̄, which is equal to 〈q〉. As is typical for compressible flows, Favre averaging
is employed for the mean governing equations to account for density variations. The Favre
mean of a velocity component, ui, is denoted by Ũi = 〈ρui〉/〈ρ〉 and the Favre fluctuation
is u′′

i = ui − Ũi, in contrast to the Reynolds mean, Ūi = 〈ui〉, and fluctuation, u′
i = ui − Ūi.

Numerical quantities presented in sections below are obtained from averages computed
based on homogeneities present within the flows. Since the flow is periodic and
homogeneous in the streamwise and spanwise coordinates x and z, area averages are
computed across y-normal planes. Self-similar statistics will also be considered in
which profiles should not change with time (except for noise due to lack of statistical
convergence) when the y coordinate is scaled by an appropriate length scale. For these
statistics, time averaging is also performed over the self-similar growth duration to improve
statistical convergence (§ 5.2). The averages computed to obtain Reynolds (Ūi) and Favre
(Ũi) averages are x − z area averages only when the statistic is a function of time or not in
self-similar coordinates, but time averages are taken of the area averages when self-similar
statistics are presented and the same set of notations is used for the averaged quantities.

2.3. Numerical approach
The governing equations (2.1)–(2.4) are solved numerically using a pseudo-spectral
scheme for spatial discretization in the periodic (streamwise and spanwise) directions
and a compact difference scheme for the inhomogeneous (cross-stream) direction of the
flow. The algorithm and code are slightly modified from those employed and described
by Wei & Livescu (2012), Livescu et al. (2010) and Livescu, Wei & Petersen (2011) for
variable-density RT simulations; the equations solved are the same except non-zero mean
streamwise velocity is present in the mixing layer.

The cross-stream (normal) velocities at the lower and upper slip wall boundaries are
maintained at zero, and this is consistent with the governing equations for this temporal
mixing layer. Averaging the divergence equation (2.3) with diffusivity D assumed
constant, and then omitting the terms of the summed indices that vanish due to the
homogeneities present in the flow results in

〈u2〉,2 = −D〈ln ρ〉,22. (2.5)

Integrating across the y domain, this expression becomes u2(ymax) − u2(ymin) =
−D{[ln ρ],2(ymax) − [ln ρ],2(ymin)}. Since density remains constant at the free streams
existing at the upper and lower walls, it follows that u2(ymax) − u2(ymin) = 0. Thus,
the variable-density equations are consistent with the boundary conditions u2(ymin) =
u2(ymax) = 0. This argument also holds for thermally induced single-fluid variable-density
mixing layers (for which the governing equations are summarized and contrasted with
the present equations in Baltzer & Livescu (2020) and Livescu (2020)) if the heat
conduction coefficient is constant. More complicated cases such as heat release with
chemical reaction necessitates non-zero normal velocity at the boundaries, e.g. Higuera
& Moser (1994). Spatially developing mixing layers also include streamwise gradients in
the streamwise velocity, leading to another term remaining in the left-hand side of the
divergence equation, which leads to cross-stream velocities at the upper and lower domain
velocities associated with entrainment in even the single-density case.
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900 A16-8 J. R. Baltzer and D. Livescu

The third-order accurate variable time stepping Adams–Bashforth–Moulton method is
used for time integration, coupled with the usual fractional step method. This is adapted
for the pressure equation with variable coefficients due to non-zero velocity divergence
associated with the variable-density equations. Fourier representations in the periodic
coordinate directions allow the variable coefficient Poisson equation for pressure to reduce
to an ordinary differential equation in the inhomogeneous direction. Taking advantage
of the structure of the compact derivative, direct solvers can be employed for constant
coefficient Poisson equations. The algorithm was initially devised for triply periodic
buoyant turbulence simulations by Livescu & Ristorcelli (2007) to provide an exact
divergence of momentum and thus avoid degrading the overall order of accuracy. This was
an advancement from the algorithm used by Sandoval (1995) that required an extrapolation
of velocity in time in order to determine the divergence of momentum but could degrade
the overall temporal order of accuracy from second order.

The variable coefficient Poisson equation for pressure is decomposed into the
form ∇p/ρ(n+1) = ∇q + ∇ × A + 〈L〉, which results in a constant coefficient equation
corresponding to the dilatational (curl-free) component, ∇q, and implicit equations for the
curl (divergence free), ∇ × A, and mean components. The implicit equations are solved
iteratively, using the direct Poisson solvers at each step. Due to the periodic boundary
conditions, the mean term 〈L〉 is non-zero only in y direction. Differences compared to
the RT algorithm appear in the mean term for the mixing layer because of the mean flow
in the streamwise direction. For the RT case, the mean velocity is zero in both (periodic)
horizontal directions, while for the mixing layer case, it is zero only in the (periodic)
spanwise direction.

This algorithm avoids introducing additional errors that could affect mass conservation
or degrade the accuracy from the time stepping method. The dilatational component of
∇p/ρ is related to mass conservation, which is enforced to machine precision due to the
direct solvers involved. The curl component, ∇ × A, is related to the baroclinic production
of vorticity. The iterative procedure is performed until the maximum x–z planar-average
squared change in ∇ × A relative to the previous iteration value reduces to 0.01 times the
squared value of ∇ × A averaged within the plane, for each component α

max
j∈{1,...,Ny}
α∈{1,2,3}

Nz∑
k=1

Nx∑
i=1

[
(∇ × A)(n)

α (xi, yj, zk) − (∇ × A)(n−1)
α (xi, yj, zk)

]2

Nz∑
k=1

Nx∑
i=1

[
(∇ × A)(n)

α (xi, yj, zk)
]2

< 0.01, (2.6)

where n denotes the iteration number. This tolerance ensures small differences compared
to convergence to machine precision. Note that each step of the iterative procedure is based
on a direct Poisson solver.

No filtering was used in the simulations, so that the small scales are not affected
by numerical artefacts. The spatial resolutions were determined by the requirement
that the Kolmogorov scale is well resolved and a series of lower resolution, early
time mesh convergence studies. The higher Atwood number cases have more stringent
spatial resolution requirements, but for consistency, the same resolution was used for all
simulations with Atwood number of 0.75 or below. Therefore, the lowest Atwood number
simulations are over-resolved but should yield very high-quality vorticity and velocity
gradient statistics. As described below in the discussion of self-similarity, at late times
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Variable-density incompressible turbulent mixing layers 900 A16-9

the peak local dissipation decays linearly with time, so the simulations require the finest
resolution during the initial growth stage.

Moin & Mahesh (1998) note that the Kolmogorov length scale is often cited as
the smallest scale that needs to be resolved, but suggest that this requirement is more
stringent than necessary for reliable first- and second-order statistics. For spectral methods,
resolution is often expressed as kmaxη, where η is the average Kolmogorov length scale
(ν3/ε)1/4 and kmax = a(2π/L) for a spectral representation of N grid points in a domain
of length L. The leading coefficient of the kmax definition depends on the dealiasing
employed, up to a maximum of N/2 if no truncation is used. The present simulations
calculate the advective terms in skew-symmetric form to reduce the aliasing errors
for cubic terms (Blaisdell, Mansour & Reynolds 1991). In DNS intended to maximize
Reynolds number, typical values are 1 ≤ kmaxη ≤ 2 (Gotoh & Yeung 2013), with kmaxη ≈
1.5 typical for adequately resolved DNS of isotropic turbulence (Pope 2000; Petersen &
Livescu 2010). Greater resolution may be required when special attention is focused on
certain features, such as fine scale structure associated with stretched spiral vortices in
isotropic turbulence that requires kmaxη � 4 (Horiuti & Fujisawa 2008) or the alignment
of strain rate and vorticity (Hamlington, Schumacher & Dahm 2008).

In the present mixing layer at negligible Atwood number, kmaxη for the Fourier spectral
representation of each homogeneous direction reaches a minimum of ≈ 1.7 at early
times at the centreline (where turbulence is most developed) and continuously increases
thereafter. Pantano & Sarkar (2002) report final values of kmaxη ≈ 1.0, and they rely on
spatial filtering that was shown to produce a relatively small amount of non-physical
dissipation to improve stability in their simulations. Resolution can also be quantified
in terms of grid spacing relative to the average Kolmogorov scale. Almagro et al.
(2017) reported horizontal grid spacing finer than 1.8η during the self-similar growth,
whereas the corresponding values in Pantano & Sarkar (2002) are 3–4η. In the present
low A simulation, the horizontal grid spacing (Δx and Δz) peaks at 1.8η during the
early-time transition and reduces to 1.0η during self-similar growth. Since the mixing
layer is inhomogeneous and the Kolmogorov microscales shown above calculated from
the dissipation at the peak y position does not account for inhomogeneities in the flow
scales, these values merely represent a guideline.

For the present high Atwood number simulations, resolutions can be similarly estimated
using the isotropic turbulence formula for η that does not address how scales may vary with
local density variations. For the present A = 0.75 simulation, which has the same grid
spacing as the A = 0.001 simulation, kmaxη attains a minimum value of 1.8 at early times
and is 3.2 to 3.7 during the self-similar growth (which is similar to the values attained in
the A = 0.001 case). For A = 0.75, the horizontal grid spacing corresponds to a maximum
of 1.8η at early time and decreases to 1.0η by the end of self-similar growth. For A = 0.87,
the simulation requires a greater number of grid points for the same physical domain size
to maintain numerical stability. The calculated kmaxη reaches a minimum value of 2.7
at early times but remains between 4.4 and 5.3 during the identified self-similar growth
interval. The horizontal grid spacing corresponds to a maximum of 1.2η at early time
and decreases to 0.6η by the end of self-similar growth for A = 0.87. Nonetheless, these
values based on isotropic turbulence η are not sensitive to localized steep velocity and
density gradients at increased Atwood number that are hypothesized to necessitate greater
resolution for numerical stability.

The compact finite difference scheme used for the cross-stream (y) direction is
sixth-order accurate for both the momentum and pressure equations. The uniform grid
spacing is finer (reduced to a factor of 0.8: Δy = 0.8Δx = 0.8Δz) in the inhomogeneous
direction, in order to compensate for the lower accuracy relative to the Fourier directions.
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Modified wavenumber analysis for sixth-order compact difference equations indicates
errors in differentiating modes become larger at higher wavenumbers (Petersen &
Livescu 2010). Since differentiation with the Fourier method is exact up to its highest
resolved wavenumber, the Fourier method has no error until the Nyquist frequency. This
corresponds to a grid spacing of 2η if kmaxη = 1.5. Requiring the compact difference
method to produce less than 25 % error in differentiating a mode with this same
wavelength dictates that the grid spacing must be refined relative to that of the spectral
method by a factor of 0.8. Note that the vast majority of the energy in the flow is at longer
wavelengths that have negligible error, according to the modified wavenumber analysis:
the lowest 3/4 of the wavenumbers have errors of less than 3.5 %.

The pressure determined by the fractional step method restores the velocity field
divergence to be consistent with (2.3); however, it represents the average pressure over the
time step. To recover the instantaneous pressure for calculating budgets and other statistics,
the Poisson equation resulting from obtaining the divergence of (2.2) is computed as
a post-processing step after the flow has been advanced in time by the fractional step
method. The numerical algorithm has been verified to accurately satisfy the governing
equations by comparing the time derivatives calculated for various quantity budgets that
appear throughout this paper with the appropriate budget right-hand sides.

2.4. Domain size
The domain lengths in the homogeneous streamwise and spanwise directions Lx and Lz are
directly related to the convergence of statistical quantities obtained by planar averaging.
In addition, these dimensions potentially affect the sizes of structures that grow within the
domain. Convergence can be improved either by enlarging the domain size or by using an
ensemble of smaller domain simulations. However, a sufficiently large domain is necessary
to achieve correct structure growth and interactions.

Several domain sizes were tested and the final dimensions used were found to have
minimal evidence of structure growth restriction compared to smaller sizes. From the
perspective of initial KH rollup structures with an assumed streamwise wavelength of the
most unstable linear instability mode λls, the present mixing layer domain accommodates
64λls in the streamwise direction. This corresponds to six successive mergers; Vreman,
Geurts & Kuerten (1997) found that lengths of 8λls (i.e. three successive mergers) were
required to reach reasonable self-similarity. In shear flows, the longest scales are oriented
along the streamwise direction. The domain therefore has a Lx/Lz ratio of 4, which was
adopted by a number of previous temporal mixing layer simulations (e.g. Rogers & Moser
1994; O’Brien et al. 2014).

The cross-stream domain size, Ly , must also be sufficiently large that the mixing layer
evolves freely without the slip walls at the y domain boundaries influencing the growth.
A series of simulations with different thicknesses has been performed to ensure the
statistics are not influenced by the walls for the self-similar time of interest. The initial
interface is positioned so that it is nearer the heavy fluid wall than the light fluid wall
in proportion to the Atwood number, since the mean velocity neutral point (interface
centre) and the most intense turbulence drift to the light fluid side as the flow develops
(§ 5.3). The interface is centred within the domain for the A = 0.001 case (as this effect
is negligible at low density ratios). The domain sizes are summarized in table 1. Although
initial momentum thickness δm,0 (defined below) is somewhat ill-defined for making
comparisons, comparing Lx/δm,0 suggests that the domain lengths are approximately 10
times those of Pantano & Sarkar (2002) and 3.9 times those of Almagro et al. (2017).
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A Lx/δm,0 Ly/δm,0 Lz/δm,0 ymin/δm,0 ymax/δm,0 nx ny nz

0.001 1803.2 1105.56 450.8 −552.78 552.78 4096 3072 1024
0.25 1803.2 1105.56 450.8 −594.18 511.38 4096 3072 1024
0.50 1803.2 1105.56 450.8 −594.18 511.38 4096 3072 1024
0.75 1803.2 1105.56 450.8 −626.22 479.34 4096 3072 1024
0.87 1803.2 480.60 450.8 −337.50 143.10 6144 2048 1536

TABLE 1. Summary of simulation domain parameters. The initial interfaces of both velocity
and density are each positioned at y = 0.

3. Initial conditions

Mixing layer simulations are typically designed either to approximate a physical
mixing layer experiment or to be in a generic configuration commencing from a
simple disturbance. The latter approach is here adopted for generality and to promote
quickly reaching self-similarity without artifacts from the initial condition. Nonetheless,
parameters are broadly within the range of those found in experiments.

3.1. Mean velocity and density profiles
The initial mean velocity profile that approaches the free-stream velocities of ±ΔU/2 at
the y boundaries is specified as

Ū1(y) = ΔU
2

tanh
(

y

2δm,0

)
, (3.1)

where the momentum thickness δm,0 specifies the initial thickness of the interface. The
hyperbolic tangent profile is commonly used in a wide range of mixing layer simulations,
such as Riley, Metcalfe & Orszag (1986), Pantano & Sarkar (2002), Olson et al. (2011),
O’Brien et al. (2014) and Almagro et al. (2017).

An initial density profile is prescribed to specify the differing compositions (and thus
densities) of the fluid streams. The simulations focus on the simplest case of two separate
streams of different velocities and densities meeting at a thin interface, so the initial density
profiles are aligned with and of the same thickness as the velocity profiles. Thus, the initial
density profile is

ρ̄(y) = ρ0 + Δρ

2
tanh

(
y

2δρ,0

)
(3.2)

with density profile thickness δρ,0 chosen to equal δm,0. This specification of aligned
tanh profiles of density and velocity is similar to the approach of Pantano & Sarkar
(2002) and Almagro et al. (2017), although their density variations were attained by
varying the thermodynamic properties for a single fluid. In either approach, the mean
density of the lower and upper streams of fluid ρ0 = (ρ1 + ρ2)/2 is matched between
all of the simulations within the set. The desired Atwood numbers A are then attained
by specifying free-stream densities ρ1 = ρ0 − Δρ/2 and ρ2 = ρ0 + Δρ/2, where Δρ =
ρ2 − ρ1 = 2Aρ0. Symmetries present in the temporal mixing layer (but not the spatially
developing case) result in the flow behaviours being equivalent whether the negative mean
streamwise velocity is associated with the light fluid and the positive velocity is associated
with the heavy fluid or vice versa, as also noted by Pantano & Sarkar (2002). Thus, results
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from a different profile convention can be compared by selecting coordinates to match
density profiles and then changing the sign of the mean streamwise velocity to also match.

3.2. Initial disturbance
Only the velocity field is perturbed relative to the mean profile given above to induce the
transition to turbulence. This is appropriate because the velocity field drives the instability
and turbulence, as observed in the single-density case; this approach also allows the
disturbance to be consistent between Atwood numbers. Different velocity disturbances
can produce significantly different growth rates at early times in mixing layers (Fathali
et al. 2008), but the present goal is to quickly establish self-similar growth and minimize
long-lived large-scale structures that are uniquely associated with initial disturbances. To
roughly resemble physical experiments, the velocity perturbation is confined to a thin
(in y) region centred at the mean velocity profile interface.

In the present simulations, this is accomplished by generating a random field (filling
the full domain) that is divergence free and has a 3-D energy spectrum obeying a
Gaussian behaviour at high wavenumbers with k4 behaviour at low wavenumbers as
E(k) = (k/k0)

4 e−2(k/k0)
2 . Here, k =

√
k2

1 + k2
2 + k2

3 is wavenumber and k0 is the prescribed
peak wavenumber; k0 is selected to be λls/4, where λls is the streamwise wavelength
of the least stable mode calculated from temporal linear stability analysis for the base
velocity profile (λls = 28δm,0 for the present set-up). This places much of the energy at
small scales to quickly establish turbulent motions. The disturbance spectrum is that used
by Pantano & Sarkar (2002) and the positions of the peak wavelength (relative to the
least stable wavelength) are similar. The field is then tapered to a thin interface region
by multiplying by the Gaussian profile in y to obey 〈u′

iu
′
i〉(y) = A e−(1/2)(y/σ)2 , where σ is

the intensity profile thickness chosen to be 2δm. This is nearly equivalent to the thickness
used in Riley et al. (1986) simulations based on measurements of the intensity profile
in a mixing layer experiment and to the thickness used by Pantano & Sarkar (2002).
The peak amplitude A is specified for peak intensity 〈u′

iu
′
i〉 of 0.03ΔU2 by prescribing

a 0.1ΔU root-mean-square fluctuation for each velocity component. This relatively strong
disturbance reduces the time to reach self-similar growth. The self-similar value of the
streamwise turbulent velocity fluctuation intensity reaches approximately 2.5 times this
initial value.

This initial velocity disturbance is similar to those used by Riley et al. (1986) (further
described in Riley & Metcalfe 1979) and Pantano & Sarkar (2002) (further described in
Pantano-Rubino 2000), but details of the implementations differ. The present approach
of multiplying the field by the y-intensity profile produces divergence, which is corrected
by applying the pressure step of the projection method to the velocity field. This step
slightly weakens the intensity of the u2 velocity component. Alternatives exist (e.g.
applying the profile to a vorticity field, thereby producing a divergence-free velocity field
as in Pantano-Rubino 2000), but the present method produces an initial velocity field
divergence fully consistent with the variable-density incompressible divergence condition
(2.3). A small mean u2 velocity is also produced by this step, which is consistent with
the divergence condition (as further explained in appendix A). This mean velocity is
concentrated at the interface and decays toward the y boundaries; the magnitude is also
very small (< 1 % of ΔU in all simulations shown).

3.3. Viscosity and diffusivity
Momentum thickness Reynolds number, Rem = ΔUδm/ν, can be maximized during the
self-similar stage by either growing to a large final thickness δm or having a small
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viscosity ν. The initial configuration is chosen to maximize the thickness growth so
that the fully turbulent state is less affected by the initial disturbance. This is achieved
by selecting a relatively small initial momentum thickness and appropriate viscosity
such that all scales are well resolved and the initial growth is not overly damped. The
fundamental velocity scale ΔU to initialize the simulation is arbitrary and can be scaled
out. In consistent units, ΔU = 1 is prescribed with initial momentum thickness of 0.5 and
viscosity of 0.00625. This initialization results in a Reynolds number Rem of 80; however,
this value has limited meaning before mixing layer evolution sustains the scales of motion.

The Schmidt number Sc = ν/D is chosen to maintain a constant value of 1 everywhere
as the fluids mix. This is imposed by selecting the same values of kinematic viscosity
ν = μ/ρ for each of the participating fluids (i.e. ν1 = ν2) with constant diffusivity D.
The choice of constant kinematic viscosity to maintain constant Schmidt number of 1 is
frequently used in other multi-fluid mixing studies (e.g. Sandoval 1995; Cook & Dimotakis
2001; Livescu & Ristorcelli 2007), although maintaining Sc = 0.7 (which is typical for
gases) is also common (e.g. Olson et al. 2011). Note that the choice of constant ν implies
that μ ∼ ρ, whereas with real fluids there is typically a weaker dependence on density
such as μ ∼ √

ρ (Livescu et al. 2010).

4. Basic definitions and theoretical flow properties

While detailed simulations are necessary to obtain many quantities describing the flow,
several characteristics of the flow can be deduced from the governing equations and flow
configuration. The Favre mean equations obtained from (2.1) and (2.2) are

ρ̄,t +
(
ρ̄Ũj

)
,j

= 0, (4.1)(
ρ̄Ũi

)
,t

+
(
ρ̄ŨiŨj

)
,j

+
(
ρ̄R̃ij

)
,j

= −P̄,i + τ̄ij,j, (4.2)

where the Favre Reynolds stresses are

R̃ij =
〈
ρu′′

i u′′
j

〉
ρ̄

. (4.3)

These equations apply to incompressible variable-density flows as well as fully
compressible flows.

When the equations are applied to the geometry and flow conditions of the temporally
developing mixing layer, many of the terms vanish due to homogeneity and symmetries of
the flow. The expanded equations after these simplifications are

ρ̄,t +
(
ρ̄Ũ2

)
,2

= 0, (4.4)(
ρ̄Ũ1

)
,t

+
(
ρ̄Ũ1Ũ2

)
,2

+ (ρ̄R̃12),2 = τ̄12,2, (4.5)(
ρ̄Ũ2

)
,t

+
(
ρ̄Ũ2Ũ2

)
,2

+ (ρ̄R̃22),2 = −P̄,2 + τ̄22,2. (4.6)

The slip wall boundary condition in the y direction requires that Ū2 = Ũ2 = 0, R̃12 = 0
and τ̄12,2 = 0 at the boundary. These conditions are consistent with the variations outside
the mixing layer, where ρ̄ and Ũ1 are constant. As shown in appendix A, for the
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incompressible flow considered here, the mean cross-stream velocity can be expressed
solely in terms of density moment statistics and their derivatives; it is necessarily zero if
the flow contains no density variations.

4.1. Conservation properties
Integrating the mean density conservation equation (4.4) over the y domain indicates that∫ y2

y1
ρ̄ dy is constant with respect to time (total mass within the domain is conserved).

The mean momentum equations (4.5) and (4.6), when similarly integrated over the y
domain, show that

∫ y2

y1
ρ̄Ũi dy are also constant with respect to time (total momentum

within the domain is conserved), when the remaining terms vanish at the boundaries. This
is approximately satisfied for (4.5) and (4.6) throughout the duration of the simulation,
since the velocity fluctuations remain at low values near the slip walls, and therefore the
advective term and Reynolds stress are negligible at the y domain boundaries, while the
mean pressure gradients and viscous stresses have relatively little effect.

4.2. Self-similarity
Another property expected of mixing layers is attaining states of self-similar growth. For
the temporal configuration, the statistics are functions only of time and the inhomogeneous
y position. Assuming self-similarity and that both mean density and velocity profiles are
initially centred at y = 0 (so that no other length scale is introduced in the problem),
the time- and y-dependencies are eliminated by introducing a new variable η = y/h,
where for the present purpose, h generically represents a length scale that characterizes
the y-thickness of the mixing layer and grows with time. Specific choices for defining this
thickness are discussed below. The scaled coordinate η defined here is separate from the
Kolmogorov length scale η of § 2.3.

As described in appendix B, the mean mass conservation equation (4.1) and Favre mean
streamwise momentum equation (4.2) are satisfied for self-similar growth when the growth
rate dh/dt is constant and the mean variables are non-dimensionalized as

ρ̄(y, t) = ρ0ρ̂(η), (4.7)

Ũ1(y, t) = (ΔU)Û1(η), (4.8)

Ũ2(y, t) = (dh/dt) Û2(η), (4.9)

R̃12(y, t) = (ΔU) (dh/dt) R̂12(η). (4.10)

Analysing the resulting self-similar mass conservation and streamwise momentum
equations (appendix B) reveals relations between the scaled y positions at which features
in the statistical profiles occur. Let η2 be defined as the η point where the Favre
cross-stream velocity inflection point occurs [dÛ2/dη(η2) = 0] and η12 as the point where
Favre shear stress has its inflection [dR̂12/dη(η12) = 0]. Then the self-similar analysis
proves that η12 < η2 < 0. That is, the Reynolds stress peak is located further in the light
fluid than the peak of mean cross-stream velocity. This analysis does not determine the
position η1 of the zero crossing of Favre streamwise velocity [Û1(η1) = 0], but this can be
empirically investigated in the simulations.

The above analysis and arguments reach similar conclusions to those presented by
Pantano & Sarkar (2002) after developing the self-similar analysis framework while
analysing their variable-density flow. It should be noted that these self-similar equations
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and results pertain to any variable-density mixing layer that obeys the compressible mass
conservation and streamwise momentum equations. Specifying particular cases of the
flow (in this case, incompressible binary mixing of species, as opposed to thermodynamic
variations or high-speed flow) influences the specific forms of the self-similar quantities
(assuming states of self-similar growth are reached).

4.3. Thickness definitions
The thicknesses of the density and streamwise velocity profiles are among the most basic
global quantities characterizing mixing layers growth. Though the density and velocity
mean profiles initially coincide, they need not grow identically as the flow evolves, so
various thickness measurements are defined based on both profiles.

Thickness of a mixing layer is traditionally quantified based on the mean streamwise
momentum profile, which has a clear connection to the momentum equation (4.2).
Momentum thickness is defined as

δm(t) = 1
ρ0ΔU2

∫ ∞

−∞
ρ̄
[
Ũ1(y, t) − U−

] [
U+ − Ũ1(y, t)

]
dy

=
∫ ∞

−∞

ρ̄

ρ0

(
1
4

− Ũ2
1

ΔU2

)
dy. (4.11)

As the first form emphasizes, this corresponds to the integral of the product representing
deficits relative to free streams, which have streamwise velocities of U− = −ΔU/2 and
U+ = ΔU/2. An analogous thickness could also be defined on a per-mass basis to depend
only upon the mean velocity profile

δm,pm(t) = 1
ΔU2

∫ ∞

−∞

[
Ū1(y, t) − U−

] [
U+ − Ū1(y, t)

]
dy

=
∫ ∞

−∞

(
1
4

− Ū2
1

ΔU2

)
dy. (4.12)

This definition uses Reynolds-averaged streamwise velocity rather than Favre averaged to
avoid any explicit dependence on the density field. For single-density mixing layers, (4.12)
is commonly given as the definition of the momentum thickness because (4.11) reduces to
this when density is constant, although (4.11) is the most formal definition.

Several other quantities also are commonly used to characterize mixing layer thickness
based on the mean velocity profile, but these are generally less smooth (i.e. more sensitive
to lack of statistical convergence) than the integral thicknesses defined above. These
other measurements include lengths based on gradients of profiles. Vorticity thickness
is obtained from gradients of the Reynolds mean velocity profiles as

δω(t) = ΔU
max(|dŪ1/dy|) , (4.13)

as the vorticity magnitude reduces to |dŪ/dy| in the absence of a mean streamwise
gradient in cross-stream velocity. This measure based on only a small portion of the mixing
layer (where the mean gradient is steepest) has the potential to produce a misleading
representation of the thickness of the layer when significant asymmetries are present.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

46
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.466


900 A16-16 J. R. Baltzer and D. Livescu

The distance between positions at which the mean velocity reaches a specific per cent
(e.g. 10 %) of the difference ΔU between its free-steam values U− and U+ (which are
associated with fluids having densities ρ1 and ρ2, respectively)

h0.1(t) = y[Ũ1=U+−0.1∗ΔU] − y[Ũ1=U−+0.1∗ΔU] = y[Ũ1=0.4∗ΔU] − y[Ũ1=−0.4∗ΔU]. (4.14)

While momentum thickness and vorticity thickness have been the most commonly used
thickness measurements in the historic mixing layer literature, Pope (2000) adopts h0.1 in
treating planar mixing layers, and it has also been recently used by Schwarzkopf et al.
(2016), for example. For brevity, h will be used herein to indicate h0.1. This choice of
velocity per cent produces measurements that are smoother and less sensitive to statistical
fluctuations than selecting a smaller fraction (e.g. h0.01) that would yield thicknesses based
on the flow far out in the intermittently turbulent/non-turbulent interface. Favre-averaged
velocity is used for h, although it could alternatively be based on Reynolds-averaged
velocity, as could any of the other thickness quantities. For even the highest Atwood
numbers, the effect of averaging type on the calculated thickness is negligible: using
Reynolds averages instead of Favre averages for A = 0.87 produces about 1 % larger values
for h and 5 % larger values for δm. Favre averaging is used for all of the velocity-based
thicknesses shown except for δm,pm and δω.

For variable-density mixing layers, similar thicknesses may be defined based instead on
the density profiles as

δρ(t) = 1
Δρ2

∫ ∞

−∞

[(
ρ0 − Δρ

2

)
− ρ̄(y, t)

] [
ρ̄(y, t) −

(
ρ0 + Δρ

2

)]
dy, (4.15)

δdρ/dy(t) = Δρ

max(|dρ/dy|) , (4.16)

hρ,0.1(t) = y[ρ̄=ρ2−0.1∗Δρ] − y[ρ̄=ρ1+0.1∗Δρ] = y[ρ̄=ρ0−0.4∗Δρ] − y[ρ̄=ρ0+0.4∗Δρ]. (4.17)

Note that δρ is equivalent to the width measurement introduced by Youngs (1991, 2009)
and also used by Livescu et al. (2010); it is typically written as W = ∫∞

−∞ F1F2 dy,
defined based on the mean volume fractions of each species F1 = (ρ̄ − ρ1)/(ρ2 − ρ1) and
F2 = (ρ2 − ρ̄)/(ρ2 − ρ1). Typically, a scaling constant β is used with W to approximate
bubble height in RT flows as h∗

b = βW; β depends on Atwood number in order to represent
asymmetries that develop in RT flow structure as Atwood number increases (Livescu et al.
2010; Youngs 2013). For brevity, hρ will be used herein to indicate hρ,0.1. As shown below,
the mean density profiles develop significant asymmetries at high Atwood numbers, which
implies that (4.17) can only accurately represent the layer thickness at very low density
ratios.

Additional width quantities commonly used for variable-density flows (particularly RT
instabilities, e.g. Livescu et al. (2009), Zhou & Cabot (2019)) are also relevant. One such
quantity, used by Cook & Dimotakis (2001), Livescu & Ristorcelli (2008) and Livescu
et al. (2010), is hXρ

= ∫∞
−∞ XP(ρ̄) dy, where XP represents the amount of product in a

hypothetical fast reaction between the two species

XP(ρ) =

⎧⎪⎪⎨
⎪⎪⎩

2
ρ − ρ1

ρ2 − ρ1
, ρ ≤ ρ1 + ρ2

2
,

2
ρ2 − ρ

ρ2 − ρ1
, ρ ≥ ρ1 + ρ2

2
.

(4.18)
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FIGURE 2. Area-averaged mean profiles throughout the simulation run for A = 0.001 (a,b)
and A = 0.75 (c,d). For Favre mean streamwise velocity Ũ1 (a,c) and scaled density (b,d), the
cross-stream coordinate is scaled by the initial thickness h0 and the profiles demonstrate the
interfaces thickening with time. The lack of symmetry about y = 0 that develops with increased
Atwood number is apparent.

Here, XP(ρ̄) corresponds to the mole fraction of fluid fully mixed to the mean density.
Physically, hXρ

is the thickness of mixed fluid that would result if the two fluids were
perfectly homogenized within the mixing layer.

5. Basic statistics

5.1. Time evolution of mean profiles and thickness growth
Area-averaged mean profiles of streamwise velocity and density illustrate the basic
properties of the mixing layers’ evolution with respect to time. These profiles are shown for
two representative Atwood numbers (almost single density and strongly variable density)
in figure 2. These profiles form the basis for the thickness scales defined in § 4.3.

Figure 3 displays the time evolution of thickness by several definitions involving the
above profiles. All measurements indicate that simulations for each Atwood number
approach linear thickness growth with respect to time at late times. Regardless of the
specific thickness definition, thickness growth is retarded with increasing Atwood number.
The momentum thickness (a) indicates a strong reduction in growth with Atwood number,
whereas the momentum thickness per mass (b) and h (c) quantities both indicate weaker
growth reduction, as does vorticity thickness (not shown). The thickness evolutions also
highlight that the mixing layers grow to many times their initial thicknesses, as desired to
reach self-similar growth.

It should be noted that δm,0, used for non-dimensionalization, is based on initially aligned
profiles at t = 0, before the shifts of mean streamwise velocity relative to mean density
have developed. Thus, δm and δm,pm are initially essentially equal but evolve differently as
the profile shifts develop. The correspondence between initial δm and other initial length
scales is h0 = 4.39δm,0 and δω,0 = 4δm,0; similar relations apply to the analogous initial
density thicknesses δρ , hρ , and δdρ/dy as well. However, as the profile shapes evolve in
transition and turbulent flow, these relations no longer apply.

To evaluate whether constant values for self-similar temporal growth rates are reached,
the time derivatives of thicknesses are shown as functions of time for each Atwood number
in figure 4. Thicknesses based on integral measures produce relatively smooth growth rates
that in each case asymptote to constant values at late time. Growth rates based on h contain
more noise than the rates based on the integral quantities, but applying a Hann filter to
smooth the thickness vs. time functions produces the result shown in figure 4(c). These

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

46
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.466


900 A16-18 J. R. Baltzer and D. Livescu

1000 2000 30000

10

20

30

40

t�U/δm,0 t�U/δm,0

δ m
/δ

m
,0

δ m
,p

m
 /δ

m
,0

1000 2000 30000

10

20

30

40

200 400 600 8000

10

20

30

40

t�U/h0

h/
h 0

(a) (b) (c)

A = 0.001 A = 0.25 A = 0.50 A = 0.75 A = 0.87

FIGURE 3. Mixing layer widths: (a) momentum thickness δm, (b) momentum thickness per unit
mass δm,pm and (c) mean velocity thickness h time evolution for each Atwood number. Lines are
coloured by Atwood number: A = 0.001 (black); A = 0.25 (green); A = 0.50 (red); A = 0.75
(blue); A = 0.87 (orange).
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FIGURE 4. Time evolution of mixing layer thickness growth rates based on (a) momentum
thickness δm, (b) momentum thickness per unit mass δm,pm and (c) mean velocity thickness h.
These correspond to the time derivatives of the thickness evolutions shown in figure 3.

results are also consistent with asymptoting growth rate (though statistical fluctuations are
present). For vorticity and density gradient thicknesses, calculating the gradient of a mean
profile and then extracting its y-maximum makes these measurements more sensitive to
noise associated with lack of statistical convergence. The sensitivity of the gradients to
small-scale noise dictates that a small amount of spatial smoothing (via a Hann filter) first
be applied to the instantaneous mean profiles to remove the finest scales of noise before
calculating peak gradients.

5.2. Determining the time interval of self-similar growth
In addition to constant growth rate, another consequence of self-similar growth is
the statistical profiles collapsing when appropriately scaled. For example, the mean
streamwise velocity and density profiles would collapse to single curves for all times
during self-similar growth when y is scaled by thickness (e.g. δm or h). As observed by
Rogers & Moser (1994), mean velocity profiles are relatively insensitive to deviations
from self-similar growth. However, fluctuation intensity profiles generally continue to
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converge after the mean velocities reach their self-similar profiles. Statistical profiles for
many quantities are expected to have constant peak values and thus linearly increasing
integral values as thickness grows linearly with time. Directly evaluating the time histories
of statistics’ peak values comprises a more stringent test of self-similarity, but evaluating
their corresponding integral quantities instead is less sensitive to noise.

One statistic that is meaningful for evaluating self-similar growth is integral of
cross-stream velocity fluctuation intensity

V = 1
ΔU2δm

∫ ∞

−∞
〈u′

2u′
2〉 dy. (5.1)

In earlier simulations emphasizing roll-ups of KH vortex structures and their subsequent
mergers, Moser & Rogers (1993) showed that large values of V are associated with these
features. Conversely, when Rogers & Moser (1994) began a mixing layer simulation from
a fully turbulent field, no large values were attained but instead V slowly increased and
then asymptoted to the self-similar value. Attili & Bisetti (2013) examined V for their
spatially developing mixing layer beginning from a thin disturbance (similar to that for the
present simulations). It overshot the self-similar growth value when the vortices played an
important role at early time, but decreased and asymptoted thereafter as the mixing layer
reached a self-similar growth regime. This behaviour is compared to that of the present
simulation with negligible Atwood number in figure 5(a). The present simulation produces
a much weaker peak in V than the Attili & Bisetti (2013) simulation. Despite the weaker
peak, the present simulation follows similar behaviour of approaching self-similarity after
the peak. This behaviour contrasts with the asymptoting from below that appears to occur
for the fully turbulent initial condition of Rogers & Moser (1994). All of the simulations
shown in figure 5 display V values remaining approximately constant throughout their
respective self-similar growth periods, and these values are in good agreement between
the simulations. In the present simulations, similar behaviour also occurs at increased
Atwood numbers.

An important indication of self-similarity employed by Rogers & Moser (1994) is total
dissipation of turbulent kinetic energy (TKE), which is planar-averaged dissipation ε =
−〈τ ′

iju
′
i,j〉 (from the TKE budget equation) integrated across the entire mixing layer

E =
∫ ∞

−∞
ε dy. (5.2)

The rate at which TKE ultimately is dissipated is set by the large-scale motions that scale
(in magnitude) with the velocity difference between streams ΔU. Since E has units of
velocity cubed, it can be argued on dimensional grounds that E scales with ΔU only and
therefore is constant with respect to time during self-similar growth (Rogers & Moser
1994). Unlike the velocity fluctuation intensities, the dissipation peak value does not
remain constant with respect to time but instead decays in magnitude proportionally with
the mixing layer thickness. Thus, its integral over the increasing width as the mixing layer
thickens remains constant.

For the essentially single-density case, the dissipation evolution is compared with those
of other mixing layer simulations in figure 5(b). The self-similar growth durations are
marked as identified in each corresponding reference. Depending on the route of transition,
the peak dissipation may also correspond to an overshoot in dissipation prior to self-similar
growth or to part of the self-similar growth regime. The former scenario applies to the
simulation of Attili & Bisetti (2013) that begin from a thin disturbance. The latter applies to
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FIGURE 5. Evolutions of y-integrated planar-average (a) cross-stream component velocity
fluctuation and (b) dissipation, two indicators of self-similar growth. Self-similar growth periods
are indicated between the vertical lines; the horizontal axes are scaled to match the beginnings
such that the tall left-most vertical line applies to all of the flows. The right vertical lines
mark the end of self-similar growth for each flow individually. Note that this scaling is not
intended to quantify the relative durations of self-similar growth between simulations. Of the
lower horizontal axes, the upper-most corresponds to the present A = 0.001 mixing layer (——),
the middle in (b) only corresponds to the density ratio s = 1 simulation of Almagro et al. (2017)
(- - -) and the lower-most corresponds to the simulation of Rogers & Moser (1994) (· · · · · · ).
The upper horizontal axis corresponds to the spatially developing simulation of Attili & Bisetti
(2013) (�).

the simulation of Rogers & Moser (1994) that begins from a field containing fully turbulent
fluid and slowly approaches the self-similar state from below (in terms of dissipation).
Attili & Bisetti (2013) discuss these differences and the role of KH structures in the
transition in further detail. The present flow corresponds to the former scenario, beginning
from a thin disturbance leading to structures that cause dissipation to overshoot, although
this is weaker than in Attili & Bisetti (2013) likely due to the form of the disturbance and
the temporally developing nature of the flow.

Compared to the close agreement of self-similar V value with the other simulations
in the literature, there is significantly more variation among the self-similar integrated
dissipation values. However, the Attili & Bisetti (2013) mixing layer appears to be
asymptoting to a value near that observed in the present A = 0.001 simulation. The
self-similar time interval shown for this present simulation (for which E is one of the
determining considerations) maintains E to a nearly constant value.
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FIGURE 6. The time histories of y-integrated planar-average dissipation (a) divided by local
mean density and (b) divided by the average density of the two streams. Both quantities
asymptote to constant values for every Atwood number, which is consistent with self-similar
growth. The self-similar time periods are marked by vertical lines in (b) and are based on time
histories of dissipation as well as other quantities reaching values that are constant within a
specified tolerance. Line colours for each Atwood number are as for figure 3.

The dimensional argument described above for constant E in self-similar growth holds
for the variable-density mixing layers as well. For variable-density mixing layers, the TKE
budget equation terms are often defined to include density (e.g. Livescu et al. 2009), unlike
the typical budgets written for single-fluid incompressible mixing layers (e.g. Rogers &
Moser 1994). Therefore, the integrated dissipation must be divided by density to have the
units of (ΔU)3. One option is to non-dimensionalize by ρ0, the average of the two streams.
However, the most typical treatment is to divide ε by the mean density ρ̄, in analogy to
Favre averaging other quantities

Ẽ =
∫ ∞

−∞

ε

ρ̄
dy. (5.3)

Figure 6 demonstrates that E and Ẽ become constant in self-similar growth for each
Atwood number. The values for E scaled by ρ0 and ΔU3 decrease strongly with increasing
Atwood number, while Ẽ scaled by ΔU3 displays a much weaker dependence.

While linear growth of thickness and constant integrated dissipation are key indicators
of self-similar growth (which have been long been employed, e.g. Rogers & Moser
1994), comparing additional flow statistics profiles produces further useful indications.
This was recognized by Vreman et al. (1997), who determined mixing layer growth
to be self-similar when ‘the development of the shear layer thickness is linear in time
and profiles of normalized statistical quantities at different times coincide’. The time
evolutions of profiles can be evaluated by monitoring the peak values of these statistics
or examining their integrals in y divided by the thickness (as with V). This latter approach
is less sensitive to statistical variability than the peaks. A number of profile quantities
are considered in determining the self-similar growth time interval; integral velocity
variances and Reynolds stresses are shown in figure 7(a–c), while additional profiles
(e.g. cross-correlations between velocity and density) are considered but not shown for
brevity. For each Atwood number, the integral turbulence intensities match very closely
with the corresponding integral Favre-averaged Reynolds stresses and are nearly identical
for A = 0.5 and below. Comparing between Atwood numbers, there is a consistent trend
to lower intensities with increasing A during transition (when the values peak); during
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FIGURE 7. (a–c) Time histories of y-integrated planar-average turbulence intensities 〈u′
iu

′
i〉

(——) and corresponding Favre-average Reynolds stresses (- - -), each divided by Favre mean
streamwise velocity thickness h for the (a) streamwise, (b) cross-stream and (c) spanwise
components. (d) Time histories of y-integrated planar-average density fluctuation intensities.
Line colours for each Atwood number are as for figure 3.

self-similar growth, the trend is weak and easily obscured by statistical variability. The
y-integrated values shown may conceal some of the complexity in weakly changing profile
shapes. For the cross-stream component (figure 7b), the intensity increasing at late time is
hypothesized to be associated with the turbulent fluctuations reaching and accumulating
near the slip walls to affect the interior of the mixing layer. This is expected to occur
soonest for the lowest Atwood numbers because they experience the fastest growth. The
self-similar time interval is determined to end before this phenomenon affects the flow.

Variable-density mixing layers introduce additional quantities to be considered for
self-similarity, most importantly the density fluctuation intensity 〈ρ ′ρ ′〉. The integral
values of this planar-mean quantity are shown for each Atwood number in figure 7(d).
〈ρ ′ρ ′〉 can remain within a tolerance of a constant value later than other statistics and
thus determine when the self-similar interval begins. These profiles are related to the
mixing of the two streams, which is dependent on how fluid is transported into the cores
of the mixing layers. Despite the complex mixing behaviour, the simulations indicate
that the density fluctuation intensity profiles for each Atwood number approach a unique
self-similar scaled profile that remains approximately constant with respect to time.

The integral 〈ρ ′ρ ′〉 for A = 0.75 (blue curve) is suggestive of reaching self-similar
growth at particularly late time, with a levelling occurring at earlier time before it again
increases and levels off. It appears that the flow configuration changes during the second
period of rapid increase. This behaviour is responsible for the late starting time of the
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self-similar period. This increase in maximum density fluctuation intensity also appears
to be associated with a smaller increase in integral cross-stream component velocity
fluctuation intensity, as shown in figure 7(b).

In summary, the self-similar periods are determined by seeking constant thickness
growth rates, constant values of integrated dissipation, and statistical profiles that remain
constant when the cross-stream coordinate is self-similarly scaled. In addition to the
velocity intensity profiles, density fluctuation intensity profiles must also be considered
for variable-density mixing layers. To identify self-similar growth periods in a consistent
manner for all Atwood numbers, these conditions are approximated by requiring that
thickness growth rates as well as integrals across the cross-stream domain of dissipation,
velocity fluctuation intensity 〈u′

iu
′
j〉 and density fluctuation intensity 〈ρ ′2〉 be constant to

within a specified threshold. The integrals of fluctuation intensity profiles are scaled by
thickness (h) to attain constant values (or equivalently are integrated with respect to
y/h), since the integrals would grow proportional to thickness if the self-similar scaled
profiles remain constant. Mean profile convergence is accomplished by ensuring the
more sensitive fluctuation intensity profiles are converged. This algorithm is consistently
applied by determining the longest time interval that each of the quantities specified
above remains within 10 % of any value and then retaining the intersection of these
time intervals as the self-similar time interval. The very large simulations produce
satisfactory adherence to a relatively stringent set of criteria that must be simultaneously
satisfied, as indicated by the self-similar periods marked in figure 6. The self-similar
periods for other simulations compared in figure 5 are taken from their respective
publications. Due to the effects of differing initial momentum thicknesses (and how they
relate to the disturbances), the scaled times tΔU/δm,0 (or scaled downstream position
x/δm,0 for the spatial-developing case) in this comparison cannot be meaningfully related
between simulations. The significantly smaller domains that were feasible for many
previous studies could contribute to the difficulties reported in reaching self-similarity
(e.g. Vreman et al. 1996, 1997; Pantano & Sarkar 2002). In general, questions remain
about the universality of the self-similar state (e.g. Dimotakis & Brown 1976; Rogers
& Moser 1994; Vreman et al. 1997). However, the thin and broadband disturbance
is intended to reduce idiosyncratic large-scale vortices that persist after transition as
a result of the initial condition so the present simulations reach generic self-similar
states.

Another consideration relevant to the self-similar growth regime is flow Reynolds
number. For the flow statistics to be representative of the fully turbulent mixing in
practical applications, the Reynolds numbers must be sufficiently large throughout the
averaging time duration. In general, significant changes in mixing behaviour have been
observed to occur at a Reynolds number threshold (i.e. the mixing transition, Dimotakis
2000). Relevant Reynolds numbers are typically defined using the mixing layer thickness
or the Taylor microscale. Both scales continuously grow as the mixing layers thicken
with time. According to Dimotakis (2000), general necessary conditions for passing the
mixing transition for turbulent flows are that the outer-flow Reynolds number exceeds
Re ≈ 1–2 × 104 and that Taylor Reynolds number exceeds Reλ ≈ 100–140. Dimotakis
defines the former Reynolds number using a visual thickness scale δsh that is used in
experiments; it has been estimated as δsh ≈ 2δω for numerical simulations (e.g. Rogers &
Moser 1994). This criterion corresponds to attaining Reω ≈ 0.5–1 × 104. Table 2 confirms
that this condition is satisfied for the self-similar growth statistical averaging periods.
The decrease of Rem values with Atwood number is a consequence of δm decreasing as
the velocity profiles shift into lighter density fluid. This complicates interpreting Rem in
variable-density mixing layers.
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Simulation Reλ Rem Reω

A = 0.001 82–108 1700–2550 8800–12 700
A = 0.25 72–128 1150–3070 6100–15 900
A = 0.50 80–104 1360–2380 8600–14 600
A = 0.75 81–106 990–1700 8500–15 500
A = 0.87 70–92 510–880 6400–10 900

TABLE 2. Reynolds numbers during self-similar growth for the present simulations.

Though Taylor microscale is anisotropic in its most fundamental definition, it
is estimated using a relation that strictly only applies to homogeneous isotropic

turbulence, λg =
√

10k̃(ν/ε̃). (Averaging the homogeneous-coordinate components of the
fundamental Taylor microscale shows good agreement with this estimate for the present
mixing layers.) The velocity scale is also taken as its root-mean-square (r.m.s.) value
u′

rms ≈ √
(〈u′

1u′
1〉 + 〈u′

2u′
2〉 + 〈u′

3u′
3〉)/3 = √

2k/3. Using the turbulent kinetic energy and
dissipation at the y position of most intense turbulence, the estimate of Taylor microscale

Reynolds number is Reλ = k̃
√

20
3 (1/ε̃ν). Using u′

rms produces consistency with the velocity
scale used in the λg definition as well as consistency between the turbulent kinetic
energy and dissipation included in turbulent kinetic energy budget (in analogy to isotropic
turbulence). Although similar definitions are also used for other relevant flows (e.g.
Sekimoto, Dong & Jiménez 2016), the mixing layer literature often uses

√
2k as the

velocity scale (rather than u′
rms = √

2k/3) to form Reλ = (2k)λg/ν = k
√

20/(εν) (e.g.
Pantano & Sarkar 2002; O’Brien et al. 2014; Almagro et al. 2017). Renormalized to the
present convention, the Reλ range during self-similar growth for the single-density mixing
layer of Rogers & Moser (1994) is 84–99 and for Almagro et al. (2017) is 81–87, for
example. The present simulations generally satisfy the Reλ ≈ 100 (with Reλ is defined in
this way) mixing transition guideline given by Dimotakis (2000) before their self-similar
growth periods end. The consistency of the statistics within the self-similar growth periods
suggests the turbulence is well developed throughout. The initial condition that produces
rapid transition is expected to lead to this state more quickly than the large-scale features
that persist through other mixing layers’ transitions.

5.3. Time-averaged self-similar statistical profiles
Figure 8. The times included in the plots correspond to the self-similar growth regimes,
for which the determination is explained below (§ 5.2). Figure 8 demonstrates that the time
series of mean streamwise velocity and density profiles collapse to single curves when the
cross-stream coordinate is scaled by the thickness measurement h. Similar collapse is also
observed when the cross-stream coordinate is instead scaled by δm, δm,pm, or δω. While
δm was used as the thickness length scale in the discussions above to allow comparison
with other studies, scaling statistics in terms of the h scale offers interpretive advantages
in variable-density flow. For consistency, h will be used as the thickness scale henceforth,
except for when making certain comparisons with other studies. The collapse of mean
profiles is one indication that self-similar growth is achieved. During self-similar growth,
it is thus appropriate to time average the scaled profiles to improve statistical convergence.
This averaging is also applied to all of the other scaled statistics presented below.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

46
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.466


Variable-density incompressible turbulent mixing layers 900 A16-25

−50 0 50
−0.5

0

0.5

y/h0 y/h0

−2 0 2
−0.5

0

0.5

−50 0 50
−0.5

0

0.5

−2 0 2
−0.5

0

0.5

−50 0 50
−0.5

0.5

−2 0 2
−0.5

00

0.5

−50 0 50
−0.5

0

0.5

−2 0 2
−0.5

0

0.5

Ũ
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FIGURE 8. Mean profiles during self-similar growth for A = 0.001 (a–d) and A = 0.75 (e–h).
For Favre mean streamwise velocity Ũ1 (a,b,e,f ) and scaled density (c,d,g,h), scaling the
cross-stream coordinate by the initial thickness h0 shows only the self-similar time interval
curves from figure 2 and demonstrates the growth of the mixing layer (a,c,e,g), whereas scaling
instead by each curve’s thickness h causes this same time series to collapse to a single curve for
each simulation (b,d,f ,h).
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FIGURE 9. Self-similar time-averaged profiles for all Atwood numbers showing (a) mean
streamwise velocity, (b) its y gradient and (c) scaled mean density. In (a) and (b), the solid
line represents Reynolds mean, while the dashed line represents Favre mean. Lines are coloured
by Atwood number as in figure 3.

Comparing the self-similar scaled profiles among Atwood numbers (figure 9) illustrates
several basic changes that occur as the density difference between streams increases. For
A = 0.001, the mean streamwise velocity and mean density profiles are essentially centred
at y = 0 and symmetric about that point. A shift in the mean streamwise velocity profiles
to the light fluid side (i.e. η1 < 0) that increases in magnitude with increasing Atwood
number is apparent. With increasing Atwood number, the shapes of these velocity profiles
remain generally similar as they shift to the light fluid side, but the asymmetry in their
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FIGURE 10. Self-similar time-averaged profiles of cross-stream velocity for all Atwood
numbers. Solid lines represent Reynolds mean, while the dashed lines represent Favre mean.
Line colours are by Atwood number as in figure 3. The velocities are scaled using (a) mean
streamwise velocity and (b,c) growth rate as suggested by the self-similar analysis (§ 4.2);
(c) is scaled to show the Reynolds mean, which is negligible compared to the Favre mean in (b);
the Reynolds means should be understood to pertain only to their respective averaging times,
since they do not become constant in time. No scaling by Atwood number is applied, so the
magnitudes for the A = 0.001 (black line) are small in comparison to the other cases and appear
near Ũ2/ΔU = 0 on this vertical scale.

gradients (figure 9b) reveals an additional steepening on the light fluid side and shallowing
on the heavy fluid side. Conversely, the neutral points of the density profiles (where
ρ̄(y) = ρ0) remain relatively stationary while the density profiles steepen on the heavy
fluid side but become shallower on the light fluid side with increasing Atwood number.

Figure 10 displays the corresponding profiles for the cross-stream mean velocity
component. The magnitudes are much smaller than those of the streamwise velocity.
However, as the self-similar analysis indicates, the cross-stream velocity has an important
relationship with mass conservation and mixing layer growth in variable-density mixing
layers. In figure 10(b,c), these velocity profiles are shown with the scaling suggested
by the self-similar analysis, using h based on the Favre mean streamwise velocity for
the thickness scaling. The Reynolds-averaged cross-stream velocity is much smaller in
magnitude than the corresponding Favre-average quantity. In addition, V can be shown
to strongly depend on the mean density gradient (appendix A) and therefore not reach a
time-constant magnitude during self-similar growth; the averages in figure 10(c) should
be understood to pertain only to their particular averaging time periods. It is shown below
(§ 5.6) that Ṽ is dominated by the turbulent mass flux, which does approach a constant
value during self-similar growth.

The positions of the neutral points (i.e. ρ = ρ0 and Ũ1 = 0) and positions of extrema
for various statistical quantities (e.g. min(Ũ2)) are important in characterizing the shape
of the mixing layer during the self-similar regime. The mixing layer growth and its
asymmetry can be summarized by tracking the points at which the mean streamwise
velocity is equal to 10 % and 90 % of the free-stream difference ΔU: y[Ũ1=U−+0.1∗ΔU] and
y[Ũ1=U+−0.1∗ΔU]. These are the points whose separation define h in (4.14). In figure 11(a),
the linear growth of these positions (scaled by initial thickness) with respect to time,
approximately extending from y = 0 at t = 0, is consistent with the positions collapsing
to fixed self-similar scaled (e.g. y/h) values. The Ũ1-based positions also evolve linearly
and likewise collapse to fixed y/h values. Plotting the scaled positions of these points
as a function of Atwood number (figure 11b) highlights the prominent features observed
in figure 9: an increasing drift of the mean streamwise velocity profile to the light fluid
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FIGURE 11. (a) Favre mean streamwise velocity profile edge position (10 %, as defined in (4.14))
evolutions for the range of Atwood numbers (coloured as in figure 3) are shown by solid lines.
Their neutral positions (i.e. Ũ1 = 0) are also shown by dotted lines. (b) The self-similar positions
are compared as a function of Atwood number for density neutral point (�), peak cross-stream
velocity η2 (�), streamwise velocity neutral point η1 (�) and peak Reynolds stress η12 (�).

side with increasing Atwood number, while the density profile remains approximately
centred at the initial interface. In addition, figure 11(b) indicates that the mean cross-stream
velocity Ũ2 peak similarly drifts to the light fluid side, as well as the peak Reynolds stress
R̃12 (§ 5.4). The relative magnitudes of the drifts confirm the predictions of the self-similar
analysis (§ 4.2) and are consistent with previous simulations of other variable-density
mixing layers (e.g. Pantano & Sarkar 2002; Almagro et al. 2017). For the range of Atwood
numbers simulated, η12 < η1 < η2 < 0: the Reynolds stress peak is located further in the
light fluid than the neutral point of mean streamwise velocity, which itself is further than
the peak of mean cross-stream velocity.

5.4. Velocity fluctuation intensity profiles
Statistical profiles for velocity fluctuations are similarly obtained using self-similar scaling
applied to the y coordinate. It has also been verified that these profiles collapse over the
self-similar growth time period (apart from a small amount of statistical variability) when
scaled in this manner. These time-averaged profiles are compared among Atwood numbers
in figure 12.

Overall, the behaviours of the velocity variances for the low Atwood number case agree
well with other published single-density mixing layer simulations. However, there can
be significant differences in the magnitudes. The peak variance magnitudes of Rogers &
Moser (1994) are 23 % larger than those of the present A = 0.001 simulation. The peak
magnitudes of the density ratio 1 simulation of Almagro et al. (2017) are on average 52 %
larger than those of the present simulation. The magnitudes for the Reynolds stress R̃12
peak likewise differ between the simulations by similar amounts. The spatially developing
mixing layer simulations of Attili & Bisetti (2012) that reach relatively high Reynolds
numbers have peak magnitudes on average 19 % greater than the present results.

One factor likely contributing to the differences of intensity magnitude is the
determination of self-similar averaging time. With the present initial disturbance, an
overshoot in the turbulence intensities occurs, and after a significant period of time the
overshoot decays and asymptotes to the final self-similar growth state as the mixing layer
thickens. Other simulations approach self-similar growth differently, and the self-similar
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FIGURE 12. Self-similar profiles for all Atwood numbers (coloured as in figure 3) showing
velocity variances and Reynolds stresses. In (a–d), the solid line represents the velocity variance
〈u′

iu
′
j〉 while the dashed line represents Favre-averaged Reynolds stress R̃ij = 〈ρu′′

i u′′
j 〉/ρ̄. (e) R̃12

as in (d) but scaled by ΔU(dh/dt) as suggested by the self-similar analysis. ( f ) Compares the
Favre shear stress of (d) not scaled by local average density but Rij = 〈ρu′′

i u′′
j 〉 scaled by the

average of the free-stream densities ρ0.

period may be determined differently. Despite the difference of the spatial vs. temporally
developing configuration, the Attili & Bisetti (2012) intensity profiles appear to agree most
closely with the present simulation. Their simulation attains higher Reynolds number
and greater thickness growth than the other temporal simulations cited. Differences in
simulation domain sizes could potentially alter the turbulence dynamics by restricting
structure growth and thereby affect fluctuation intensities. An additional factor may
be persisting effects of the differing initial disturbances. Among experiments, there is
significant scatter in the intensity magnitudes, e.g. the differences between Bell & Mehta
(1990) and Spencer & Jones (1971) as shown in Almagro et al. (2017). Rogers & Moser
(1994) summarized the wide range of magnitudes for streamwise velocity variances
measured in experiments (as well as the mixing layer growth rates, which are closely
related to 〈u′

1u′
2〉). They also noted the perspective of Dimotakis & Brown (1976) that

persisting influence of the initial conditions may be responsible.
When Atwood number is increased, the behaviour of the intensities and Reynolds

stresses remain similar to the A = 0.001 case, except they shift to the light fluid side
and generally decay slightly in magnitude. As shear moves to the light fluid side with
increasing Atwood number, the turbulence intensity peak moves to the light fluid side
as well. (The close relation between mean shear and the production of turbulent kinetic
energy k̃ = R̃ii/2 is apparent from the shear production term −ρ̄R̃12Ũ1,2 that dominates
the budget for ρ̄k̃.) Velocity variances 〈u′

iu
′
j〉 and Reynolds stresses R̃ij (figure 12a–d) both
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increasingly shift to the light fluid side with increasing Atwood number; this applies to the
on-diagonal (i = j) elements as well as the streamwise and cross-stream (i = 1 and j = 2).

Figure 12(a–c) suggests that there is only a weak reduction in peak turbulent kinetic
energy with increasing Atwood number. The reduction in peak R̃12 Reynolds stress (or
〈u′

1u′
2〉) is as strong as that experienced by any of the on-diagonal turbulent kinetic energy

contributions, yet it is reduced by no more than about 30 % from A = 0.001 to A = 0.87.
When R̃12 Reynolds stress is scaled by ΔU and dh/dt as suggested by the self-similar
analysis, rather than by ΔU2 as is typically reported, the peak magnitudes weakly increase
with increasing Atwood number (figure 12e).

If Reynolds stress is scaled using the average density of the two free streams (ρ0) rather
than the local mean density, the reduction in peak value with Atwood number is enormous
(figure 12f ). This is further confirmation that the intense turbulent motions move to (and
are sustained in) light density fluid; 〈uiuj〉 and R̃ij = 〈ρu′′

i u′′
j 〉/ρ̄ agree very closely for even

the highest Atwood number throughout self-similar growth (while there are significant
differences during transition with high A). This agreement is remarkable because these
quantities do not agree well with Rij = ρR̃ij due to the shift of strong fluctuations to fluid
on average lighter than ρ0. In other words, at elevated A, ρ̄ is much smaller than ρ0 at the
position of peak turbulence intensity, but 〈ρu′′

i u′′
j 〉 is also commensurately smaller so their

ratio is nearly the same as for low A. Details of the local density distributions and how
they correlate with velocity-based fluctuations will be further considered (§ 6).

5.5. Analysis of thickness growth rate during self-similar growth
The statistical profiles discussed above can be related to growth rate attained by each
mixing layer during its self-similar growth regime. The average growth rates calculated
over the self-similar growth time intervals obtained above are first summarized as a
function of Atwood number. At very low Atwood number (A = 0.001), the momentum
thickness growth rate dδm/dt/ΔU = 0.012 agrees well with the value of 0.014 reported
by Rogers & Moser (1994). Almagro et al. (2017) reports a somewhat higher growth
rate of 0.017 when density is constant. In terms of thickness measured by h, the present
simulation’s growth rate dh/dt/ΔU of 0.069 is consistent with the 0.062 value for the
simulation of Rogers & Moser (1994), although both of these growth rates are toward the
lower end of the 0.06–0.11 values typically observed in experiments (Dimotakis 1991;
Pope 2000).

Assessing the growth rate reductions as a function of Atwood number across the present
simulations, figure 13(a) shows that the momentum thickness growth rate for A = 0.87 is
reduced by 77 % from the rate for the single-density case, while the momentum thickness
per mass growth rate (δm,pm) and the analogous integral growth rate for the density profile
(δρ) experience lesser but nonetheless significant reductions. The stronger reduction for
δm can largely be explained by a misalignment that develops between density and velocity
profiles (§ 5.3). The reductions in growth rate based on h and hρ (figure 13b) are similar
to those of the δm,pm and δρ integral quantities (figure 13a); the reductions for hXp are
also similar (figure 13d). The thicknesses derived from mean profile y-gradients (δω and
δdρ/dy), however, display less smooth growth rate reduction behaviour (figure 13c). This
could be a consequence of greater sensitivity to noise associated with a lack of statistical
convergence when the maximum gradient is calculated on the smoothed profile, but could
also appear due to the greater sensitivity of gradient-based measurements to the details
of the profile asymmetries that appear with increased Atwood number. Although hXp

is an integral measurement and therefore lacks the extreme sensitivity to local noise
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FIGURE 13. The effects of Atwood number on growth rate are displayed for a variety of
thickness measurements based on the mean velocity profile (blue) and the mean density
profile (dashed green). The momentum thickness calculated from the mean velocity profile and
weighted by density (orange) is shown in (a). The fast reaction product thickness hXρ in (d) is
based solely on the density profiles.

in the mean profile of gradient-based measurements, it appears to display less smooth
reductions in growth rate than the other integral thickness quantities. This suggests that
some measurements may be particularly sensitive to specific features of the profile shapes.
The close correspondence between most of the growth rates (particularly for δm, δm,pm and
h) confirms that any of the corresponding thickness measurements would be acceptable
for scaling the flow statistics profiles during self-similar growth. Generally, the growths of
density thickness quantities (due to mixing of fluids) also behave similarly to the growths
of velocity thickness quantities.

To compare the growth rate effects of Atwood numbers for other variable-density
mixing layers, figure 14 includes single-species variable-temperature simulations of
Almagro et al. (2017) (low-speed limit) as well as Pantano & Sarkar (2002) (moderately
compressible 0.7 convective Mach number). In contrast to the present species mixing
governed by simplified INBM (incompressible non-Boussinesq mixing) equations, the
latter cases with thermal variations are governed by the LMNOB (low-Mach number
non-Oberbeck–Boussinesq) and fully compressible non-Oberbeck-Boussinesq (NOB)
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FIGURE 14. Atwood number effects on mixing layer growth rates measured by (a) momentum
thickness and (b) vorticity thickness for the (�) present incompressible INBM simulations, (•)
the LMNOB (thermal variation) simulations of Almagro et al. (2017) and (�) 0.7 Mach number
NOB (thermal variation) simulations of Pantano & Sarkar (2002). The growth rates are scaled
by the corresponding growth rate with A ≈ 0 for each data set.

equations (Livescu 2020). A detailed comparison between simplified INBM equations
and LMNOB equations has been made at A = 0.75 by Baltzer & Livescu (2020).
Atwood number for the wide range shown in figure 14 affects both momentum and
vorticity thickness growth rates relatively similarly between density variation mechanisms
(figure 14), particularly given the differences between simulations in addition to species
vs. thermal transport, e.g. domain sizes, initial disturbance, determination of self-similar
growth period, etc. The growth rates are normalized by the A ≈ 0 growth rate for each
configuration (simulation set), and doing so conceals important physical differences and
their effects between cases: the growth rate of the A = 0 Pantano & Sarkar (2002)
mixing layer had reduced by 40 % relative to their low-speed simulation solely due to
compressibility effects. Their simulations investigating the range of Atwood numbers are
only available at a Mach number of 0.7. Since vorticity thickness is based on the maximum
gradient of the mean streamwise velocity profile, more scatter in these growth rates is to
be expected as they are sensitive both to the shape of the profile and noise in this quantity
(smoothing was applied when calculating for the present simulations).

The influence of Atwood number on growth rate can be further explained based on
the behaviour of the statistical profiles. One useful property of the momentum thickness
definitions (4.11) and (4.12) is that they straightforwardly lead to relations between growth
rates and flow statistical quantities. This was explored by Vreman et al. (1996), who
showed that an informative relation can be formed based on the time derivative of (4.11)
that yields

dδm

dt
= − 1

ρ0ΔU2

∫
d
dt

(
ρ̄Ũ1Ũ1

)
dy (5.4)

as other terms vanish using the y-integrated averaged continuity and momentum
equations. Multiplying the Favre mean momentum equation (4.2) for i = 1 by Ũ1 produces
an equation relating the time derivative of mean kinetic energy to Reynolds stress as

d
dt

(
ρ̄Ũ1Ũ1

)
=
(
ρ̄Ũ1Ũ1Ũ2 + 2τ̄12Ũ1 − 2Ũ1ρ̄R̃12

)
,2

+ 2Ũ1,2ρ̄R̃12 − 2τ̄12Ũ1,2. (5.5)
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Many terms are cast in conservative forms, so they vanish when integrated over the y
domain in (5.4). Then, (5.4) becomes

dδm

dt
≈ − 2

ρ0ΔU2

∫ ∞

−∞
ρ̄R̃12Ũ1,2 dy (5.6)

after neglecting the mean viscous term, which is consistent with the self-similar analysis
(§ 4.2) and has been shown to be small by scaling arguments of Pantano & Sarkar (2002).
The growth rates calculated from this equation using the self-similar averaged profiles
match those directly measured in the flow to within several per cent.

The above relation shows that the momentum thickness growth rate depends on the
density, mean streamwise velocity and Reynolds shear stress profiles. As shown in
figure 12(d), there is relatively little change in Favre-averaged Reynolds shear stress with
the density normalized by the local mean. However, when normalized by the average of the
two free-stream densities ρ0, the ρ̄R̃12 quantity that appears in (5.6) reduces strongly with
increasing Atwood number, as shown in figure 12( f ). The simulation suite was designed
such that the average of the free-stream densities ρ0 remains consistent across all Atwood
numbers. A consequence is that, if the fluids were fully mixed in equal proportion in
the core of the mixing layer, the density there would be the same for every Atwood
number. Therefore, reductions as observed in the aforementioned quantity normalized
by ρ0 are indicative of R̃12 having its strongest magnitude increasingly further in the
light fluid. Furthermore, this density becomes smaller relative to ρ0 as Atwood number
increases. In (5.6), the growth rate is the product of ρ̄R̃12 with the mean streamwise
velocity gradient, which weakly changes in magnitude with Atwood number (figure 9b).
This density weighting reflects the dependence on density in the momentum thickness
definition (4.11). Thus, the principal cause of growth rate reduction for δm is the turbulent
motions and the associated momentum deficit shifting to the light fluid side.

The dominance of the profile shifting effect is demonstrated by artificially realigning the
profiles such that the peak in R̃12 and inflection point in Ũ1 are returned to the point where
ρ̄ = ρ0 (figure 15). Eliminating the shifts in this way significantly weakens the growth rate
reduction effect. The magnitudes of growth rate reductions after these artificial shifts are
approximately those observed for the growth rate of momentum thickness per mass (which
lacks the density weighting). For other turbulent variable-density mixing layers, Pantano
& Sarkar (2002) and Almagro et al. (2017) have developed semi-empirical formulas that
estimate momentum thickness growth rate reductions as functions of density ratio (or
Atwood number) largely based on the shifts that develop between the mean streamwise
and mean density profiles.

Equation (5.6) also shows that the mixing layer growth rate is the integral over the
entire width of the mixing layer of a term that is closely related with the production of
TKE (through the shear production mechanism, −ρ̄R̃12Ũ1,2). It is informative to split this
integral into contributions from the light fluid and heavy fluid sides of the domain

dδm

dt
≈ − 2

ρ0ΔU2

∫ yρ0

−∞
ρ̄R̃12Ũ1,2 dy − 2

ρ0ΔU2

∫ ∞

yρ0

ρ̄R̃12Ũ1,2 dy, (5.7)

where yρ0 is the y value at which ρ̄(y) = ρ0. Since mean density increases monotonically
across the interior of the mixing layer, it follows that the first term is the light fluid
contribution to the growth rate and the second term is the heavy fluid contribution (in
a mean sense). The yρ0 position remains at y = 0 for A → 0, thus splitting the mixing
layer in half. As Atwood number increases, the yρ0 position moves much more weakly
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FIGURE 15. (a) Momentum thickness growth rate predicted from self-similar averaged
statistical profiles using (5.6). The total momentum growth rate (—�—) is decomposed into
light fluid (- - � - -) and heavy fluid ( - - � - -) contributions according to (5.7). The hypothetical
growth rate predicted by (5.6) if the profiles’ drifts were artificially removed (· · · � · · · ) highlights
that much of the growth rate reduction is associated with the intense turbulence and shear shifting
to the light fluid. (b) Momentum thickness per mass growth rate predicted from (5.11) (—•—).
The mean shear-Reynolds stress term (- -•- -) has the same form as the production for TKE and
dominates the other growth rate terms. However, variable-density terms also appreciably reduce
the growth rate at high Atwood numbers, as shown by the distance between the curves.

compared to points on the mean velocity profiles or R̃12 (and yρ0 instead moves toward the
heavy fluid side), as shown by figure 11(b).

When the density differences are very weak (A = 0.001), the contributions are
essentially equally split between the light and heavy sides (figure 15a). The heavy fluid
growth rate contribution monotonically decays with Atwood number, which is consistent
with the intense turbulence and momentum deficit (relative to the free streams) drifting to
the light fluid side. As Atwood number increases from A = 0.001 to 0.25, the light fluid
growth rate contribution weakly increases, but then decays for higher Atwood numbers.
These growth rate changes can be interpreted in light of the time histories of mean profile
positions for various Atwood numbers (figure 11). Beginning from the symmetric growth
of the mean streamwise profile edge positions for A = 0.001 in figure 11(a), the edge
positions reduce in their penetration to the heavy fluid side but increase in penetrating the
light fluid side for Atwood numbers up to A = 0.75. The penetrations into the light fluid
sides stagnate as Atwood number increases beyond 0.75, and by A = 0.87 the growth rate
has decreased so much that even the growth into the light fluid has reduced below that for
A = 0.75 while growth into the heavy fluid side is negligible. This reduction in growth into
the light fluid side is manifested in the sharply reducing light fluid growth contribution in
figure 15(a).

While much of the reduction in momentum thickness growth rate with increasing
Atwood number can be explained by the velocity neutral point moving into the light fluid,
weaker although significant reductions in growth rate also occur in all other thickness
measurements, despite their lack of explicit density profile dependencies. This differs
from the assumption of constant temporal growth rates with Atwood number sometimes
used to develop theories addressing growth rate for spatially developing variable-density
mixing layers, as described in the introduction. To address these subtler reductions in
growth rate with Atwood number, we derive an analogous equation relating the growth
rate of momentum thickness per mass to statistical profiles of the flow. A similar derivation
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instead beginning from (4.12) leads to

dδm,pm

dt
= U− + U+

ΔU2

∫
dŪ1

dt
dy − 1

ΔU2

∫
d
dt

(
Ū1Ū1

)
dy = − 1

ΔU2

∫
d
dt

(
Ū1Ū1

)
dy,

(5.8)

since U− = −U+ for this flow configuration. Developing an expression for the time
derivative in the integral based on the Reynolds mean momentum equation leads to

(
Ū1Ū1

)
,t = 2

[(−Ū1Ū1Ūj − Ū1
〈
u′

1u′
j

〉)
,j

+ Ū1,jŪ1Ūj + Ū1,j
〈
u′

1u′
j

〉

−
〈

p,1

ρ

〉
Ū1 +

〈
τ1j,j

ρ

〉
Ū1 + Ūj,jŪ1Ū1 + 〈

u′
j,ju

′
1

〉
Ū1

]
. (5.9)

Again using the homogeneities of this flow and noting that both Ū2 and 〈u′
1u′

j〉 vanish on
the boundaries (so the conservative terms integrate to 0) simplifies the expression to

dδm,pm

dt
= − 2

ΔU2

∫ [
Ū1,2

〈
u′

1u′
2

〉+ Ū1,2Ū1Ū2 + 〈
u′

j,ju
′
1

〉
Ū1

+Ū2,2Ū1Ū1 −
〈

p,1

ρ

〉
Ū1 +

〈
τ1j,j

ρ

〉
Ū1

]
dy. (5.10)

It can be shown that the terms based on the Reynolds mean cross-stream velocity decay
as the flow evolves (and are of small magnitude, figure 10). In contrast, the 〈u′

j,ju
′
1〉 and

〈p,1/ρ〉 terms, as well as the dominant Ū1,2〈u′
1u′

2〉 term, can be shown to maintain constant
magnitudes with the appropriate self-similar scaling. Retaining only these terms, the
relation simplifies to

dδm,pm

dt
≈ − 2

ΔU2

∫ [
Ū1,2

〈
u′

1u′
2

〉+ 〈
u′

j,ju
′
1

〉
Ū1 −

〈
p,1

ρ

〉
Ū1

]
dy. (5.11)

For this particular flow in which kinematic viscosity maintains a constant value
everywhere, the mean viscous term simplifies to νŪ1,22Ū1. It decays with time and
during the self-similar growth generates a very small effect, so it is neglected. Of
the variable-density terms,

∫ 〈p,1/ρ〉Ū1 dy is negative and dominates in magnitude over∫ −〈u′
j,ju

′
1〉Ū1 dy, which is positive, for all of the Atwood numbers considered. Note that

in the single-density case, with Ū2 = 0 and uj,j everywhere zero, this equation simplifies
to dδm,pm/dt = −2/ΔU2

∫
Ū1,2〈u′

1u′
2〉 dy, which is consistent with the usual momentum

thickness growth equation (5.6).
This growth rate equation indicates that variable-density effects can modify the δm,pm

growth rate from its single-density value both through the additional terms (related to the
density variations and corresponding divergence of the velocity field) and through changes
in the mean velocity gradient Ū1,2 and/or the Reynolds stress 〈u′

1u′
2〉 that appear in the

mean shear-Reynolds shear stress term. Applying this equation to each Atwood number
(figure 15b) demonstrates that the mean shear-Reynolds shear stress term dominates the
growth rate equation for all Atwood numbers and significantly decreases in magnitude for
the highest Atwood numbers. To understand the reduction in growth rate associated with
the dominant Ū1,2〈u′

1u′
2〉 term, it can be seen that there is little change in peak Ū1,2 value

(figure 9) while peak 〈u′
1u′

2〉 magnitude decreases moderately (figure 12) with increasing
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Atwood number. A combination of lower peak stress magnitude and subtle changes in the
mean streamwise velocity and stress profile shapes account for the reduction in growth
rate. These phenomena also contribute to the conventional (density-weighted) momentum
thickness growth rate reductions but are weaker than the effect of shifting mean streamwise
velocity and density profiles.

5.6. Profiles involving density fluctuations
Density-velocity correlations are contained in the normalized mass flux quantity ai =
〈ρ ′u′

i〉/ρ̄. The turbulent mass fluxes also quantify the relationship between Favre and
Reynolds averages for the velocity and Reynolds stress quantities considered above.
Relations include Ũi − Ūi = u′

i − u′′
i = ai, ai = −〈u′′

i 〉 and ρ̄R̃ij = ρ̄〈u′
iu

′
j〉 − ρ̄aiaj +

〈ρ ′u′
iu

′
j〉 (with additional identities provided by Livescu et al. 2009). As observed in

figure 10, the Favre-average cross-stream velocity Ũ2 is much larger in magnitude than
the Reynolds-average cross-stream velocity Ū2. According to the above relations, Ũ2 =
Ū2 + a2 is dominated by the a2 turbulent mass flux while the Reynolds mean is relatively
insignificant and is explained by the relation developed in appendix A. In single-fluid
incompressible temporal mixing layers, the mean cross-stream velocity is zero, in order
to satisfy the divergence-free condition. Thus, the correlations between the cross-stream
velocity and density in these variable-density mixing layers dominate the Favre mean
cross-stream velocity. In addition, density fluctuation properties as revealed by fluctuation
intensity are relevant to the structure of the flow.

Two types of normalizations for ai and density fluctuation intensity are considered. The
ρ̄ denominator included in the ai definition removes the density dimensional dependency,
but a consequence is that ai generally grows with Atwood number as density fluctuations
become more pronounced. Likewise, as Atwood number increases, density fluctuations
increase in magnitude. No mix, denoted by nm, corresponds to the quantities’ values in
a hypothetical configuration in which the two fluids are distributed without any mixing,
and results in the highest possible magnitudes for 〈ρ ′2〉. It can be shown that 〈ρ ′2〉nm =
(Δρ/2)2 = ρ2

0 A2 (Livescu & Ristorcelli 2008). By analogy, AΔU is an appropriate scaling
for ai that is equivalent to scaling by [Δρ/(2ρ0)]ΔU. Figure 16(c,d) shows the self-similar
profiles of (a,b) with these scalings applied.

In contrast to the velocity fluctuations’ peak magnitudes shift to the light fluid side,
the strongest density fluctuations position in the heavy fluid side with increasing Atwood
number (figures 16b,d). Fluctuation profiles for these density-based quantities (intensity
and ai) are also almost completely symmetric about y = 0 for the A = 0.001 case as
the intense turbulence remains at the initial interface position. At increased Atwood
number, large-scale disturbances (e.g. corrugations) form on the heavy fluid side while
the fine scales of motion producing faster mixing are concentrated on the light fluid
side. This behaviour can be adduced from the mean density and velocity fluctuation
intensity profiles and by density visualizations (figure 17). The smoother yet disturbed
heavy fluid side interface suggests the dominance of large-scale structures while small
scales concentrate at the light fluid side for high Atwood number. The large displacements
of the largely unmixed fluids relative to the background density gradient leads to large
density fluctuation magnitudes on the heavy fluid side. In contrast, the greater mixing on
the light fluid side produces local densities on average nearer to the mean density ρ̄, thus
resulting in smaller density fluctuation intensities.

In absolute terms (scaled by ρ0 in figure 16b), the density fluctuation intensity
magnitudes increase up to A = 0.75 but then stagnate for higher Atwood number. Peak
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FIGURE 16. Profiles of correlations involving density scaled using ρ0: (a) normalized mass flux
ai/ΔU with a1 as solid lines and a2 as dashed lines and (b) density variance 〈ρ′2〉/ρ2

0 . Profiles
of correlations involving density scaled using no-mix (nm) intensities based on Atwood number:
(c) normalized mass flux ai/(AΔU) with a1 as solid lines and a2 as dashed lines and (d) density
variance 〈ρ′2〉/〈ρ′2〉nm. Line colours represent the different Atwood number simulations as in
figure 3.

intensity positions penetrate less and less deeply into the heavy fluid side for increasing
Atwood numbers. These effects are likely a consequence of the less energetic turbulence
sustained on the light fluid side reducing in ability to overcome the heavy fluid side’s
inertia and disturb it. Scaling using the mean density ρ0 of the two streams, which
remains constant for all Atwood numbers, reveals the relative magnitudes of the fluctuation
intensities. The no-mix scaled density fluctuation intensity profiles (figure 16d) increase
in magnitude up to A = 0.75 but decay for higher Atwood number. No-mix intensity is
proportional to the differences in densities between streams Δρ, so scaling by this quantity
would be expected to scale out the effect of increasing density differences for Boussinesq
mixing. Thus, magnitude differences under this scaling reveal non-Boussinesq effects in
the fluctuation intensities.

6. Conditional statistics

Conditional statistics expose correlations with local fluid density to further reveal
variable-density effects in the flow. While the unconditional statistical moments above
quantify the asymmetries (in a mean sense) with respect to y position, statistics
conditioned on density reveal further asymmetries with respect to local density at
fixed y. The unconditional statistics have demonstrated that increasing Atwood number
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FIGURE 17. Surfaces of density coloured from light (blue) to heavy (red) during self-similar
growth at approximately tΔU/h0 = 730 for (a) A = 0.001 and (b–d) A = 0.75. Viewing the A =
0.75 case from below (d) makes apparent the much finer scales on the light fluid side relative to
the heavy fluid side (c). This is consistent with the strongest turbulent vortices being concentrated
near the light fluid side. Thickness h as defined based on the velocity field is also included.
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concentrates the most intense turbulent motions at descending y positions of mean
density progressively lighter than ρ0. TKE provides one indication of where turbulence
is concentrated, while the dissipation term of its budget is associated with intense,
small-scale turbulent motions. Enstrophy is another quantity associated with intense
vortical motions. Turbulent kinetic energy dissipation per unit volume can be related to
fluctuation enstrophy (based on vorticity ωk = εijkuj,i where εijk is the Levi-Civita symbol)
as

ε = μ̄〈ω′
iω

′
i〉 − 2

3 μ̄〈d′2〉 + 〈μ′ω′
iω

′
i〉 − 2

3 μ̄〈μ′d′2〉 + Ūi,j〈μ′u′
i,j〉 + Ūj,i〈μ′u′

i,j〉
− 2

3 d̄〈μ′d′〉 + 2μ̄〈u′
i,ju

′
j,i〉 + 2〈μ′u′

i,ju
′
j,i〉, (6.1)

where d = ui,i is divergence (Morinishi, Tamano & Nakabayashi 2004). In constant-
viscosity divergence-free incompressible flow, only the first term contributes on the
right-hand side. Numerical simulations have indicated that the first term dominated
while the third term made a small contribution and the others were negligible, although
the detailed study was performed in a wall-bounded configuration (Morinishi et al.
2004). Therefore, a reasonable approximation to the relation between enstrophy and
dissipation is

〈ω′
iω

′
i〉 ≈ ε

μ̄
= ε̃

ν
, (6.2)

where ε̃ is defined by ε̃ = ε/ρ̄ as with (5.3) and ν is constant within the present flow
(§ 3.3). The enstrophy and scaled dissipation agree well for both Atwood numbers shown
in figure 18(a,b). The peaks of enstrophy and dissipation are also shown to coincide with
steep mean streamwise velocity gradients and, in the case of high Atwood numbers, to be
located where mean density is significantly lower than the average of the two free-stream
densities (ρ0). Since the definition of enstrophy is independent of density, it is a useful
quantity for investigating density effects on the kinematics of turbulence.

The y plane of peak enstrophy intensity is an informative location for which to study the
relationship between local density and intense turbulence. At this position, the enstrophy
conditioned on density is plotted for each Atwood number in figure 18(c,d). The mean
enstrophy is related to conditional counterpart by

〈ω′
iω

′
i〉 =

∫ ρ2

ρ1

〈ω′
iω

′
i | ρ〉f (ρ) dρ, (6.3)

where f is the ρ probability density function (p.d.f.), which indicates the frequencies with
which fluid of a given density exists at this location. Thus, the peak enstrophy values
shown in figure 18(a,b) can be obtained from the conditional enstrophies shown in figure
18(c,d) via this relation.

The conditional enstrophy plots reveal that, at low Atwood number, the fluid carrying the
greatest amounts of enstrophy has density equal to the mean density at this position, which
coincides with the average of the two free streams’ densities. Since no pure (free-stream)
fluid has that density, fluid of such density is a mixture of the pure fluids, and it can be
concluded that fluid of this density is associated with strong mixing. As Atwood number
becomes large, the mean density at the plane of strongest enstrophy is less than ρ0 and
the local fluid densities associated with the strongest enstrophy magnitudes have yet lower
values according to the conditional statistics. Since mixing is associated with the intense
small-scale motions, this suggests that the lighter fluid is carrying the turbulence and these
motions are also active in mixing with the heavier fluid. Conversely, the larger scales
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FIGURE 18. (a,b) Mean enstrophy profiles with mean density (orange) and mean streamwise
velocity (black) to reveal relative positions. The enstrophy (blue) is compared with the scaled
dissipation approximation of (6.2) (red dashed). (c,d) Conditional enstrophy (solid line) and
density p.d.f. (dashed line) indicating the prevalence of fluid as a function of density, both shown
at the position of strongest enstrophy identified above from a single field of each simulation
with matching thicknesses (tΔU/h0 = 380 for A = 0.001 and tΔU/h0 = 405 for A = 0.75).
The mean density at the position shown is indicated by an arrow. The conditional averages and
p.d.f.s were estimated using 100 discrete ρ bins. Panels (a,c) are for A = 0.001 and (b,d) are for
A = 0.75.

of turbulent motion lack strong velocity gradients and are thus associated with weaker
enstrophy; the conditional enstrophy suggests that the larger scales are thus associated
with the denser fluid. The νh/ΔU3 scaling of the enstrophies shown in figure 18 is based
on the arguments given in Rogers & Moser (1994) using the relation between enstrophy
and dissipation as well as the property that integrated dissipation remains constant in
self-similar growth.

The p.d.f.s also shown in figure 18 demonstrate that the densities of peak conditional
average are frequently present for both the lowest A and A = 0.75 cases. Thus, the densities
associated with strong enstrophy magnitudes are representative of fluid parcels playing
dominant roles and not merely rare events. The A = 0.001 (essentially passive scalar) case
indicates that fluid near the local mean density ρ̄ carries the strongest enstrophy per unit
volume and is most prevalent, for the position of strongest enstrophy that occurs near
y = 0. At high Atwood number, fluid lighter than the local mean density carries most
of the enstrophy and is also most prevalent, at the peak total enstrophy position that has
drifted toward the light fluid side (y < 0) relative to the initial interface.

While the conditional enstrophy statistics provides quantitative evidence that vorticity
is concentrated in the light fluid, flow visualizations are consistent with this result and
illustrate the asymmetries present in the flow. Surfaces indicating scarcely mixed (nearly
free-stream density) fluid are shown in figure 17. Since these surfaces were initially
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parallel planes, the topologies of the surfaces at subsequent times are consequences of the
motions that transport the fluid. The surfaces are symmetric in appearance for the lowest
Atwood number case (figure 17a). For A = 0.75, however, the higher-density red surface
(figure 17c) is smoother with larger-scale corrugations compared to the lower-density blue
surface (figure 17d) that indicates the presence of much finer scales of motion. These
fine scales are associated with strong enstrophy. The visualization for elevated Atwood
numbers is thus consistent with the average enstrophy peak existing in the vicinity of y
values at which the density is lower than the average of the two streams.

7. Conclusions

The present set of shear-driven variable-density mixing layer DNS spans a wide range of
Atwood numbers. Since these simulations have reached self-similar growth at sufficient
Reynolds numbers to be past the mixing transition, they form a comprehensive data set
for evaluating the variable density effects on late-time turbulence dynamics. The results
demonstrate that, as Atwood number is increased while keeping the average density of the
two free streams constant, the most intense turbulence is sustained in lighter-than-average
fluid during self-similar growth. This occurs both in the sense of the intense turbulent
motions shifting to y-positions at which the mean density is lower and also in the sense
of the strongest small-scale turbulent motions preferentially concentrating in fluid of
lighter-than-mean density at a given position.

The main Atwood number effects on the most basic statistics, the mean density and
velocity profiles, can be explained by self-similar growth properties and flow physics
arguments. Self-similar analyses of the mean mass conservation and mean streamwise
momentum balance equations have shown that the peak cross-stream velocity occurs in
the light fluid side, while the neutral point of streamwise velocity moves further to the
same side, and the peak R̃12 stress moves yet further into the light fluid side (§ 4.2). The
intense turbulent motions occur where production of turbulence is concentrated, which is
where the mean velocity profile is steepest and R̃12 magnitude is large. Since the intense
turbulent motions are also associated with mixing that smooths the density profile, the
mean density profile becomes shallower near the strong small-scale turbulence regions,
while thickness growth of both the mean density and mean streamwise velocity interfaces
preferentially occurs on the light fluid side. The alignment of the peak enstrophy with
the mean streamwise velocity and density profiles confirms this behaviour (figure 18).
The drift of the velocity and Reynolds stress profiles to the light fluid side, as well as
the asymmetry of shallower decay on the light fluid side of the mean density profiles,
strengthens in degree as Atwood number increases. These effects are robust with respect
to statistical noise and occurs in mixing layers with streams of differing density produced
by a single fluid with varied thermodynamic properties, both in low-speed (Almagro et al.
2017) and compressible but subsonic (Pantano & Sarkar 2002) regimes. These profiles for
incompressible multi-species and low-speed varied thermodynamic properties cases are
directly compared by Baltzer & Livescu (2020).

A prominent variable-density effect is the reduction in growth rates as Atwood number
increases. Using the commonly used momentum thickness quantity to measure growth
rate, this reduction has been shown to be primarily associated with the density weighting
in the definition. This reflects the momentum deficit (relative to free stream) growing in
progressively lighter-density fluid with increasing Atwood number; the thickness growth
produces smaller changes in momentum as the density in which the growth occurs
decreases. When the thickness is defined in a manner not weighted by the fluid density
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relative to the average of the pure-fluid densities (such as based on momentum on a
per-mass basis or a quantity such as h that considers only the velocity field), the thickness
growth rates display much less reduction as Atwood number increases. This is consistent
with the mixing layer being sustained in lighter-than-average density fluid and, to a first
approximation, behaving as a single-density mixing layer with a smaller nominal density
(i.e. ρ̄ where the turbulence is strongest rather than ρ0). For an actual single-fluid mixing
layer, the growth rate is dependent only on the velocity difference across the free streams
regardless of the density. However, when conventional momentum thickness growth rate
is calculated for variable-density mixing layers using ρ0 as the density scaling in the
definition, there is a mismatch between ρ0 and the actual density in which the turbulence
is sustained. Since turbulence is sustained in increasingly lighter fluid relative to ρ0
with increasing Atwood number, this definition indicates a growth rate reduction with
Atwood number. When this dependency is removed, as in the case of the other thickness
measures, the growth rate reductions are more modest but nonetheless significant. These
latter effects indicate variable-density induced departures from idealized single-density
behaviour. Such reductions are principally associated with decreases in 〈u′

1u′
2〉 magnitude,

as indicated by (5.11).
The low Atwood number limit of variable-density mixing layers captures much of the

mass flux (density–velocity correlation) behaviour, although the density field approaches
passive scalar behaviour. At high Atwood number, the mass fluxes become asymmetric
and peaked on the light fluid side (particularly for the streamwise component), in addition
to shifting to the light fluid side from the origin. Normalizing by only ΔU while ρ0 remains
constant, the turbulent mass flux magnitudes generally increase with Atwood number
but appear to decrease past A = 0.75. This may be due to the greater heavy fluid inertia
damping out the turbulence (as suggested by the Reynolds stress magnitudes at increasing
Atwood numbers) despite the strengthening maximum density fluctuations.

The shifting of turbulent motions to the light fluid side influences the density field
evolution. The intense turbulent motions progressively shifting toward the lighter fluid
stream produces the asymmetry in the mean density profile discussed above. Furthermore,
only larger spatial scales of velocity fluctuations are present toward the heavy fluid
stream, which explains density fluctuation behaviour: while the larger scales of motions
near the heavier fluid are much less effective at producing mixing, they are effective at
transporting parcels of largely unmixed heavy fluid, thereby producing particularly strong
density fluctuations near the heavy fluid side at high Atwood number. These large density
contrasts in partially mixed light fluid and mostly unmixed heavy fluid also produce large
density fluctuation (〈ρ ′2〉) magnitudes there. Conditional statistics support the picture
of turbulence being sustained within relatively light density fluid and penetrating into
higher-density regions where it is damped by the greater fluid inertia at high Atwood
number.

The widespread nature of variable-density multi-fluid mixing motivates further
advancements in properly capturing and modelling the variable-density effects on the
kinematic structure of turbulence. This is particularly true given these effects’ importance
for predicting mixing and more complicated phenomena that closely depend on mixing,
such as reactions, that appear in a wide range of flows. While many properties of
variable-density mixing layers closely resemble those of single-density mixing layers,
complex interactions between density field and velocity field must be captured to predict
the flow. In particular, the intense turbulence migrates to locally light fluid that interacts
through neighbouring fluid both through advection and mixing; this process alters the
mean velocity and density profile evolutions as well as detailed statistics of mixing.
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Capturing all of these phenomena in a consistent manner presents significant challenges
for Reynolds-averaged Navier–Stokes and large eddy simulation-type models.
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Appendix A. Mean cross-stream velocity

The two-species incompressible fluid mixing equation (2.3) relates gradients of velocity
to density. Applied to a temporal configuration, the mean velocity and density profiles
are inhomogeneous only with respect to the 2 (y) direction. The Ũ2,2 gradient of Favre
mean velocity can thus be related to the density field. Multiplying (2.3) with ρ and then
averaging yields 〈

ρu1,1
〉+ 〈

ρu2,2
〉+ 〈

ρu3,3
〉 = 〈−Dρ (ln ρ),ii

〉
. (A 1)

Since ρ̄Ũi,j = 〈ρui,j〉 and only the Ũ2,2 on-diagonal mean velocity gradient is non-zero
in the temporal configuration, the left-hand side simplifies to ρ̄Ũ2,2. The right-hand side
may be decomposed by noting that (ln ρ),ii = ρ,ii/ρ − ρ,i

2/ρ2. If diffusivity is constant,
the right-hand side becomes −D(〈ρ,ii〉 − 〈ρ,i

2/ρ〉). For the second term in parentheses,
introducing the relevant Reynolds decompositions and writing in terms of specific volume
v ≡ 1/ρ and density–specific volume correlation b ≡ −〈ρ ′v′〉 (both functions of y) yields

〈
vρ,i

2〉 = 1 + b
ρ̄

(ρ̄,i)
2 + 1 + b

ρ̄

〈
ρ ′

,i
2
〉
+ 2ρ̄,i

〈
v′ρ ′

,i

〉+ 〈
v′ρ ′

,i
2
〉
. (A 2)

Mean specific volume v̄ was replaced using the identity v̄ = (1 + b)/ρ̄. The complete
expression is

ρ̄Ũ2,2 = −D
[
ρ̄,ii − (ρ̄,i)

2

ρ̄
− b

ρ̄
(ρ̄,i)

2 − 1 + b
ρ̄

〈
ρ ′

,i
2
〉
− 2ρ̄,i

〈
v′ρ ′

,i

〉− 〈
v′ρ ′

,i
2
〉]

,

→ Ũ2 = −D
∫ y

ymin

[
(ln ρ̄),ii −

b
ρ̄

(ρ̄,i)
2 − 1 + b

ρ̄

〈
ρ ′

,i
2
〉
− 2ρ̄,i

〈
v′ρ ′

,i

〉− 〈
v′ρ ′

,i
2
〉]

dy. (A 3)

The mean cross-stream velocity is determined by only the mean density profile and the
profiles of the density fluctuations (and their correlations); this result does not explicitly
depend of the mean streamwise velocity. If there are no spatial density fluctuations
besides the y-dependent mean density profile, only the first term on the right-hand side
is non-zero and (A 3) reduces to Ũ2 = −D ∫ y

ymin
(ln ρ̄),ii dy. This expression is valid when

the simulation is initialized. If density is constant, (A 3) dictates that Ũ2 = 0, which is
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consistent with the divergence-free nature of incompressible constant-density flow. Away
from the interface in the variable-density mixing layers, each free stream has uniform (but
different) density, so the equations indicate that Ũ2 will be constant in these regions. Since
each slip wall dictates that Ũ2 will be zero at the wall while these equations indicate that
Ũ2 will be constant approaching each wall, it is concluded that Ũ2 is zero away from the
region of mean density gradient or active mixing of unequal-density fluids.

Appendix B. Self-similar analysis

Self-similar analysis similar to that performed by Pantano & Sarkar (2002) is now given
for the present flow configuration. If self-similar growth occurs, each self-similar profile
quantity is a function only of η (for a given Atwood number/flow configuration) rather
than position y and time t (or thickness) independently. Considering first the mean mass
conservation equation (4.1) and substituting the self-similar variable dependencies yields

− η[dh/dt] dρ̄/dη + d(ρ̄Ũ2) dη = 0. (B 1)

In order to ensure that the terms in this equation depend on η only, the mixing layer
thickness needs to vary linearly in time. Thus, self-similarity requires that

dh/dt = C, (B 2)

where C (the growth rate) is a constant. If Ũ2 is scaled by C, equation (B 1) becomes
independent of C, which indicates growth rate, rather than ΔU, as the self-similar scaling
of Ũ2.

Next, the self-similar variable forms are applied to the Favre mean streamwise
momentum equation (4.2). When the flow is self-similar, the viscous term has a small
effect on the mean momentum, as the mean velocity profile is relatively shallow after the
earliest times (whereas the viscous term continues to produce large contributions to the
energy balance because these contributions are based on instantaneous gradients within
the turbulent motions). In self-similar variables, (4.2) then becomes

− η[dh/dt] d(ρ̄Ũ1)/dη + d(ρ̄Ũ1Ũ2)/dη + d(ρ̄R̃12)/dη = 0. (B 3)

Assuming that the streamwise mean velocity scale is ΔU, this equation also indicates that
the self-similar scaling for R̃12 is ΔU, dh/dt, since for this scaling the equation becomes
independent of the flow.

When both the mean density and velocity profiles are initially specified and centred
at y = 0, the mean density profile is monotonic, with dρ̂/dη > 0. As the flow evolves,
it continues to vary between the same density values for light and heavy fluid. The
self-similar growth behaviour implies that a non-monotonic density profile would be very
unlikely to maintain. The behaviour of the density profiles suggests choosing the density
scale, ρ0, as the average of the two density extremes, (ρ1 + ρ2)/2, which also corresponds
to the initial centreline density.

Using the scalings identified above, which are summarized in (4.7)–(4.10), the
self-similar equations then become

−ηdρ̂/dη + d(ρ̂Û2)/dη = 0, (B 4)

−ηd(ρ̂Û1)/dη + d(ρ̂Û1Û2)/dη + d(ρ̂R̂12)/dη = 0, (B 5)
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which can be re-written as

(Û2 − η) dρ̂/dη + ρ̂ dÛ2/dη = 0, (B 6)

(Û2 − η)ρ̂ dÛ1/dη + d(ρ̂R̂12)/dη = 0. (B 7)

From these equations, several conclusions about the behaviour of variable-density flow
during self-similar growth can be drawn. Equation (B 4) shows that, for A > 0 (so that
dρ̂/dη > 0), ρ̂Û2 has a peak at η = 0, which corresponds to the initial centreline (y = 0).
On the other hand, from (B 6), dÛ2/dη is zero at the location where η = Û2. Let this
location be η = η2. Equation (B 6) also shows that inside the layer

η < η2 → dÛ2/dη < 0, (B 8)

η > η2 → dÛ2/dη > 0. (B 9)

This implies that η2 is unique, otherwise for the region between two η2 solutions, dÛ2/dη

needs to be both positive and negative. Since Û2 is zero outside the layer and its derivative
has only one zero inside the layer, it follows that Û2 has constant sign across the layer.
Therefore, Û2 < 0 within the layer, otherwise Û2 cannot become zero outside the layer. As
a consequence, at the centreline, Û2 is strictly negative and dÛ2/dη > 0, which implies
that η2 < 0. Thus, simply from mass conservation considerations for self-similar growth,
it is established that the cross-stream velocity peaks on the light fluid side at η = Û2(η)

and that Û2 < 0 within the layer.
Equation (B 7) shows that d(ρ̂R̂12)/dη is also zero at η = η2. Let then η = η12 be the

location where dR̂12/dη is zero. Using the mean configuration set-up considered here (such
that dÛ1/dη > 0 and dρ̂/dη > 0), similar arguments as above can be made to show that
η12 is unique within the layer and η12 < η2. Thus, R̂12 < 0 and has its largest magnitude
further to the light fluid side than Û2. Analogous conclusions were previously drawn by
Pantano & Sarkar (2002) from these equations for their configuration.
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