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STRENGTH OF BONDS BETWEEN ICE GRAINS AFTER
SHORT CONTACT TIMES

By H. GUBLER
(Eidg. Institut fiir Schnee- und Lawinenforschung. 7260 Weissfluhjoch/Davos. Switzerland)

ABSTRACT. The tensile force required to break bonds between ice grains after short contact times (1-500 s) is
measured as a function of temperature and contact pressure. The results indicate a sharp increase of the tensile
load capacity of bonds after short contact times near the melting point and a maximum rate of increase of the load
capacity at — 5 °C. The initial state of sintering is modelled, assuming viscous surface flow and plastic deformation
as the main mechanisms.

RESUME. Resistance a la traction des ponts entre des billes de glace aprés des temps de contact courts. La
force de traction nécessaire pour rompre les ponts entre des billes de glace. aprés des temps de contact courts
(1-500 s). est mesurée en fonction de la température et de la pression au contact. Les résultats montrent une
augmentation sensible de la portance des ponts aprés des brefs temps de contact a des températures voisinant le
point de fusion. ainsi qu'un taux d'accroissement maximum de la portance a — 5 °C. La phase initiale de la
croissance des ponts est simulée en admettant un flux visqueux a la surface et une déformation plastique au
contact.

ZUSAMMENFASSUNG. Festigkeit von Bindungen zwischen Eiskornern nach kurzen Komtakizeiten. Die
Tragfihigkeit von Bindungen zwischen Eiskornern nach kurzen Kontaktzeiten (1-500 s) wird in Abhiingigkeit
von der Temperatur und dem Kontaktdruck gemessen. Die Resultate zeigen einen deutlichen Anstieg der
Tragfihigkeit der Bindungen nach kurzen Kontaktzeiten bei Temperaturen nahe dem Schmelzpunkt sowie eine
maximale Zunahmesrate der Tragfihigkeit bei —5°C. Die Anfangsphase des Zusammensinterns wird unter
Annahme von viskosem Oberflichenfluss und plastischer Deformation simuliert.

INTRODUCTION

The growth of sintered bonds between ice spheres has been studied (Nakaya and
Matsumoto, 1954, Jensen, unpublished; Hosler and Hallgren, 1960; Kingery, 1960; Kuroiwa,
1961: Hobbs and Mason, 1964). Hobbs and Mason (1964), concluded from the time-
dependence of the growth of the bonds and from the measured absolute value of the diffusion
constant that bond growth is caused primarily by the transport of water molecules through the
vapour phase. However, the strength of bonds in the initial stage of sintering (after short times of
contact between the grains) cannot be explained by this transport mechanism.

The strength of snow is largely dependent on intergranular structure and on the strength of
the bonds between the grains. Deformation of snow often causes fracturing of some of the bonds
and the generation of new contact points. Deformation changes the intergranular structure (Kry,
1975[a] and [b]; St. Lawrence and Bradley. [1975]; Gubler, 1978: St. Lawrence, 1980). The
relationships between stress, strength and strain. and strain-rate depend strongly on the strength
development in the new contact points.

In order to improve our knowledge of the initial stage of sintering, we designed an experiment
to measure the strength of bonds between ice grains after contact times of 1 to 1000 s as a
function of contact pressure, temperature, and stress rate. The experimental results are explained
by the flow of water to the bond neck in the liquid-like surface layer of ice (Weyl, 1951: Fletcher,
1968: Kvlividze and others, 1973; Golecki and Jaccard. 1977: Gilpin, 1979), the deformation of
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the spheres at the contact point, freezing of the liquid-like layer in the contact volume. and local
pressure melting.

Strength increase of snow caused by sintering for short time periods (1-1 000 s) at new
contact points is the basis for deterministic models for locking mechanisms in avalanches.
blowing snow, snow compaction, and snow milling.

APPARATUS

The basic experimental arrangement is shown in Figure I. The tips of two ice cones are
slowly brought into contact and are compressed using forces which range from 0 to 0.1 N. One
of the ice cones (diameter of the base: 20 mm, point angle 45°, tip curvature radius 0.5 mm) is
mounted on a piezoelectric force transducer (sensitivity < 10-3 N). The second, moveable cone
is fixed to a steel—aluminium axle which is suspended by thin threads. The forces (in compression
and in tension) are applied to this rod by electromagnetic coils. The system is placed in a sealed
container. The container bottom is partially covered with granular snow and can be heated with
a temperature-controlled heater to maintain the desired relative humidity of between 90 and
100% in the container. The experimental area with the two cones is in addition protected by a
small “Plexiglas™ box. Temperatures are measured with an absolute accuracy of +0.1°C =t
different points around the cones and inside the ice cones near their tips (Fig. 1). The
polycrystalline ice cones were slowly frozen in brass moulds from their base to the tip under a
temperature gradient using outgassed. distilled water. The electronic arrangement achieves an
automatic soft contact of the two cone tips and can apply a large variety of stress functions in
tension and compression to the contact between the cones.

MEASUREMENTS

Recordings of bond strength were made at temperatures between —0.2°C and 44 °C.
Measurements with two different pairs of cones were made at each temperature. After the cones
were carefully brought into contact, a uniform force pulse of duration ¢ and amplitude 1072 N
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Fig. 1. Basic experimental setup.
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was applied in compression. The compression pulse was immediately followed by a tensile force
applied at a rate of 2 x 1072 N s~ ! until the bond fractured. The cones were kept apart for 60 s
between consecutive experiments to allow the cone tips to recover. The duration ¢ of the
compression pulse was varied according to the following pattern:

1=2,5. 10, 20, 40. 80, 160, 320 s

alternately forward and backward. Each run consisted of at least three patterns of the
compression pulse lengths and included one change of the cone pair. Alternation of the start of
the runs between the compression pulses of the longest or the shortest duration is important to
test for any possible hysteresis in the recorded tensile fracture forces.

REsuLTS

The recordings of the fracture forces type A (Table I) were plotted as a function of the
compression pulse duration ¢ for each run and fitted to a power law:

Fr=qatf
(1)

g=1s"%,
a and f are temperature- and geometry-dependent variables. The power law was chosen because
all of the currently proposed growth laws for sintered bonds between ice grains (Hobbs, 1974)
can be expressed as power laws of the time of contact of the ice spheres. For each run three pairs
of parameters a and [, their mean errors, correlation coefficients. and /-values (Student’s -test)
were calculated, af , 1 for increasing compression pulse length #, | , #| for decreasing r and
the mean values &, f for the complete run.

The following estimates were used for the determination of the relative error of o and f:

- Of B In(1 +rg) _Ta
~ Frlt=13s) rﬂ_ﬁln(tm,/tm,-n)—s.lﬁ

where o is the mean error of the smoothed fracture force Fr. The determination of the
compression pulse duration ¢ is assumed to be error free. f;, =2 s and fpma = 320 s are the lower
and higher limits of 1. (1 + ry) corresponds approximately to the lowest and largest slope angles

(2)

Fa

TABLE 1. DETAILS OF MEASUREMENTS

Number of Temperature range
Type of measurement runs ]
Upper Lower
A Tensile fracture force at 2 x 102 Ns~'; 62 —0.16 —44
compression pulse length* (2-300) s:
compression 1072 N
B Tensile fracture force at 2 x 10 2N s~ '; 8 =5 —38
compression pulse length 20 s; compression
(< 1.5.10,20,40,80)x 107N
C Tensile fracture force at 3 — 1.5 —11, =21
(1-150) x 102 N s —!; compression pulse
length 20 s: compression 10~* N

* In some runs the compression-pulse duration was increased to 3 000 s.
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f in a log plot of the fracture force versus compression pulse duration ¢ (Fig. 2). The mean
correlation coefficient for all fits is 0.9, the extreme values are 0.5 and 0.99. The corresponding
confidence levels are always higher than 95%. Results for £ and « are plotted in Figures 3 and 4
as a function of the negative temperature &[|°C||. The mean relative errors are 7, =0.22 —0.28
(range for at ., a|, &), 73 =0.17, the corresponding most probable errors are 7, =0.13 —0.2,
Fp=0.06 —0.11. The error distributions are not symmetric but are skewed to larger relative
errors caused by enlarged errors at high temperatures.

The relationship between the fracture force and the compression force is roughly linear
(measurements type B, table I). The gradient is about I, independent of temperature (see page
471). All measurements show a residual fracture force for zero contact pressure.

The fracture force does not significantly depend on stress rate (measurements type C.
Table I).

DISCUSSION OF THE RESULTS

The hysteresis of the fracture force at increasing and decreasing compression pulse durations
is caused by surfaces being incompletely recovered. No distortion of the cone tip surface could
be seen under an optical microscope a few seconds after the separation of the cones. The
hysteresis of the mean fracture force is equal to or less than the mean error of a single fit. The
mean relative hysteresis of the exponent f is 0.15. Above —10°C the higher exponents are
related to measurements with increasing compression pulse durations ¢, the lower exponents to
recordings at decreasing ¢. Below —10 °C no significant hysteresis has been observed.

The parameter £ has its highest value in the temperature range —1 °C to —35 °C, falls to a
slightly lower constant value at lower temperature but above —1 °C decreases sharply reaching
zero at the melting point. The fracture-force proportionality parameter a increases sharply above
—2°C. Near the melting point, the fracture force reaches a high asymptotic value after short
contact times (1—30s). The increase of the fracture force with contact time is highest at
temperatures of about —1 °C to —5 °C. Below —10 °C the magnitude of the tensile fracture force
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Fig. 2. Fracture force versus compression pulse length t at a temperature of —10 °C. The straight lines are the power
law fits for increasing and decreasing t and the whole run.
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Fig. 3. Bt as a function of the negative temperature 3[|°C|| fitted with a seventh order polynomial. The
corresponding curves for f§ | and B are also included.

decreases only slightly with decreasing temperature; the growth rate of the bonds remains almost
constant.

Theory

Assumptions of the model

The main assumption in the model is the existence of a liquid-like layer on ice surfaces. This
liquid-like layer has been proposed by several authors (Faraday, 1859: Weyl, 1951; Kingery.
1960; Fletcher, 1968; Jellinek, 1972; Kvlividze and others, 1973; Golecki and Jaccard, 1977;
Maeno and Nishimura, 1978; Gilpin, 1979). Fletcher is the only worker who has tried to develop
a quantitative theory of the surface structure of ice; both his attempts have been shown to be
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Fig. 4. al as a function of d fitted with a logarithmic function of & for § < I deg and a third degree polynominal
0= 1 deg.
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incomplete. His theories predict surface thicknesses of the order of magnitude of some
10~° m with sharp increases as temperature approaches the melting point. Jellinek (1972), using
mechanical testing, estimated the surface thickness to be 9 x 10~% m at —1.8 °C. Golecki (1977)
measured the thickness of the disordered surface as a function of temperature using proton
channelling. Measuring the thickness of the transition layer as a function of temperature shows a
logarithmic dependence on the absolute value of the negative temperature in [°C]|
(=log (const. 8|°C])) similar to that stated in Fletcher’s original theory (Fletcher, 1962) but with
a 20-fold larger slope. Golecki’s measurement is also in fair agreement with Jellinek’s mechanical
estimate. The nuclear magnetic resonance measurements of Kvlividze and others (1973) show a
significantly increased mobility of a small percentage of the molecules in dispersed ice. The
mobility was found to be comparable to the mobility of molecules in liquid water. Kvlividze has
shown that the high mobile molecules are concentrated at the ice—gas interface.

With these results as background, 1 propose the following model: If two spherical ice
particles are in contact, the liquid-like layers start to freeze in the contact area. Surface energy
together with the large difference in the curvatures between the neck and surface points on the
spheres outside the contact area give rise to a pressure gradient along the transition layer. This
pressure gradient caused by the surface tension creates in the transition layer a viscous flow
toward the bond neck. It is further assumed that the liquid-like layer retains its equilibrium
thickness in the source region independent of the flow. The flow distance L is the mean distance
at which liquid contributes to the bond. L is estimated in different ways: (a) to be a constant
value; (b) as the distance between points of minimum and maximum pressure; (c) as a function
of a relaxation time describing the phase change at the solid—liquid interface. If the particles are
compressed, the spheres deform plastically until the stresses in the contact region decrease below
the yield stress. In the initial stage of contact under compression, pressure melting contributes
significantly to the bond volume at high temperatures.

Fig. 5. Bond geometry.
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Bond geometry

The idealized parameters are defined in Figure 5. The curvature of the neck surface is
approximated by a circle of radius rg.
2 2
 — 2Rd+d
T (3)
2(R—rp)
where r, = bond radius in the neck midplane
R =radius of curvature of the ice particles in the contact region
d= penetration depth of the particles because of plastic deformation.
The radius of the bond at the neck boundary r* is

r*: ry +rg (4)
R +rg
The volume ¥’ of the sphere cut is
V'=4nd*(3R —d). (5)

The total bond volume ¥ is given by the following expressions
V=2al(c* + rg)y — 4 — c(rk —y*)'* + ry arcsin y/rg —

—3(y+dP?GR—y—d)+4d*GR—d)},  (6)

R —d)r
peaithe 2K (7)
R+ Fg
E=2Rrg + ¥ +2Rd—d". (8)
The curvature k, in the mid-plane cross-section of the bond is
T
ky = ——+— ©
rK "y
The curvature of the particle in the contact region is
2
ky i (10)

Driving pressure gradient
The pressure difference Ap over the flow distance L is approximated by

Ap=yry(ks —ky)=pv(2/R—r5 ' + 1Y), (11)

YLv is the surface energy of the transition layer.

Under the assumption of a laminar Newtonian flow with a constant pressure gradient parallel
to the surface layer and constant flow height determined by the equilibrium conditions for the
disordered surface layer, the rate of volume increase d¥/dr of the bond volume ¥ is (contribution
of both particle surfaces considered)

dv 5 B oyny 1 Ap

=l oa —_—27r* (12)
de 6 m L yny
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where [ is the equilibrium thickness of the liquid-like layer and #, is the viscosity of the surface
layer.

FLOW DISTANCE L

The estimation of the flow distance is critical. The dependence of the bond radius on the
contact time and particle diameter is partially determined by the approximation of the flow
distance. The simplest assumption is a constant flow distance L, independent of geometry and
material flux (case a):

L =constant (13a)

As we will see later, only the flow distance multiplied by the viscosity of the surface layer can be
estimated from the experiment.

In a second attempt, the flow distance is chosen to be twice the distance over which the
driving pressure gradient is established by the surface energy and the bond geometry (case b).
For this case the flow distance depends on the actual bond geometry and the grain diameter:

R—d

+rK'

L =2rg arcsin (13h)

A third possibility is to assume a constant relaxation time at the ice—liquid interface
i. . . .
— (ice — liquid) = constant
T

where i is a typical intracrystal molecular distancex5x 10~'® m and 7 is the relaxation time
which controls the phase change between the ice structure and the liquid structure= = 5
(Bilgram and Giittinger, 1978).
The flow rate Q is given by
O=Ai/r
where A is the source area and
A=l —nP r n 2R
The flow length is now a function of the flow rate:

S (13¢)
2var 2 \x 2" .

Creep under contact stress using the indenter-hardness concept
The yield stress g, for creep of polycrystalline ice is given by Hobbs (1974)

—1/n E
&y =aptl " P —0 (14)

nkT)|’

with E=2.6x10""], n=39 for T=>263K, E=12x10""1J, n=4.4 for T<263K,
k= Boltzmann constant: 1.38 x 1072 J deg™', and ¢ is the time of compression; the constant ¢
has the dimensions [s""].
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0y is determined by experiment and is of the order of 10° Nm~2 for t=1s, T=270 K. For
the times ¢ after the application of the compression force, the reciprocal penetration of the cone
tips is calculated as a function of the corresponding yield stress:

E
F=nr'ggct™"" exp| —
G0 XP\ kT ) (15)
r' is the effective radius of the stress-conducting part of the bond and F is the compression-force
pulse amplitude.

The bond radius in the absence of material flux r, is approximately

re=+/2Rd; d<R. (16)

The compression force F, acting on the cross-sectional area nr? is deduced from the total
compression force F with the assumption of equal yield stress for the cone ice and the bond ice:
nr?

Foxp—o— |
nrg (frozen) (16w

From Equations (15) and (16) the penetration d is

F, —~E
d:—c +1/n =)
n2Rca, ! AR ( nkT) an

The corresponding contribution to the total bond volume is (Equation 5)

V=3nd*(3R —d). (18)

Pressure melting

The depression of the melting point ATy as a function of pressure is

Twulop —v F
ATM—%A;’:C‘Ap:CFRd (19)
where Ty is the melting point of ice under normal conditions=273.15K, v, vs are the
specific volumes of the liquid and the solid phases, L,g is the specific latent heat of fusion, and
Cxdx 10~V K m* N},

The equilibrium penetration depth d is reached if ATy is equal to the negative particle
temperature & in °C.
_14x10°*F

d_—zm.w : (20)

The corresponding contribution to the total bond volume is similar to Equation (18).

Heat flow

The heat flow from the growing bond volume (refreezing of the liquid) to the different sources
of the liquid (pressure melting, surface flow) limits the possible equilibrium growth rate of the
bond volume. The supercooled liquid in the bond volume refreezes at a speed proportional to its
supercooling. For a rough estimate, we assume that the liquid refreezes from the sphere’s
surfaces into the bond volume. The maximum possible refreezing distance is equal to 4 (Fig. 5).
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The radius of the refrozen bond is approximately
rsx\/?.R(T-;cf—). Rs>h+d

r2—2Rd
2R

(21)
h=

With a linear refreezing velocity vg =gd (g is the factor of proportionality and equals
107*ms~'deg!, Bilgram and Giittinger, 1978) we get an approximate value for the
corresponding heat flow ® by multiplying an approximate bond surface area by the refreezing
velocity and the specific latent heat L, g(=3.35 x 108 Jm~3):

re—2Rd

O=27r, ——
2R

for ¥ = 0 and ry > \/2Rd this equation may be rewritten

goLys,

%
g
d):LLsﬂ?fgé. (22)

The heat flow between source and sink is roughly

o=k 24 23)
where b is the distance between source and sink, & is the heat conductivity (=2Jm~'s~ ' deg™"),
A is the temperature difference between source and sink. and A is the cross-sectional area for
heat flow. 4 is of the order of magnitude of the bond cross-sectional area 7r¢, b is approximately
equal to L (flow distance). Equations (22) and (23) yield for the temperature difference & between
source and sink

Ax 1.7 x 10"%’L§ (e 2 n). (24)

For the initial states of sintering with r,/R < 1. L<R, and (r,/R)L < 10~* m, the temperature
difference A between source and sink is always small compared with & (temperature below the
melting point in °C) for & > 0.1 deg and contact times > 2 s.

Thickness of the liquid-like layer

Fletcher (1962) and Golecki and Jaccard (1977) propose a logarithmic dependence of the
transition layer thickness / on supercooling:

[=(C, —C; log (C36)) x 10~° m (25)
Golecki and Jaccard: C; ~ 100; C; = 50; C; =1deg™".

The revised model of Fletcher (1968) and the Golecki and Jaccard measurements indicate an even
sharper increase of the layer thickness above —1°C. Our model calculations agree with the
measured data only when the log (thickness—temperature) relationship is modified in the same
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direction (Fig. 6).
I5
[={ 60 + ————301log (C36)| x 10~* m. (26)
(Cg(s)z g ( 3 )
This dependence is in rough qualitative agreement with Fletcher’s revised model and is in fair
quantitative agreement with the measurements of Jellinek (1972) and Golecki and Jaccard (1977).

Approximate solutions

Basically. Equation (11), which describes the rate of increase of the bond volume. has to be
solved for the bond radius r,. Assuming a temperature- and time-independent strength of the
bond ice, the cross-sectional area 7/¢ would be proportional to the measured tensile fracture
force.

Unfortunately. the time-dependent variation of the penetration depth & (Equation 15) and the
complicated expressions for the bond volume V (Equation 6) and the flow distance L (Equation
13). as well as the additional effects of pressure melting and of the transition layer impede a
closed form solution of Equation (11).

However. the following approximate solutions can be found:

With the assumption d < R we get the following estimate for r,

ry =+\/Rd(1 + /(1 + V/Rd?)). (27)

Using this approximation, the differential Equation (12) can be solved ford<r, <R, r, > \/2Rd,
L ~constant (case a), or Lxnrg (Equation 13b) or (1/2y/2a)i/t)~ Y2(dV/dt)* > r, /2 (13c)
(ry :\/2_}?? in the absence of any surface flow). This approximation holds for cases where
surface flow is the dominant process for bond growth, neglecting plastic deformation of the
contact area. These assumptions are fulfilled for high temperatures and for bond radii small
compared with the equilibrium radius r,

./ 1
b ]
R Fe g
1 [nm]
el
N
N
B
\\\
| a2 B
a \‘\
|8 5
1 "\
U - NS - - .
6 [ieci]

Fig. 6. Thickness of the transition layer as a function of temperature 6.
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where
d<R and re =(i+v2)R. (28)
Rewriting Equation (12) for L constant gives:
dv 1 2 1 1 )
—_— = ——— 3 — (29:
dl L'(R = X
C"_ 2n 13 -]’i
3 m
For L'=qre:
dv 1 21 1
—— e M —=——+—]. (29b)
dr g R nrn Iy

. -1/2 1/2
For L =~ L L3 ﬁ 7
2/2r \t dr
dVv i |22 2”( (2 | | )"”3
e gl e N . 29c¢
o (C2\/2rz(r) ) r R + ) (29¢)

y Ig
where r¢ ~ rf/2R (Equation 3),
ry = (RV)"* (Equation 27),
r*xr, + rg (Equation 4).
For these very limiting assumptions we get for the bond radii

r\ 1/5

b ::(EC—) RAOE, (30a)
2 ks
i ?._‘(]lfcr)l”RS/Tfl”. (301’))
and
i\

o 2‘;’(%)3“4(87TC')]"’7( t) RS/M!J,JM_ (30{:)

T

The corresponding tensile fracture forces are
Fr=oy(t, T)rén (31)

where oy is the tensile strength of the bond ice for the given stress distribution as a function of
contact time and temperature.

The time and temperature dependence of g; is not known, therefore, we assume g to be
independent of the age of the ice as well as of temperature. For the tensile fracture force the
power of the contact time ¢ varies for the different models for the flow distance L between =
0.29 and 0.43. The power of the grain radius R varies from 0.71 to 0.86. The numerical solution
will show that the effective values are lowered by the plastic deformation process. For 7=1s.
yv=0.1Jm™2 nL=25x103kgm~'s!, R=5x10"*m, J=1ldeg [=8x10"%m,
L(const.)=3u (Equation 30a), i=35 x 10~ 7t (Equation 30c). the bond radius varies from 55 um
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SUBROUTINES MAIN PROGRAM EQUATION  Subroutines:
= rRA  Calculates ry( V) (Equation 6)
Input: R. 4. F beginning with an estimate from
Equation 27
l LL Equilibrium thickness of liquid-like
layer
Refreezing of the surface pv  dV/di(ry) (Equation 12)
i layer at the contact: 2% v Vrp) (Equation 6)
H V, ry, refreezing time pLOT  Data plot
D Tip deformation as a function of F and
l t (Equation 17)
Pressure melting: 20 Parattiter lm :
RA V. ry, refreezing time R Radius of curvature of the grain near
the contact
l é Absolute value of negative temperature
in|°C|
Vel + A)— Vre(t) F Compression force
o = /2070 + P+ A) v Total b(m.d volume
v | 6 s Bond radius
R { + 61— ¢: actual time 12 ry Radius of refrozen bond
V dV/de
Vo s ! Time
l ot Effective time interval
4 A Approximate time interval
PLOT Plot store
> Tip deformation }— 17
RA

Fig. 7. Flow diagram for the numerical solution.

to 75 um. With an ice bond strength of 10®* N m~2 at a stress rate of about 10 Nm~2 s ! the
tensile fracture force is in the range of 1072 N (a in Equation 1). The comparatively low bond ice
strength a; (about 1/2 of the tensile strength measured by Butkovich (1954)) may be caused by
the high surface to cross-section ratio of thin bonds, the low age of the bond ice (some seconds
old). and the complicated inhomogeneous stress state in the bond cross-section.

At low temperatures the main process is plastic deformation of the cone tips. From
Equations (16 and 17) we have

1 ~ F0% P26,

(32)
12~ Fo3 T<263K.

The decrease of the power of ¢ with decreasing temperature from 0.3-0.4 (viscous flux
regime) to 0.23 (plastic deformation regime) is the main reason for the measured decrease of p
(Equation 1, Fig. 3). Equation (32). according to my measurements. indicates that for the plastic
deformation regime the fracture tensile force is proportional to the compressive force.

In reality, the two regimes are always mixed, plastic deformation being more important in the
initial state of sintering and at low temperatures. If there is no compressional force, bond growth
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Fig. 8. Calculated bond radius ry(t) for temperature between —0.1 °C and —40°C and a compression pulse
amplitude of 10 =2 N. A: total bond radius. B: radius of refrozen bond.

is completely described by the viscous flow regime for short contact times. For contact times
longer than 102—10%s the main transport mechanism is vapour transport with a bond-area
growth proportional to 14 (Hobbs and Mason, 1964).

Rt =RYUM for >10%s (33)

Numerical solution

The flow diagram for the simulation program is given in Figure 7. The program calculates
ry(f) incrementally for given temperatures.

afio-2n) 1

a

AN O£ oW\ m < m

| ?}%mmim, ey

4 s @ |S 2@ PS5 3@ Fs “a
S [iec1)

Fig. 9. Tensile fracture force Fr=aynre as a function of temperature 6(2) for t=1s, F= 10~% N. Included are the
measured data for a.
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Fig. 10. Calculated fracture force Fr as a function of the compression amplitude F for contact times t=20 s,
T'=263 K. The band shows the range of the measured data (Table I, type B).

Results

Plots of ry(r) at different temperatures (F=10"2 N), o;m(T) for t=1s, F=10"2 N;
onrg(F) for t1=20s, T=263K; B(T) for F=10"2N, 1 s<t<300s are presented in Figures
8—11 and compared with the experimental data.

Equation (13¢) was used for the model calculation presented here (constant relaxation time
at the interface between transition layer and bulk ice). The parameters are given below:

yi:élo.yw:o.l Im2m=25%x10"kgm-!s-1,
e
R=5% [0~*m,

i
—=5%x100"ms™ 1, i=5%x100"m,r=10"3s
.

o, =10 Nm~2
[ given by Equation (25)
o =10°Nm=2

Correspondence between the experimental data and the theory is at its worst at temperatures
above —5 °C. The maximum theoretical value for the bond growth rate is below —1 °C. Its value
of e. 0.35 (simulation) to 0.4 (flux regime approximation; Equation 30c) is in fair agreement with
the experiment. The theoretical value for the growth rate drops off faster with decreasing
temperature than does the experimental value. This transition from the flux regime to the plastic
deformation regime depends mainly on the temperature dependence of the yield stress (n, E in
Equation 14). An increased yield stress at temperatures above —5 °C would drastically increase
the correspondence between theory and experiment (Fig. 11). Additional, more precise
measurements are necessary in this temperature range.

The sharp decrease of S(T) (Equation 1) at temperatures approaching the melting point is
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Fig. 11. Calculated and measured values of f(8) for compression forces F=10~* N and compression pulse lengths
1 s<t<1000s. Measured data B (Table I, tvpe A); calculated data.
2ia,=10°Nm % 3:0,=1.8 x 105 Nm~2,4:0,=4 x 10° Nm =2, 5: Flux regime Equation (30c).

caused by the decreasing pressure gradient in the transition layer for bond radii r, approaching
its saturation value. Because of the large transition layer thickness, bond growth is very fast for
temperatures above —1 °C. However, at temperatures near the melting point, the bonds remain
partly unfrozen for contact times up to several seconds (Fig. 8).

The tensile strength of the bond ice is assumed to be independent of temperature. Butkovich
(1954) measured a 25% linear increase in tensile strength between 0 °C and —40 °C. In addition,
an ageing effect for increasing f possibly increases strength for higher contact times. Both effects,

which are not included in the model. tend to increase correspondence between simulation and
measurements.

CONCLUSION

The model describes the development of sintered bonds between ice grains for short contact
times and compressive forces in fair agreement with the measurements. Improved measurements

of the tensile fracture force Fr and of the bond radius and direct recordings of the deformation d
are necessary to refine the model.
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